# From Searle’s Chinese room to the mathematics classroom: technical and cognitive mathematics

## Abstract

Employing Searle’s views, I begin by arguing that students of Mathematics behave similarly to machines that manage symbols using a set of rules. I then consider two types of Mathematics, which I call *Cognitive Mathematics* and *Technical Mathematics* respectively. The former type relates to concepts and meanings, logic and sense, whilst the latter relates to algorithms, heuristics, rules and application of various techniques. I claim that an upgrade in the school teaching of Cognitive Mathematics is necessary. The aim is to change the current mentality of the stakeholders so as to compensate for the undue value presently attached to Technical Mathematics, due to advances in technology and its applications, and thus render the two sides of Mathematics equal. Furthermore, I suggest a reorganization/systematization of School Mathematics into a cognitive network to facilitate students’ understanding of the subject. The final goal is the transition from mechanical execution of rules to better understanding and in-depth knowledge of Mathematics.

### Keywords

Chinese room Mathematics classroom Education Cognitive mathematics Technical mathematics### References

- Anderson, J. R. (1993).
*Rules of the mind*. Hillsdale, N.J.: Lawrence Erlbaum Associates, Publishers.Google Scholar - Bloom, B. S. (1956).
*Taxonomy of educational objectives, handbook I: The cognitive domain*. N.Y.: David McKay Co, Inc.Google Scholar - Bradshaw, J. L. & Nettleton, N. C. (1981). The nature of hemispheric specialization in man.
*The Behavioural and Brain Sciences, 7*, 51–91.Google Scholar - Byers, V. & Herscovics, N. (1978). Understanding school mathematics.
*Mathematics Teaching 81*.Google Scholar - Carlson, M. P. & Bloom, I. (2005). The cyclic nature of problem solving: An emergent multidimensional problem-solving framework.
*Educational Studies in Mathematics, 58*, 45–75.CrossRefGoogle Scholar - Carpenter, T. P., Fennema, E. & Romberg, T. A. (Eds.) (1992).
*Rational numbers: An integration of research*. Hillsdale, N.J.: Lawrence Erlbaum Associates, Publishers.Google Scholar - Charles, D. (2001). Wittgenstein’s builders and Aristotle’s craftsmen. In Charles, D. & Child, W. (Eds.),
*Wittgensteinian themes*. (pp. 49–79). Oxford: Clarendon Press.Google Scholar - Churchland, P. & Churchland, P. S. (1990). Could a machine think?
*Scientific American, 262*, 32–39.Google Scholar - Dave, R. H. (1975).
*Developing and writing behavioural objectives*. N.Y.: Educational Innovators Press.Google Scholar - Davis, P. J. & Hersh, R. (1984).
*The mathematical experience*. N.Y.: Penguin Books.Google Scholar - Dehaene, S. (1997).
*The number sense: How the mind creates mathematics*. N. Y.: Penguin Books.Google Scholar - Drossos, C. (1987). Cognition, mathematics and synthetic reasoning. General Seminar of Mathematics 13, 107–151. Edited by Department of Mathematics, University of Patras, Greece. (2nd revised edition 2006).Google Scholar
- Entrekin, V. S. (1992). Mathematical mind mapping.
*The Mathematics Teacher, 85*(6), 444–445.Google Scholar - Eysenck, M. W. & Keane, M. T. (2000).
*Cognitive psychology*. Philadelphia, PA: Psychology Press/Tailor & Francis.Google Scholar - Fennema, E. & Romberg, T. A. (Eds.) (1999).
*Mathematics classrooms that promote understanding*. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar - Gavalas, D. (1999). A four-sided view of ‘function’.
*For the Learning of Mathematics, 19*(2), 38–41Google Scholar - Gavalas, D. (2000). Study of the ‘Teaching System’ according to systems theory.
*International Journal of Mathematical Education in Science and Technology, 31*(2), 261–268.CrossRefGoogle Scholar - Gentner, D. & Markman, A. (1997). Structure mapping in analogy and similarity.
*American sychologist, 52*(1), 45–56.CrossRefGoogle Scholar - Grenander, U. (1997). Geometries of knowledge.
*Proceedings of the National Academy of Sciences of the United States America, 94*, 783–789.CrossRefGoogle Scholar - Grouws, D. A. (Ed.) (1997).
*Handbook on research on mathematics teaching and learning*. N.Y.: Simon and Schuster Macmillan.Google Scholar - Harrison, D. (1999). The Searle workout: Connectionism hits the Chinese gym. http://gort.ucsd.edu/newjour/c/msg02500.html.Google Scholar
- Hasemann, K. & Mansfield, H. (1995). Concept mapping in research on mathematical knowledge development: Background, methods, findings and conclusions.
*ESM, 29*, 45–72.Google Scholar - Hauser, L. (1996). The Chinese room argument. The Internet Encyclopaedia of Philosophy. www.utm.edu/research/iep.Google Scholar
- Hegel, G. W. F. (1969).
*Science of logic*. Trans. A. V. Miller. London: Allen & Unwin; repr. Atlantic Highlands, N.J.: Humanities Press, 1993. (Translation of Hegel (1812–1816)).Google Scholar - Heylighen, F. & Joslyn, C. (1992). What is systems theory? Edited by Cambridge Dictionary of Philosophy, Cambridge University Press.Google Scholar
- Holland J.H. et al (1986).
*Induction: Processes of inference. Learning and discovery*. Cambridge, Mass: MIT Press.Google Scholar - Jung, C. G.:
*The collected works*. 20 vols. Bollingen Series XX. Translated by R. F. C. Hull, edited by H. Read, M. Fordham, G. Adler, and Wm. McGuire. Princeton N.J.: Princeton University Press (1953–1979).Google Scholar - Kim, J. (1996).
*Philosophy of mind*. Boulder, Colorado: Westview Press.Google Scholar - Kofman, F. & Senge, P. (1995). Communities of commitment: The heart of learning organizations. In Chawla & Reneschs (Eds.),
*Learning organizations: Developing cultures for tomorrow’s workplace*(pp. 14–43). Portland, Oregon: Productivity Press.Google Scholar - Krathwohl, D., Bloom, B., & Masia, B. (1956).
*Taxonomy of educational objectives, Handbook II: Affective domain*. N. Y.: David McKay.Google Scholar - Krathwohl, D. R., Bloom, B. S., & Bertram, B. M. (1973).
*Taxonomy of educational objectives, the classification of educational goal. