Sensing and Imaging

, 16:1 | Cite as

Readout Circuits for Noise Compensation in ISFET Sensory System

Original Paper

Abstract

This paper presents two different noise reduction techniques for ion sensitive field effect transistor (ISFET) readout configuration and their comparison. The proposed circuit configurations are immune to the noise generated from the ISFET sensory system and particularly to the low frequency pH dependent 1/f electrochemical noise. The methods used under this study are compensation of noise by differential OPAMP based and Wheatstone bridge circuit, where two identical commercial ISFET sensors were used. The statistical and frequency analysis of the data generated by this two methods were compared for different pH value ranging from pH 2 to 10 at room temperature, and it is found that the readout circuits are able to compensate the noise to a great extent.

Keywords

Noise compensation ISFET Wheatstone bridge configuration Differential OPAMP configuration 

References

  1. 1.
    Bergveld, P. (1972). Development, operation and application of ion- sensitive field-effect transistor as tool for electrophysiology. IEEE Transactions on Biomedical Engineering, 19, 342–351.CrossRefGoogle Scholar
  2. 2.
    Bergveld, P. (2003). ISFET, theory and practice, IEEE sensor conference Toronto, pp. 1–25.Google Scholar
  3. 3.
    Bergveld, P. (2000). Thirty years of ISFETOLOGY: What happened in the past 30 years and what may happen in the next 30 years. Sensors and Actuators, B: Chemical Sensors and Materials, 88, 1–20.CrossRefGoogle Scholar
  4. 4.
    Hernández, P. R., Taboada, C., Leija, L., Tsutsumi, V., Vázquez, B., Valdés-Perezgasga, F., & Reyes, J. L. (1998). Evaluation of biocompatibility of pH-ISFET materials during long-term subcutaneous implantation. Sensors and Actuators, B: Chemical Sensors and Materials, 46, 133–138.CrossRefGoogle Scholar
  5. 5.
    Clement, N., Nishiguchi, K., Dufreche, J. F., Guerin, D., Fujiwara, A., & Vuillaume, D. (2011). A silicon nanowire ion-sensitive field-effect-transistor with elementary charge sensitivity. Applied Physics Letters, 98, 014104–014109.CrossRefGoogle Scholar
  6. 6.
    Haemmerli, A., Janata, J., & Brophy, J. J. (1982). Equilibrium noise in ion selective field effect transistors. Journal of the Electrochemical Society, 129, 2306–2312.CrossRefGoogle Scholar
  7. 7.
    Deen, M. J., Shinwari, M. W., & Ranuarez, J. C. (2006). Noise consideration in field-effect biosensors. Journal of Applied Physics, 100, 1074–1082.CrossRefGoogle Scholar
  8. 8.
    Chan, P. K., & Chen, D. Y. (2007). A CMOS ISFET interface circuit with dynamic current temperature compensation technique. IEEE Transaction on Circuit and Systems-I, 54(1), 119–129.CrossRefGoogle Scholar
  9. 9.
    Chen, D. Y., & Chan, P. K. (2008). An intelligent ISFET sensory system with temperature and drift compensation for long-term monitoring. IEEE Sensor Journal, 8, 1948–1959.CrossRefGoogle Scholar
  10. 10.
    Jamasb, S. (2004). An analytical technique for counteracting drift in ion-selective field effect transistor (ISFETs). IEEE Sensor Journal, 4, 795–800.CrossRefGoogle Scholar
  11. 11.
    Premanode, B., Silawan, N., & Toumazou, C. (2007). Drift reduction in ion-sensitive FETs using correlated double sampling. Electronics Letters, 43, 1–2.CrossRefGoogle Scholar
  12. 12.
    Israeloff, N. E. (1996). Dielectric polarization of noise through the glass transition. Physical Review B, 53, 11913–11916.CrossRefGoogle Scholar
  13. 13.
    Akiba, M. (1997). 1/f dielectric polarization noise in silicon p–n junctions. Applied Physics Letter, 71, 3236–3238.CrossRefGoogle Scholar
  14. 14.
