Social Psychology of Education

, Volume 12, Issue 2, pp 191–211

Effect of task presentation on students’ performances in introductory statistics courses

  • Carlo Tomasetto
  • Maria Cristina Matteucci
  • Felice Carugati
  • Patrizia Selleri
Article

Abstract

Research on academic learning indicates that many students experience major difficulties with introductory statistics and methodology courses. We hypothesized that students’ difficulties may depend in part on the fact that statistics tasks are commonly viewed as related to the threatening domain of math. In two field experiments which we carried out in the ecological context of introductory statistics courses, the representation of a statistics task administered to undergraduate students in Psychology (Study 1; n = 127) and Biology (Study 2; n = 166) was manipulated. In both studies we found that students who reported the least favorable prior attainments in math had their performance thwarted when the task was presented as related to the math domain, whereas no performance impairment was observed when the task was presented as related to the verbal/linguistic domain. Implications of the findings for the design and delivery of introductory statistics and research methodology courses are discussed.

Keywords

Statistics Math Task presentation Academic performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biglan A. (1973) The characteristics of subject matter in different academic areas. The Journal of Applied Psychology 57: 195–203. doi:10.1037/h0034701 CrossRefGoogle Scholar
  2. Bonnot V., Croizet J.-C. (2007) Stereotype internalization and women’s math performance: The role of interference in working memory. Journal of Experimental Social Psychology 43: 857–866. doi:10.1016/j.jesp.2006.10.006 CrossRefGoogle Scholar
  3. Broers N.J., Imbos T. (2005) Charting and manipulating propositions as methods to promote self-explanation in the study of statistics. Learning and Instruction 15: 517–538Google Scholar
  4. Brunot S., Huguet P., Monteil J.-M. (2000) Performance feedback and self-focused attention in the classroom: When past and present interact. Social Psychology of Education 3: 277–293Google Scholar
  5. Buehl M.M., Alexander P.A., Murphy P.K. (2002) Beliefs about schooled knowledge: Domain specific or domain general?. Contemporary Educational Psychology 27: 415–449. doi:10.1006/ceps.2001.1103 CrossRefGoogle Scholar
  6. Cadinu M., Maas A., Rosabianca A., Kiesner J. (2005) Why do women underperform under stereotype threat? Evidence for the role of negative thinking. Psychological Science 16: 572–579. doi:10.1111/j.0956-7976.2005.01577.x CrossRefGoogle Scholar
  7. Carugati F., Selleri P. (2004) Intelligence, educational practices and school reform: organizations change, representations persist. European Journal of School Psychology 2: 149–167Google Scholar
  8. Castro Sotos A.E., Vanhoof S., Van den Noortgate W., Onghena P. (2007) Students’ misconceptions of statistical inference: A review of the empirical evidence from research on statistics education. Educational Research Review 2: 98–113. doi:10.1016/j.edurev.2007.04.001 CrossRefGoogle Scholar
  9. Chambon M. (1990) La représentation des disciplines scolaires par les parents d’élèves: Enjeux de valeurs, enjeux sociaux. Revue Française de Pédagogie 92: 31–40CrossRefGoogle Scholar
  10. Croizet J.C., Després G., Gauzins M.E., Huguet P., Leyens J.-P., Méot A. (2004) Stereotype threat undermines intellectual performance by triggering a disruptive mental load. Personality and Social Psychology Bulletin 30: 721–731. doi:10.1177/0146167204263961 CrossRefGoogle Scholar
  11. Danaher K., Crandall C.S. (2008) Stereotype threat in applied settings re-examined. Journal of Applied Social Psychology 38: 1639–1655. doi:10.1111/j.1559-1816.2008.00362.x CrossRefGoogle Scholar
  12. De Paolis, P. (2005). Prototypes of the psychologist and professionalisation: Diverging social representations of a developmental process. In G. Duveen & B. B. Lloyd (Eds.), Social representations and the development of knowledge (pp. 144–163). Cambridge: Cambridge University Press (1st Ed.: 1990).Google Scholar
  13. Dickhauser O. (2005) A fresh look: Testing the internal/external frame of reference model with frame-specific academic self-concepts. Educational Research 47(3): 279–290. doi:10.1080/00131880500287211 CrossRefGoogle Scholar
  14. European Commission. (2001). Europeans, science and technology. Eurobarometer 55.2. Brussels: European Commission. http://ec.europa.eu/public_opinion/archives/ebs/ebs_154_en.pdf. Accessed 18 May 2008.
  15. Garfield J., Ahlgren A. (1988) Difficulties in learning basic concepts in probability and statistics: implications for research. Journal for Research in Mathematics Education 19: 44–63. doi:10.2307/749110 CrossRefGoogle Scholar
  16. Garfield J., Ben-Zvi D. (2007) How students learn statistics revisited: A current review of research on teaching and learning statistics. International Statistical Review. Revue Internationale de Statistique 75: 372–396Google Scholar
  17. Gould S.J. (1992) Bully for brontosaurus: reflections in natural history. Norton, New YorkGoogle Scholar
  18. Green J., Nelson G., Martin A.J., Marsch H.W. (2006) The causal ordering of self-concept and academic motivation and its effect on academic achievement. International Education Journal 7: 534–546Google Scholar
  19. Hauff H.M., Fogarty G.J. (1996) Analysing problem solving behaviour of successful and unsuccessful statistics students. Instructional Science 24: 397–409. doi:10.1007/BF00125577 CrossRefGoogle Scholar
  20. Hofer B.K. (2000) Dimensionality and disciplinary differences in personal epistemology. Contemporary Educational Psychology 25: 378–405. doi:10.1006/ceps.1999.1026 CrossRefGoogle Scholar
  21. Hofer B., Pintrich P. (2002) Epistemology: The psychology of beliefs about knowledge and knowing. Erlbaum, Mahwah, NJGoogle Scholar
  22. Huguet P., Brunot S., Monteil J.-M. (2001) Geometry versus drawing: changing the meaning of the task as a means to change performance. Social Psychology of Education 4: 219–234. doi:10.1023/A:1011374700020 CrossRefGoogle Scholar
  23. Huguet P., Régner I. (2007) Stereotype threat among schoolgirls in quasi-ordinary classroom circumstances. Journal of Educational Psychology 99: 545–560. doi:10.1037/0022-0663.99.3.545 CrossRefGoogle Scholar
  24. Katz I., Roberts S.O., Robinson J.M. (1965) Effects of task difficulty, race of administrator, and instructions on digit-symbol performance of negroes. Journal of Personality and Social Psychology 2: 53–59. doi:10.1037/h0022080 CrossRefGoogle Scholar
  25. Kelly M. (1992) Teaching statistics to biologists. Journal of Biological Education 26: 200–203Google Scholar
  26. Lehtinen E., Rui E. (1995) Computer-supported complex learning: An environment for learning experimental methods and statistical inference. Machine-Mediated Learning 5: 149–175Google Scholar
  27. Marsh H.W. (1986) Verbal and math self-concepts: An internal/external frame of reference model. American Educational Research Journal 23: 129–149Google Scholar
  28. Marsh H.W. (2005) Big-fish-little-pond effect on academic self-concept. German Journal of Educational Psychology 19: 119–128Google Scholar
  29. Marsh H.W., O’Mara A. (2008) Reciprocal effects between academic self-concept, self-esteem, achievement, and attainment over seven adolescent years: Unidimensional and multidimensional perspectives of self-concept. Personality and Social Psychology Bulletin 34: 542–552. doi:10.1177/0146167207312313 CrossRefGoogle Scholar
  30. Marsh H.W., Parker J.W. (1984) Determinants of student self-concept: Is it better to be a relatively large fish in a small pond even if you don’t learn to swim as well?. Journal of Personality and Social Psychology 47: 213–231. doi:10.1037/0022-3514.47.1.213 CrossRefGoogle Scholar
  31. Marsh H.W., Trautwein U., Ludtke O., Koller O., Baumert J. (2005) Academic self concept, interest, grades and standardized test scores: Reciprocal effects models of causal ordering. Child Development 76: 397–416. doi:10.1111/j.1467-8624.2005.00853.x CrossRefGoogle Scholar
  32. Marsh H.W., Yeung A.S. (2001) An extension of the internal/external frame of reference model: A response to Bong (1998). Multivariate Behavioral Research 36: 389–420. doi:10.1207/S15327906389-420 CrossRefGoogle Scholar
  33. Mason L. (2003) High school students’ beliefs about math, mathematical problem-solving, and their achievement in math: A cross-sectional study. Educational Psychology 23: 73–85. doi:10.1080/01443410303216 CrossRefGoogle Scholar
  34. McGinn M.K., Roth W.-M. (1999) Preparing students for competent scientific practice: Implications of recent research in science and technology studies. Educational Researcher 28: 14–24Google Scholar
  35. Monteil, J.-M., & Huguet, P. (1991). Insertion sociale, catégorisation sociale et activités cognitives. Psychologie Française, 36, 35–46. Social insertion, social categorization, and cognitive activities.Google Scholar
  36. Monteil J.-M., Huguet P. (2001) The social regulation of classroom performances: A theoretical outline. Social Psychology of Education 4: 359–372. doi:10.1023/A:1011345022870 CrossRefGoogle Scholar
  37. MPI. (2008). La dispersione scolastica [Early school leaving]. Rome: Ministero della Pubblica Istruzione, Servizio Statistico. http://www.pubblica.istruzione.it/mpi/pubblicazioni/2008/allegati/dispersione_2007.pdf. Accessed 18 May 2008.
  38. Mugny G., Carugati F. (1989) Social Representations of Intelligence. Cambridge University Press, CambridgeGoogle Scholar
  39. Murtonen M. (2005) University Students’ Research Orientations: do negative attitudes exist toward quantitative methods?. Scandinavian Journal of Educational Research 49: 263–280. doi:10.1080/00313830500109568 CrossRefGoogle Scholar
