Sensing and Imaging

, 15:96 | Cite as

Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography

Original Paper
Part of the following topical collections:
  1. Topical Collection: Hybrid Imaging and Image Fusion


For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two dimensions and the properties of the algorithms and the implementations are investigated, both theoretically and on simulated data obtained from a numerical phantom. The numerical results show similarities and differences between the proposed algorithms, and they justify that the choice of algorithm should be based on a theoretical analysis of the underlying inverse problem.


Hybrid inverse problems Iterative reconstruction methods Impedance tomography Current density impedance imaging Magnetic resonance electrical impedance tomography Ultrasound modulated electrical impedance tomography 


  1. 1.
    Ammari, H. (2008). An introduction to mathematics of emerging biomedical imaging. Mathématiques et Applications. New York: Springer. ISBN: 9783540795537.Google Scholar
  2. 2.
    Ammari, H., Bonnetier, E., Capdeboscq, Y., Tanter, M., & Fink, M. (2008). Electrical impedance tomography by elastic deformation. SIAM Journal on Applied Mathematics, 68(6), 1557–1573. doi: 10.1137/070686408.
  3. 3.
    Bal, G. (2013). Cauchy problem for ultrasound-modulated EIT. Analysis & PDE, 6(4), 751–775. doi: 10.2140/apde.2013.6.751.
  4. 4.
    Bal, G. (2012). Hybrid inverse problems and internal functionals. Inverse Problems and Applications: Inside Out, II(60), 325–368.Google Scholar
  5. 5.
    Bal, G. (2014). Hybrid inverse problems and redundant systems of partial differential equations. AMS Contemporary Mathematics, 615, 15–47. doi: 10.1090/conm/615.
  6. 6.
    Bal, G., Naetar, W., Scherzer, O., & Schotland, J. (2013). The Levenberg–Marquardt iteration for numerical inversion of the power density operator. Journal of Inverse and Ill-Posed Problems, 21(2), 265–280. doi: 10.1515/jip-2012-0091.
  7. 7.
    Birgül, Ö., Eyüboglu, B. M., & Ider, Y. Z. (2003). Current constrained voltage scaled reconstruction (CCVSR) algorithm for MR-EIT and its performance with different probing current patterns. Physics in Medicine and Biology, 48(5), 653–671. doi: 10.1088/0031-9155/48/5/307.
  8. 8.
    Capdeboscq, Y., Fehrenbach, J., de Gournay, F., & Kavian, O. (2009). Imaging by modification: Numerical reconstruction of local conductivities from corresponding power density measurements. SIAM Journal on Imaging Sciences, 2(4), 1003–1030. doi: 10.1137/080723521.
  9. 9.
    Evans, L. C. (2010). Partial differential equations. Graduate studies in mathematics. USA: American Mathematical Society. ISBN: 9780821849743.Google Scholar
  10. 10.
    Gebauer, B., & Scherzer, O. (2008). Impedance-acoustic tomography. SIAM Journal on Applied Mathematics, 69(2), 565–576. doi: 10.1137/080715123.
  11. 11.
    Hagen, H. (1992). Curve and surface design. Society for Industrial and Applied Mathematics. ISBN: 9781611971651.Google Scholar
  12. 12.
    Hagen, R., Roch, S., & Silbermann, B. (2000). C*-algebras and numerical analysis. Chapman & Hall/CRC pure and applied mathematics. Taylor & Francis. ISBN: 9780824704605.Google Scholar
  13. 13.
    Henderson, A. (2004). The ParaView guide. Clifton Park, NY: Kitware. ISBN: 1930934149.Google Scholar
  14. 14.
    Hoell, N., Moradifam, A., & Nachman, A. (2014). Current density impedance imaging of an anisotropic conductivity in a known conformal class. SIAM Journal on Mathematical Analysis, 46(3), 1820–1842. doi: 10.1137/130911524.
  15. 15.
    Hoffmann, K., Bal, G., & Knudsen, K. On the propagation of singularities for a class of hybrid inverse problems. Preprint.Google Scholar
  16. 16.
    Kim, Y. J., Kwon, O., Seo, J. K., & Woo, E. J. (2003). Uniqueness and convergence of conductivity image reconstruction in magnetic resonance electrical impedance tomography. 19(5), 1213–1225. doi: 10.1088/0266-5611/19/5/312.