    Jamasb, S., Churchill, J. N., Collins, S. D., & Smith, R. L. (1998). Accurate continuous monitoring using ISFET-based biosensors based on characterization and modeling of drift and low frequency noise. In: Proceedings of the 20th annual international conference of the IEEE engineering in medicine and biology society, 20, pp. 2864–2867.Google Scholar
  15. 15.
    Jakobson, C. G., & Nemirovsky, Y. (1998). l/f Noise in ion selective field effect transistors compared to MOSFETs. In Electrotechnical conference MELECON 98, 9th Mediterranean, pp. 1456–1460.Google Scholar
  16. 16.
    Hassibi, A., Navid, R., Dutton, R. W., & Lee, T. H. (2004). Comprehensive study of noise processes in electrode electrolyte interfaces. Journal of Applied Physics, 96, 1074–1082.CrossRefGoogle Scholar
  17. 17.
    Das, M. P., & Bhuyan, M. (2013). Modeling of pH dependent electrochemical noise in ion sensitive field effect transistors ISFET. Sensors & Transducers, 149, 102–108.Google Scholar
  18. 18.
    Jamasb, S., Collins, S. D., & Smith, R. L. (1998). A physical model for threshold voltage instability in gate H+-sensitive FET’s (pH ISFET’s). Electron Devices, IEEE Transactions on, 45, 1239–1245.CrossRefGoogle Scholar
  19. 19.
    Woias, P., Meixner, L., & Fröstl, P. (1998). Slow pH response effects of siliconnitride ISFET sensors. Sensors and Actuators, B: Chemical Sensors and Materials, 48, 501–504.CrossRefGoogle Scholar
  20. 20.
    Bousse, L. J., Hafeman, D., & Tran, N. (1991). Time dependence of the chemical response of silicon nitride surfaces. Sensors and Actuators, B: Chemical Sensors and Materials, 1, 361–367.CrossRefGoogle Scholar
  21. 21.
    Yu, D., Wei, Y. D., & Wang, G. H. (1991). Time-dependent response characteristics of pH-sensitive FET. Sensors and Actuators, B: Chemical Sensors and Materials, 3, 279–285.CrossRefGoogle Scholar
  22. 22.
    Barabash, P. R., Cobbold, R. S. C., & Wlodarski, W. B. (1987). Analysis of the threshold voltage and its temperature dependence in electrolyte-insulator-semiconductor field-effect transistor (EISFET’s). IEEE Transactions on Electron Devices, 34, 1271–1282.CrossRefGoogle Scholar
  23. 23.
    Martinoia, S., Lorenzelli, L., Massobrio, G., Conci, P., & Lui, A. (1998). Temperature effects on the ISFET behavior: Simulations and measurements. Sensors and Actuators, B: Chemical Sensors and Materials, 50, 60–68.CrossRefGoogle Scholar
  24. 24.
    Chou, J. C., Wang, Y. F., & Lin, J. S. (2000). Temperature effect of a-Si: H pH-ISFET. Sensors and Actuators, B: Chemical Sensors and Materials, 62, 92–96.CrossRefGoogle Scholar
  25. 25.
    Chou, J. C., Weng, C. Y., & Tsai, H. M. (2002). Study on the temperature effect of Al2O3 gate pH-ISFET. Sensors and Actuators, B: Chemical Sensors and Materials, 81, 152–157.CrossRefGoogle Scholar
  26. 26.
    Filanovsky, I. M., & Allam, A. (2001). Mutual compensation of mobility and threshold voltage temperature effects Vth applications in CMOS circuits. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 48, 876–884.CrossRefGoogle Scholar
  27. 27.
    Chiang, J. L., Jan, S. S., Chou, J. C., & Chen, Y. C. (2001). Study on the temperature effect, hysteresis and drift of pH-ISFET devices based on amorphous tungsten oxide. Sensors and Actuators, B: Chemical Sensors and Materials, 76, 624–628.CrossRefGoogle Scholar
  28. 28.
    Jakobson, C. G., & Nemirovsky, Y. (1998). 1/f noise in ion sensitive field effect transistor from subthreshold to saturation. IEEE Transactions on Electron Device, 2, 1456–1460.Google Scholar
  29. 29.
    Chung, W. Y., Yang, C. H., Pijanowska, D. G., Krzyskow, A., & Torbicz, W. (2004). ISFET interface circuit embedded with noise rejection capability. Electronics Letters, 40, 1115–1116.CrossRefGoogle Scholar
  30. 30.
    Chung, W. Y., Lin, Y. T., Pijanowska, D. G., Yang, C., Wang, M. C., Krzyskow, A., & Torbicz, W. (2006). New ISFET interface circuit design with temperature compensation. Microelectronics Journal, 37, 1105–1114.CrossRefGoogle Scholar
