Comparative Data Processing Approaches for Thermal Wave Imaging Techniques for Non-Destructive Testing

Original Paper

Abstract

Thermal non destructive testing is a whole-field, non-contact and non-destructive inspection method used to reveal the surface or subsurface anomalies in a test sample. This paper describes a novel modelling and simulation technique of a three dimensional pulse compression method for non-stationary thermal imaging. This method requires much lower peak power heat sources than the widely used conventional pulsed thermographic methods (PT and PPT) and requires less time than sinusoidal modulated Lock-in Thermography (LT). In addition, simulation results obtained with the proposed techniques are compared with the conventional phase-based thermal imaging techniques (PPT and LT).

Keywords

Infrared thermography Thermal waves Non stationary signals Phase images Pulse compression Correlation Non-destructive testing 

References

  1. 1.
    Maldague, X. (2001). Theory and practice of infrared thermography for nondestructive testing. Hoboken: John Wiley-Interscience.Google Scholar
  2. 2.
    Balageas, D. L., Deom, A. A., & Boscher, D. M. (1987). Characterization and nondestructive testing of carbon epoxy composites by a pulsed photo thermal method. Materials Evaluation, 45, 461–465.Google Scholar
  3. 3.
    Balageas, D. L., Krapez, J. C., & Cielo, P. (1986). Pulsed photothermal modeling of layered materials. Journal of Applied Physics, 59, 348–357.CrossRefGoogle Scholar
  4. 4.
    Shepard, S., Chaudhry, B., Predmesky, R., & Zaluzec, M. (1998). Pulsed thermographic inspection of spot welds. Proceedings of SPIE, 3361, 320–324.CrossRefGoogle Scholar
  5. 5.
    Tam, A. C., & Sullivan, B. (1983). Remote sensing applications of pulsed photothermal radiometry. Applied Physics Letters, 43, 333.CrossRefGoogle Scholar
  6. 6.
    Avdelidis, N. P., & Almond, D. P. (2004). Through skin sensing assessment of aircraft structures using pulsed thermography. Journal of NDT & E International, 37(5), 353–359.CrossRefGoogle Scholar
  7. 7.
    Shepard, S. M. (2001). Advances in pulsed thermography. Proceedings of SPIE, 4360, 511–515.CrossRefGoogle Scholar
  8. 8.
    Rosencwaig, A., & Gersho, A. (1976). Theory of the photoacoustic effect in solids. Journal of Applied Physics, 47, 64–69.CrossRefGoogle Scholar
  9. 9.
    Cowell, S. D., Burleigh, D. D., & Murray, T. J. (1989). Flash lamp heat flux requirements for thermographic inspection of fiber composite laminates. Proceedings of SPIE, 1094, 182–187.Google Scholar
  10. 10.
    Almond, D. P., & Lau, S. K. (1994). Defect sizing by transient thermography. I: An analytical treatment. Journal of Physics D: Applied Physics, 27, 1063–1069.CrossRefGoogle Scholar
  11. 11.
    Saintey, M. B., & Almond, D. P. (1995). Defect sizing by transient thermography. II: A numerical treatment. Journal of Physics D: Applied Physics, 28, 2539–2546.CrossRefGoogle Scholar
  12. 12.
    Avdelidis, N. P., Hawtin, B. C., & Almond, D. P. (2003). Transient thermography in the assessment of defects of aircrafts composites. NDT and E International, 36(6), 433–439.CrossRefGoogle Scholar
  13. 13.
    Ringermacher, H. I., Howard, D. R., & Filkins, R. J. (2004). Flash-quenching for high resolution thermal depth imaging. AIP Proceedings, 700(1), 477–481.CrossRefGoogle Scholar
  14. 14.
    Ringermacher, H. I., Howard, D. R., & Knight, B. (2006). Thermal imaging at general electric. AIP Proceedings, 820(1), 523–528.CrossRefGoogle Scholar
  15. 15.
    Busse, G., Wu, D., & Karpen, W. (1992). Thermal wave imaging with phase sensitive modulated thermography. Journal of Applied Physics, 71, 3962–3965.CrossRefGoogle Scholar
  16. 16.
    Vavilov, V., & Marinetti, S. (1999). Pulsed phase thermography and fourier-analysis thermal tomography. Russian Journal of Nondestructive Testing, 35(2), 134–145.Google Scholar
  17. 17.
    Busse, G., & Eyerer, P. (1983). Thermal wave remote and nondestructive inspection of polymers. Applied Physics Letters, 43, 355–357.CrossRefGoogle Scholar
