A New Optical Rangefinder Design for Detection of Obstacles

Original Paper


This paper presents a distance sensor known as a rangefinder. This sensor measures the distances from a robot to obstacles based on the triangulation principle. This principle is widely used in photography and in other areas. For mobile robot applications, the rangefinder is designed to minimize the cost and the interference from external illumination in order to obtain a sufficiently large measurement distance. The light beam is generated with a small lamp and a lens. This light beam is reflected with a rotating mirror and scans the surrounding space. Obstacles reflect the light beam to the second mirror and the second mirror reflects it to the second lens. Then the focused light beam arrives at the line of optical sensors. A special electronic device gives the time of arrival of the light beam. This time is transformed to binary code for the computer. The computer transforms the binary code to the distance using the geometrical features of the rangefinder. The rangefinder with 10 optical sensors will make approximately 1,000 measurements per second. In this article the scheme of the rangefinder is described. The main parameters of the rangefinder prototype are presented.


Rangefinder Mobile robot Low cost Wide range of scanning 


  1. 1.
    Bartolini, L., Bordone, A., Fantoni, R., Ferri de Collibus, M., Fornetti, G., Moriconi, C., et al. (2000). Development of a laser rangefinder for the Antarctic plateau. Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG, 1, 148–156.Google Scholar
  2. 2.
    Masaki, J., Okada, N., & Kondo, E. (2004). Prototype range finder using an image sensing device with electronic pattern masks. Robotics and Automation Proceedings. doi:10.1109/ROBOT.2004.1307549.
  3. 3.
    Hood, J. L., Hayashi, M., et al. (2010). Assessing the application of a laser rangefinder for determining snow depth in inaccessible alpine terrain. Hydrology and Earth System Science Discussion, 7, 417–440.CrossRefGoogle Scholar
  4. 4.
    Surmann, H., Nüchter, A., Hertzberg, J., et al. (2003). An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robotics and Autonomous Systems, 45, 181–198.CrossRefGoogle Scholar
  5. 5.
    Sungbok, K., & Hyun, B. K. (2010). High resolution mobile robot obstacle detection using low directivity ultrasonic sensor ring. Advanced Intelligent Computing Theories and Applications with Aspects of Artificial Intelligence, 6216, 426–433. doi:10.1007/978-3-642-14932-0_53.CrossRefGoogle Scholar
  6. 6.
    Booth, D. T., Cox, S. E., & Berryman, R. D. (2006). Precision measurements from very-large scale aerial digital imagery. Environmental Monitoring and Assessment, 112, 293–307. doi:10.1007/s10661-006-1070-0.CrossRefGoogle Scholar
  7. 7.
    Kussul, E., Baidyk, T., & Wunsch, D. (2010). Neural networks and micromechanics. NY: Verlag.MATHCrossRefGoogle Scholar
  8. 8.
    Watson, J. (1988). Optoelectronics. Workingham: Van Nostrand Reinhold.Google Scholar
  9. 9.
    Gonzalez, J., Stentz, A., & Ollero, A. (1995). A mobile robot iconic position estimator using a radial laser scanner. Journal of Intelligent and Robotic Systems, 13(2), 161–179. doi:10.1007/BF01254850.CrossRefGoogle Scholar
  10. 10.
    Kao-Shing, H., Yu-Jen, C., Hai-Chun, H., et al. (2004). Autonomous exploring system based on ultrasonic sensory information. Journal of Intelligent and Robotic Systems, 39, 307–331.CrossRefGoogle Scholar
  11. 11.
    Teslić, L., Škrjanc, I., & Klančar, G. (2010). EKF-based localization of a wheeled mobile robot in structured environments. Journal of Intelligent and Robotic Systems, 62(2), 187–203. doi:10.1007/s10846-010-9441-8.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centro de Ciencias Aplicadas y Desarrollo Tecnologico (CCADET)Universidad Nacional Autonoma de Mexico (UNAM), Ciudad UniversitariaMexico CityMexico

Personalised recommendations