Software Quality Journal

, Volume 20, Issue 1, pp 201–228 | Cite as

A conceptual modeling quality framework

  • H. James Nelson
  • Geert Poels
  • Marcela Genero
  • Mario Piattini


The goal of any modeling activity is a complete and accurate understanding of the real-world domain, within the bounds of the problem at hand and keeping in mind the goals of the stakeholders involved. High-quality representations are critical to that understanding. This paper proposes a comprehensive Conceptual Modeling Quality Framework, bringing together two well-known quality frameworks: the framework of Lindland, Sindre, and Sølvberg (LSS) and that of Wand and Weber based on Bunge’s ontology (BWW). This framework builds upon the strengths of the LSS and BWW frameworks, bringing together and organizing the various quality cornerstones and then defining the many quality dimensions that connect one to another. It presents a unified view of conceptual modeling quality that can benefit both researchers and practitioners.


Conceptual modeling Quality System development process 



This research has been funded by the following projects: MEDUSAS (CDTI-MICINN and FEDER IDI-20090557), ORIGIN (CDTI-MICINN and FEDER IDI-2010043(1-5)), PEGASO/MAGO (MICINN and FEDER, TIN2009-13718-C02-01), EECCOO (MICINN TRA2009_0074) and MECCA (JCMM PII2I09-0075-8394).