  31. 31.
    Thanachayanont, A., & Sirimasakul, S. (2009). Ultra-low-power differential ISFET/REFET readout circuit. ETRI Journal, 31, 243–245.CrossRefGoogle Scholar
  32. 32.
    Muller, E., Woias, P., Hein, P., & Koch, S. (1991). Differential ISFET/REFET pairs as a reference system for integrated ISFET-Sensor arrays. In Solid-State Sensors and Actuators, Digest of Technical Papers, TRANSDUCERS’91, pp. 467–470. doi: 10.1109/SENSOR.1991.148913.
  33. 33.
    Chodavarapu, V. P., Titus, A. H., & Cartwright, A. N. (2005). Differential read-out architecture for CMOS ISFET microsystems. Electronics Letters, 41, 12.Google Scholar
  34. 34.
    Wong, H. S., & White, M. H. (1989). A cmos-integrated ISFET-operational amplifier chemical sensor employing differential sensing. IEEE Transactions on Electron Devices, 36, 479–487.CrossRefGoogle Scholar
  35. 35.
    Ghallab, Y. H., Badawy, W., & Kaler, K. V. (2003). A novel ph sensor using differential ISFET current mode read–out circuit. MEMS, NANO and Smart Systems, pp. 255–258.Google Scholar
  36. 36.
    Nobpakoon, T., Pijitrojana, W., & Poyai, A. (2013). A new method for current differential ISFET/REFET. International Journal of Information and Electronics, Engineering, 3, 141–143.Google Scholar
  37. 37.
    Morgenshtein, A., Sudakov-Boreysha, L., Dinnar, U., Jakobson, C. G., & Nemirovsky, Y. (2004). Wheatstone-bridge readout interface for ISFET/REFET application. Sensors and Actuators B: Chemical, 98, 18–27.CrossRefGoogle Scholar
  38. 38.
    Casans, S., Navarro, A. E., Ramırez, D., Castro, E., Baldi, A., & Abramova, N. (2003). Novel voltage-controlled conditioning circuit applied to the ISFETs temporary drift and thermal dependency. Sensors and Actuators, B: Chemical Sensors and Materials, 91, 11–16.CrossRefGoogle Scholar
  39. 39.
    Chung, W. Y., Yang, C. H., Pijanowska, D. G., Grabiec, P. B., & Torbicz, W. (2006). ISFET performance enhancement by using the improved circuit technique. Sensors and Actuators B: Chemical, 113, 555–562.CrossRefGoogle Scholar
  40. 40.
    Shinwari, M. W., Deen, M. J., & Landheer, D. (2007). Study of the electrolyte-insulator-semiconductor field effect transistor (EISFET) with applications in biosensor design. Microelectronics Reliability, 47, 2025–2047.CrossRefGoogle Scholar
  41. 41.
    Deen, M. J., Shinwari, M. W., Landheer, D., & Lopinski, G. (2006). High sensitivity detection of biological species via the field-effect. The IEEE international Caribbean conference on devices, circuits and systems, pp. 381–385.Google Scholar
  42. 42.
    Deen, M. J., & Marinov, O. (2005). Noise in advanced electronic devices and circuits. 18th International conference on noise and fluctuations—ICNF 2005. AIP conference proceedings, pp. 3–12.Google Scholar
  43. 43.
    Deen, M. J., & Marinov, O. (2002). Effect of forward and reverse substrate biasing on low frequency noise in silicon PMOSFETs. IEEE Transactions on Electron Devices, 49, 409–413.CrossRefGoogle Scholar
  44. 44.
    Marin, M., Deen, M. J., Murcia, M. D., Llinares, P., & Vildeuil, J. C. (2004). Effects of body biasing on the low frequency noise of MOSFETs from a 130 nm CMOS technology, circuits, devices and systems, IEE proceeding, pp. 95–101.Google Scholar
  45. 45.
    Morgenshtein, A. (2003). Design and methodology for ISFET (ion sensitive field-effect transistor) microsystems for bioteltmetry. M.Sc. thesis, Israel Institute of Technology, Haifa, April 2003.Google Scholar
  46. 46.
    Janata, J. (2009). Principles of chemical sensors, (2nd ed., pp. 152–153). USA: Springer.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electronic and Communication EngineeringTezpur UniversityTezpurIndia

Personalised recommendations