  40. Murtonen M., Lehtinen E. (2003) Difficulties experienced by education and sociology students in quantitative methods courses. Studies in Higher Education 28: 171–185. doi:10.1080/0307507032000058064 CrossRefGoogle Scholar
  41. Murtonen M., Lehtinen E. (2005) Conceptions of Research and Methodology Learning. Scandinavian Journal of Educational Research 49: 217–224. doi:10.1080/00313830500109519 CrossRefGoogle Scholar
  42. Murtonen M., Titterton N. (2004) Learning difficulties in quantitative methods courses in relation to earlier mathematics achievement and study success in university. Nordic Studies in Mathematics Education 9: 3–13Google Scholar
  43. OECD. (2008). PISA 2006: Science competencies for tomorrow’s world. Paris: Organisation for Economic Cooperation and Development.Google Scholar
  44. Onwuegbuzie A.J., Wilson V.A. (2003) Statistics anxiety: Nature, etiology, antecedents, effects, and treatments—a comprehensive review of the literature. Teaching in Higher Education 8: 195–209. doi:10.1080/1356251032000052447 CrossRefGoogle Scholar
  45. Op’t Eynde P., De Corte E., Verschaffel L. (2002) Framing students’ mathematics-related beliefs: A quest for conceptual clarity and a comprehensive categorization. In: Leder G.C., Pehkonen E., Törner G.(eds) Beliefs: A hidden variable in mathematics education?. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 13–37Google Scholar
  46. Osterrieth, P. A. (1944). Le test de copie d’une figure complexe. Archives de Psychologie, 30, 206–356. The complex figure copy test.Google Scholar
  47. Pajares F., Schunk D.H. (2001) Self-beliefs and school success: Self-efficacy, self-concept, and school achievement. In: Riding R., Rayner S.(eds) Perception. Ablex Publishing, London, pp 239–266Google Scholar
  48. Parker L.E., Lepper M.R. (1992) Effects of fantasy contexts on children’s learning and motivation: Making learning more fun. Journal of Personality and Social Psychology 62: 625–633. doi:10.1037/0022-3514.62.4.625 CrossRefGoogle Scholar
  49. Paulsen M.B., Well C.T. (1998) Domain differences in the epistemological beliefs of college students. Research in Higher Education 39: 365–384. doi:10.1023/A:1018785219220 CrossRefGoogle Scholar
  50. Schmader T., Johns M. (2003) Converging evidence that stereotype threat reduces working memory capacity. Journal of Personality and Social Psychology 85: 440–452. doi:10.1037/0022-3514.85.3.440 CrossRefGoogle Scholar
  51. Schoenfeld A.H. (1989) Explorations of students’ mathematical beliefs and behaviour. Journal for Research in Mathematics Education 20: 338–355. doi:10.2307/749440 CrossRefGoogle Scholar
  52. Schraw G., Sinatra G.M. (2004) Epistemological development and its impact on cognition in academic domains. Contemporary Educational Psychology 29: 95–102. doi:10.1016/j.cedpsych.2004.01.005 CrossRefGoogle Scholar
  53. Seaton M., Marsh M.W., Dumas F., Huguet P., Monteil J.-M., Régner I. et al (2008) In search of the big fish: Investigating the coexistence of the big-fish-little-pond effect with the positive effects of upward comparisons. The British Journal of Social Psychology 47: 73–103. doi:10.1348/014466607X202309 CrossRefGoogle Scholar
  54. Sedlmeier P. (2000) How to improve statistical thinking: Choose the task representation wisely and learn by doing. Instructional Science 28: 227–262. doi:10.1023/A:1003802232617 CrossRefGoogle Scholar
  55. Sedlmeier P., Gigerenzer G. (2001) Teaching bayesian reasoning in less than two hours. Journal of Experimental Psychology. General 130: 380–400. doi:10.1037/0096-3445.130.3.380 CrossRefGoogle Scholar
  56. Stricker L.J., Ward W.C. (2008) Stereotype threat in applied settings re-examined: A reply. Journal of Applied Social Psychology 38: 1656–1663. doi:10.1111/j.1559-1816.2008.00363.x CrossRefGoogle Scholar
  57. Townsend M.A.R., Moore D.W., Tuck B.F., Wilton K.M. (1998) Self-concept and anxiety in university students studying social science statistics within a co-operative learning structure. Educational Psychology 18: 41–54. doi:10.1080/0144341980180103 CrossRefGoogle Scholar
  58. Wigfield A., Eccles J.S. (2000) Expectancy-value theory of achievement motivation. Contemporary Educational Psychology 25: 68–81. doi:10.1006/ceps.1999.1015 CrossRefGoogle Scholar
  59. Yzerbyt W.Y., Muller D., Judd C.M. (2004) Adjusting researchers’ approach to adjustment: On the use of covariates when testing interactions. Journal of Experimental Social Psychology 40: 424–431. doi:10.1016/j.jesp.2003.10.001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Carlo Tomasetto
    • 1
  • Maria Cristina Matteucci
    • 1
  • Felice Carugati
    • 1
  • Patrizia Selleri
    • 1
  1. 1.Department of Education, Faculty of PsychologyUniversity of BolognaCesenaItaly

Personalised recommendations