  1. Ambler, S. (2005). Elements of UML 2.0 style. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Armstrong, D. J., & Hardgrave, B. C. (2007). Understanding mindshift learning: The transition to object-oriented development. MIS Quarterly, 31(3), 453–474.Google Scholar
  3. Batini, C., Ceri, S., & Navathe, S. B. (1991). Conceptual database design: An entity-relationship approach. Redwood City: Benjamin/Cummings.Google Scholar
  4. Bolloju, N., & Leung, F. (2006). Assisting novice analysts in developing quality conceptual models with UML. Communications of the ACM, 49(7), 108–112.CrossRefGoogle Scholar
  5. Borgida, A., Greenspan, S., & Mylopoulos, J. (1985). Knowledge representation as the basis for requirements specifications. IEEE Computer, 15(4), 82–90.CrossRefGoogle Scholar
  6. Bunge, M. A. (1977). Ontology I: The furniture of the world (Vol. 3). Dordrecht: Reidel.MATHGoogle Scholar
  7. Chen, P. P. (1976). The entity-relationship model—toward a unified view of data. ACM Transactions on Database Systems, 1(1), 9–36.CrossRefGoogle Scholar
  8. Conradi, R., Mohagheghi, P., Arif, T., Hedge, L. C., Bundle, G. A., & Pedersen, A. (2003). Object-oriented reading techniques for inspection of UML modelsan industrial experiment. Paper presented at the European conference on object-oriented programming (ECOOP’03), Darmstadt, Germany.Google Scholar
  9. Deng, M., Stirewalt, R. E. K., & Cheng, B. H. C. (2005). Retrieval by construction: A traceability technique to support verification and validation of UML formalizations. International Journal of Software Engineering, 15(5), 837–872.CrossRefGoogle Scholar
  10. Evermann, J. (2005). Towards a cognitive foundation for knowledge representation. Information Systems Journal, 15, 147–178.CrossRefGoogle Scholar
  11. Evermann, J., & Wand, Y. (2006). Ontological modeling rules for UML: An empirical assessment. Journal of Computer Information Systems, 47, 14–29.Google Scholar
  12. Gemino, A., & Wand, Y. (2003). Evaluating modeling techniques based on models of learning. Communications of the ACM, 46(10), 79–84.CrossRefGoogle Scholar
  13. Gemino, A., & Wand, Y. (2005). Complexity and clarity in conceptual modeling: Comparison of mandatory and optional properties. Data & Knowledge Engineering, 55(3), 301–326.CrossRefGoogle Scholar
  14. Georgakopoulos, D., Hornick, M., & Sheth, A. (1995). An overview of workflow management: From process modeling to workflow automation infrastructure. Distributed and Parallel Databases, 3, 119–153.CrossRefGoogle Scholar
  15. Gerard, G. J. (2005). The REA pattern, knowledge structures, and conceptual modeling performance. Journal of Information Systems, 19(2), 57–77.CrossRefGoogle Scholar
  16. Jacobson, I., Booch, G., & Rumbaugh, J. (1999). The unified software development process. Reading: Addison-Wesley.Google Scholar
  17. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.Google Scholar
  18. Khatri, V., Vessey, I., Ramesh, V., Clay, P., & Park, S.-J. (2006). Understanding conceptual schemas: Exploring the role of application and is domain knowledge. Information Systems Research, 17(1), 81–99.CrossRefGoogle Scholar
  19. Kiewkanya, M., & Muenchaisri, P. (2005). Measuring maintainability in early phase using aesthetic metrics. Paper presented at the 4th international conference on software engineering, parallel and distributed systems (SEPADS 2005), Salzburg, Austria.Google Scholar
  20. Kong, J., Zhang, K., Dong, J., & Xu, D. (2009). Specifying behavioral semantics of UML diagrams through graph transformations. Journal of Systems and Software, 82(2), 292–306.CrossRefGoogle Scholar
  21. Krogstie, J. (2003). Evaluating UML using a generic quality framework. In L. Favre (Ed.), UML and the unified process. Hershey, PA: Idea Group Publishing.Google Scholar
  22. Krogstie, J., Sindre, G., & Jørgensen, H. (2006). Process models representing knowledge for action: A revised quality framework. European Journal of Information Systems, 15, 91–102.CrossRefGoogle Scholar
  23. Krogstie, J., & Sølvberg, A. (2003). Information systems engineering: Conceptual modeling in a quality perspective. Trondheim, Norway: Kompendiumforlaget.Google Scholar
  24. Kuhn, T. S. (1970). The structure of scientific revolutions. Chicago: The University of Chicago Press.Google Scholar
  25. Lange, C. F. J., Chaudron, M. R. V., & Muskens, J. (2006). UML software architecture and design description. IEEE Software, 23(2), 40–46.CrossRefGoogle Scholar
  26. Lindland, O. I., Sindre, G., & Sølvberg, A. (1994). Understanding quality in conceptual modeling. IEEE Software, 11(2), 42–49.CrossRefGoogle Scholar
  27. Lung, C. H., & Urban, J. E. (1995). An approach to the classification of domain models in support of analogical reuse. Paper presented at the SIGSOFT symposium on software reusability, Seattle.Google Scholar
  28. Maiden, N. A. M., & Sutcliffe, A. G. (1992). Exploiting reusable specifications through analogy. Communications of the ACM, 35(55–64).Google Scholar
  29. Moody, D., & Shanks, G. (2003). Improving the quality of data models: Empirical validation of a quality management framework. Information Systems, 28, 619–650.CrossRefMATHGoogle Scholar
  30. Moody, D., Shanks, G. G., & Darke, P. (1998). Improving the quality of entity relationship modelsexperience in research and practice. Paper presented at the 17th international conference on conceptual modeling, Singapore.Google Scholar
  31. Moody, D., Sindre, G., Brasethvik, T., & Sølvberg, A. (2003). Evaluating the quality of information models: Empirical testing of a conceptual model quality framework. Paper presented at the International Conference on Software Engineering, Portland, OR.Google Scholar
  32. Nelson, H. J., Monarchi, D. E., & Nelson, K. M. (2001). Ensuring the “goodness” of a conceptual representation. Paper presented at the European Conference on Software Measurement and Control (FESMA-DASMA), Heidelberg, Germany.Google Scholar
  33. OMG. (2007a). OMG unified modeling language (OMG UML) infrastructure V2.1.2. Object Management Group.Google Scholar
  34. OMG. (2007b). OMG unified modeling language (OMG UML) superstructure V2.1.2. Object Management Group.Google Scholar
  35. Poels, G. (2009). Understanding business domain models: The effect of reorganizing resource-event-agent conceptual modeling structures. Unpublished FEB Working Paper. Ghent University.Google Scholar
  36. Poels, G., Maes, A., Gailly, F., & Paemeleire, R. (2007). The pragmatic quality of resources-events-agents diagrams: an experimental evaluation. Information Systems Journal. doi: 10.1111/j.1365-2575.2007.00253.x.
  37. Purchase, H., Allder, J., & Carrington, D. (2002). Graph layout aesthetics in UML diagrams. Journal of Graph Algorithms and Applications, 6(3), 255–279.MATHMathSciNetGoogle Scholar
  38. Recker, J., Rosemann, M., & Krogstie, J. (2007). Ontology- versus pattern-based evaluation of process modeling languages: A comparison. Communications of the AIS, 20, 774–799.Google Scholar
  39. Russell, B. (1903). The principles of mathematics. New York: W. W. Norton and Company.MATHGoogle Scholar
  40. Searle, J. R. (1995). The construction of social reality. New York: The Free Press.Google Scholar
  41. Shaft, T. M., & Vessey, I. (1995). The relevance of application domain knowledge - the case of computer-program comprehension. Information Systems Research, 6(3), 286–299.CrossRefGoogle Scholar
  42. Snoeck, M., & Poels, G. (2000). Improving the reuse possibilities of the behavioral aspects of object-oriented domain models. Lecture Notes in Computer Science (LNCS), 1920, 423–439.CrossRefGoogle Scholar
  43. St. Amant, R., McBride, S., & Ritter, F. (2006). AI support for building cognitive models. Paper presented at the twenty first national conference on artificial intelligence (AAAI-06), Menlo Park, CA.Google Scholar
  44. Stamper, R. (1992). Signs, organisations, norms and information systems. Paper presented at the 3rd Australian conference on information systems, Wollongong.Google Scholar
  45. Stamper, R., Liu, K., Hafkamp, M., & Ades, Y. (2000). Understanding the roles of signs and norms in organizations—a semiotic approach to information systems design. Behavior & Information Technology, 19(1), 15–27.CrossRefGoogle Scholar
  46. Unkelkar, B. (2005). Verification and validation for quality of UML 2.0 models. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  47. van Amstel, M. F., Lange, C. F. J., & Chaudron, M. R. V. (2007). Four automated approaches to analyze the quality of UML sequence diagrams. Paper presented at the 1st IEEE international workshop quality-oriented reuse of software (QUORS’07), Beijing.Google Scholar
  48. Wagelaar, D., & Van Der Straeten, R. (2007). Platform ontology for the model driven architecture. European Journal of Information Systems, 16(4), 362–373.CrossRefGoogle Scholar
  49. Wand, Y., Storey, V. C., & Weber, R. (1999). An ontological analysis of the relationship construct in conceptual modeling. ACM Transactions on Database Systems, 24(4), 494–528.CrossRefGoogle Scholar
  50. Wand, Y., & Wang, R. (1996). Anchoring data quality dimensions in ontological foundations. Communications of the ACM, 39(11), 86–95.CrossRefGoogle Scholar
  51. Wand, Y., & Weber, R. (1988). An ontological analysis of some fundamental information system concepts. Paper presented at the international conference on information systems (ICIS), Minneapolis, MN.Google Scholar
  52. Wand, Y., & Weber, R. (1990a). An ontological model of an information system. IEEE Transactions on Software Engineering, 16(11), 1282–1292.CrossRefGoogle Scholar
  53. Wand, Y., & Weber, R. (1990b). Towards a theory of the deep structure of information systems. Paper presented at the international conference on information systems, Copenhagen, Denmark.Google Scholar
  54. Wand, Y., & Weber, R. (1993). On the ontological expressiveness of information systems. IEEE Transactions on Software Engineering, 16(11), 217–237.Google Scholar
  55. Wand, Y., & Weber, R. (1995). On the deep structure of information-systems. Information Systems Journal, 5(3), 203–223.CrossRefGoogle Scholar
  56. Wand, Y., & Weber, R. (2002). Research commentary: Information systems and conceptual modeling—a research agenda. Information Systems Research, 13(4), 363–376.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • H. James Nelson
    • 1
  • Geert Poels
    • 2
  • Marcela Genero
    • 3
  • Mario Piattini
    • 3
  1. 1.Department of ManagementSouthern Illinois UniversityCarbondaleUSA
  2. 2.Faculty of Economics and Business AdministrationGhent UniversityGhentBelgium
  3. 3.Department of Technologies and Information SystemsUniversity of Castilla-La ManchaCiudad RealSpain

Personalised recommendations