  18. 18.
    Choi, M., Kang, K., Park, J., Kim, W., & Kim, K. (2008). Quantitative determination of a subsurface defect of reference specimen by lock-in infrared thermography. NDT and E International, 41(2), 119–124.CrossRefGoogle Scholar
  19. 19.
    Ibarra-Castanedo, C., Avdelidis, N. P., & Maldague, X. (2005). Qualitative and quantitative assessment of steel plates using pulsed phase thermography. Materials Evaluation, 63(11), 1128–1133.Google Scholar
  20. 20.
    Ibarra-Castanedo, C., González, D., Klein, M., Pilla, M., Vallerand, S., & Maldague, X. (2004). Infrared image processing and data analysis. Infrared Physics & Technology, 46, 75–83.CrossRefGoogle Scholar
  21. 21.
    Cielo, P., Maldague, X., Deom, A. A., & Lewak, R. (1987). Thermographic non destructive evaluation of industrial materials and structures. Materials Evaluation, 45, 452–460.Google Scholar
  22. 22.
    Mulaveesala, R., & Tuli, S. (2006). Theory of frequency modulated thermal wave imaging for non-destructive sub-surface defect detection. Applied Physics Letters, 89, 191913.CrossRefGoogle Scholar
  23. 23.
    Mulaveesala, R., Pal, P., & Tuli, S. (2006). Interface study of bonded wafers by digitized linear frequency modulated thermal wave imaging. Sensors and Actuators A, 128, 209–216.CrossRefGoogle Scholar
  24. 24.
    Mulaveesala, R., Vaddi, J. S., & Singh, P. (2008). Pulse compression approach to infrared nondestructive characterization. Review of Scientific Instruments, 79, 094901.CrossRefGoogle Scholar
  25. 25.
    Tuli, S., & Mulaveesala, R. (2005). Defect detection by pulse compression in frequency modulated thermal wave imaging. Journal of Quantitative Infrared Thermography, 2(1), 41–54.CrossRefGoogle Scholar
  26. 26.
    Mulaveesala, R., & Tuli, S. (2005). Implementation of frequency-modulated thermal wave imaging for non-destructive sub-surface defect detection. Insight, 47(4), 206–208.CrossRefGoogle Scholar
  27. 27.
    Mulaveesala, R., & Tuli, S. (2005). Digitized frequency modulated thermal wave imaging for non-destructive testing. Materials Evaluation, 63, 1046–1050.Google Scholar
  28. 28.
    Mulaveesala, R. (2006). Frequency modulated thermal wave imaging: theory, modeling, simulation and applications, Ph.D. Dissertation, Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi, India.Google Scholar
  29. 29.
    Wehner, D. R. (1995). High resolution radar (2nd ed.). London: Artech House Inc.Google Scholar
  30. 30.
    Ghali, V. S., Jonnalagadda, N., & Mulaveesala, R. (2009). Three dimensional pulse compression for infrared non-destructive testing. IEEE Sensor Journal, 9(7), 832–833.CrossRefGoogle Scholar
  31. 31.
    Grinzato, E., Vavilov, V., Bison, P. G., Marinetti, S., & Bressan, C. (1995). Methodology of processing experimental data in transient thermal NDT. Proceedings of SPIE, 2473, 167–178.CrossRefGoogle Scholar
  32. 32.
    MaIdague, X., Largoutit, Y., & Couturier, J. P. (1998). A study of defect depth using neural networks in pulsed phase thermography: modeling, noise, experiments. Revue Générale de Thermique, 37, 704–717.CrossRefGoogle Scholar
  33. 33.
    Petrovi, V. S., & Xydeas, C. S. (2003). Sensor noise effects on signal-level image fusion performance. Information Fusion, 4, 167–183.CrossRefGoogle Scholar
  34. 34.
    Omar, M. A., & Zhou, Y. (2008). A quantitative review of three flash thermography processing routines. Infrared Physics & Technology, 51(4), 300–306.CrossRefGoogle Scholar
  35. 35.
    Lee, D. J., Mitra, S., & Krile, T. F. (1989). Analysis of sequential complex images, using feature extraction and two-dimensional cepstrum techniques. Journal of the Optical Society of America A, 6, 863–870.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Electronics and Communication Engineering Research GroupPDPM-Indian Institute of Information Technology Design and ManufacturingJabalpurIndia

Personalised recommendations