  17. 17.
    Kuchment, P. (2012). Mathematics of hybrid imaging: A brief review. In: Springer Proceedings in Mathematics, 183–208. doi: 10.1007/978-88-470-1947-8_12.
  18. 18.
    Kuchment, P., & Kunyansky, L. (2011). 2D and 3D reconstructions in acousto-electric tomography. Inverse Problems, 27(5), 055013. doi: 10.1088/0266-5611/27/5/055013.
  19. 19.
    Kuchment, P., & Steinhauer, D. (2012). Stabilizing inverse problems by internal data. In: Inverse Problems, 28(8), 084007. doi: 10.1088/0266-5611/28/8/084007.
  20. 20.
    Kwon, O., Woo, E. J., Yoon, J.-R., & Seo, J. K. (2002). Magnetic resonance electrical impedance tomography (MREIT): Simulation study of Jsubstitution algorithm. IEEE Transactions on Biomedical Engineering, 49(2), 160–167. doi: 10.1109/10.979355.
  21. 21.
    Langtangen, H. P. (2003). Computational partial differential equations: Numerical methods and diffpack programming. Texts in computational science and engineering. Berlin, Heidelberg: Springer. ISBN: 9783540434160.Google Scholar
  22. 22.
    Logg, A., Mardal, K.-A., & Wells, G. (2012). Automated solution of differential equations by the finite element method: The FEniCS book. Lecture Notes in Computational Science and Engineering: Springer. ISBN: 9783642230998.Google Scholar
  23. 23.
    Monard, F., & Bal, G. (2013). Inverse anisotropic conductivity from power densities in dimension \(n\ge 3\). Communications in Partial Differential Equations, 38(7), 1183–1207. doi: 10.1080/03605302.2013.787089.
  24. 24.
    Monard, F., & Bal, G. (2012). Inverse anisotropic diffusion from power density measurements in two dimensions. Inverse Problems, 28(8), 084001. doi: 10.1088/0266-5611/28/8/084001.
  25. 25.
    Moradifam, A., Nachman, A., & Timonov, A. (2012). A convergent algorithm for the hybrid problem of reconstructing conductivity from minimal interior data. Inverse Problems, 28(8), 084003. doi: 10.1088/0266-5611/28/8/084003.
  26. 26.
    Mueller, J. L., & Siltanen, S. (2012). Linear and nonlinear inverse prob- lems with practical applications. Computational Science and Engineering: SIAM. ISBN: 9781611972344.Google Scholar
  27. 27.
    Nachman, A., Tamasan, A., & Timonov, A. (2011). Current density impedance imaging. Tomography and Inverse Transport Theory. doi: 10.1090/conm/559/11076.
  28. 28.
    Nachman, A., Tamasan, A., & Timonov, A. (2009). Recovering the conductivity from a single measurement of interior data. Inverse Problems, 25(3), 035014. doi: 10.1088/0266-5611/25/3/035014.
  29. 29.
    Oh, S. H., Lee, B. I., Woo, E. J., Lee, S. Y., Cho, M. H., Kwon, O., et al. (2003). Conductivity and current density image reconstruction using harmonic Bz algorithm in magnetic resonance electrical impedance tomography. Physics in Medicine and Biology, 48(19), 3101–3116. doi: 10.1088/0031-9155/48/19/001.
  30. 30.
    Seo, J. K., & Woo, E. J. (2011). Magnetic resonance electrical impedance tomography (MREIT). SIAM Review, 53(1), 40–68. doi: 10.1137/080742932.
  31. 31.
    Seo, J. K., Yoon, J.-R., Woo, E. J., & Kwon, O. (2003). Reconstruction of conductivity and current density images using only one component of magnetic field measurements. IEEE Transactions on Biomedical Engineering, 50(9), 1121–1124. doi: 10.1109/tbme.2003.816080.
  32. 32.
    Tartar, L. (2007). An introduction to Sobolev spaces and interpolation spaces. Lecture notes of the Unione Matematica Italiana. Berlin, Heidelberg: Springer. ISBN: 9783540714835.Google Scholar
  33. 33.
    Widlak, T., & Scherzer, O. (2012). Hybrid tomography for conductivity imaging. Inverse Problems, 28(8), 084008. doi: 10.1088/0266-5611/28/8/084008.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Computer ScienceTechnical University of Denmark2800 Kgs. LyngbyDenmark

Personalised recommendations