A New Approach Towards Large Scale Soil Moisture Mapping by Radio Waves

  • Christof Huebner
  • Christoph Kottmeier
  • Alexander Brandelik
Original Paper

Abstract

A new approach for obtaining integrated estimates of soil moisture content over larger regions of typically 10–50 km is described. It is based on a known correlation between propagation characteristics of low frequency radio surface waves and surface soil moisture, and provides valuable new benefits especially for meteorological prognostic models and for soil water estimation in agriculture. The paper consists of (1) a description of the theory of radio wave propagation with an extension of the classical theory of Norton (Proceedings of the Institute of Radio Engineers, Vol. 24, 1936), specifically the exploitation of the phase information, (2) demonstration of a method which guarantees the selection of reliable results from a large measurement data set, (3) a presentation of a new low cost measurement device to detect the amplitude and phase changes, and (4) results from initial measurements providing evidence that theoretical calculations are consistent with the measured change of electromagnetic signal properties due to soil moisture change.

Keywords

Soil moisture Radio wave propagation Surface wave Large scale sensing 

References

  1. 1.
    Kohler, M., Kalthoff, N., & Kottmeier, C. (2009). The impact of soil moisture modifications on CBL characteristics in West Africa: A case study from the AMMA campaign. Quarterly Journal of the Royal Meteorological Society. 135, doi:10.1002/qj.430.
  2. 2.
    Krauss, L., Hauck, C., & Kottmeier, C. (2010). Spatio-temporal soil moisture variability in Southwest Germany observed with a new monitoring network within the COPS domain. Meteorologische Zeitschrift, 19(6), 523–537. doi:10.1127/0941-2948/2010/0486.CrossRefGoogle Scholar
  3. 3.
    Schlaeger, S., Huebner C., & Becker. R. (2005). Simple soil moisture probe for low-cost measurement applications, Proceedings of Sixth International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, (pp. 258–265). Weimar, Germany.Google Scholar
  4. 4.
    Hübner, C., Schlaeger, S., Becker, R., Scheuermann, A., Brandelik, A., Schaedel, W., et al. (2005). Advanced measurement methods in time domain reflectometry for soil moisture determination, Electromagnetic Aquametry (pp. 317–347). Berlin: Springer.Google Scholar
  5. 5.
    Pinori, S., Crapolicchio, R., & Mecklenburg, S. (2008). Preparing the ESA-SMOS (soil moisture and ocean salinity) mission: Overview of the user data products and data distribution strategy, Microwave Radiometry and Remote Sensing of the Environment, MICRORAD, (11–14 March 2008).Google Scholar
  6. 6.
    Brandelik, A., & Hübner C. (2005). Verfahren und eine Vorrichtung zur Bestimmung von Eigenschaften des Erdreichs, German Patent No. 10253772.Google Scholar
  7. 7.
    Stacheder, M., Koeniger, F., & Schuhmann, R. (2009). New dielectric sensors and sensing techniques for soil and snow moisture measurements. Sensors, 9, 2951–2967.CrossRefGoogle Scholar
  8. 8.
    Scheftic, W. D., Cummins, K. L., Krider, E. P., Sternberg, B. K., Goodrich, D., Moran, S., & Scott, R. (2008). Wide-area soil moisture estimation using the propagation of lightning generated low-frequency electromagnetic signals, 20th International Lightning Detection Conference, April 21–23, Tucson, Arizona.Google Scholar
  9. 9.
    Lichtenecker, R. (1997). Terrestrial time signal dissemination. Real-Time Systems, 12, 41–61.CrossRefGoogle Scholar
  10. 10.
    Piester, D., Bauch, A., Becker, J., Polewka, T., Rost, M., Sibold, D., et al. (2006). PTB’s Time and Frequency Activities in 2006: New DCF77 Electronics, new NNTP servers and calibration activities. Proceedings of 38th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, Reston, (5–7 Dec, pp. 37–47, 2007) Virginia, USA.Google Scholar
  11. 11.
    Sommerfeld, A. (1909). Über die Ausbreitung der Wellen in der drahtlosen Telegraphie, (vol. 28) Ann. der Physik.Google Scholar
  12. 12.
    Howard W. Sams & Co. (1977). ITT Reference Data for Radio Engineers. ISBN: 0-672-21218-8.Google Scholar
  13. 13.
    Bullington, K. (1957). Radio propagation fundamentals. Bell System Technical Journal, 36(3), 593–626.Google Scholar
  14. 14.
    Zenneck, J. (1907). Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie, Ann. der Physik.Google Scholar
  15. 15.
    Norton, K. A. (1936). The propagation of radio waves over the surface of the earth and the upper atmosphere. In Proceedings of the Institute of Radio Engineers Vol. 24.Google Scholar
  16. 16.
    Wait, J. R. (1998). The ancient and modern history of EM ground-wave propagation. IEEE Antennas and Propagation Magazine, (vol. 40).Google Scholar
  17. 17.
    Green, E. H. (2007). Derivation of the Norton Surface Wave Using the Compensation Theorem, IEEE Antennas and Propagation Magazine. (47–57, Dec. 2007).Google Scholar
  18. 18.
    Grosskopf, J., & Vogt, K. (1941). The measurement of electrical conductivity for a stratified ground. Hochfrequenztechnik und Elektroakustik, 58, 52–57.Google Scholar
  19. 19.
    Huth, N. I., & Poulton, P. L. (2007). An electromagnetic induction method for monitoring variation in soil moisture in agroforestry systems. Australian Journal of Soil Research, 45, 63–72.CrossRefGoogle Scholar
  20. 20.
    Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., et al. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J., 7, 358–389.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Christof Huebner
    • 1
  • Christoph Kottmeier
    • 2
  • Alexander Brandelik
    • 2
  1. 1.Institute for Industrial Data Processing and CommunicationUniversity of Applied Sciences MannheimMannheimGermany
  2. 2.Institute for Meteorology and Climate ResearchKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations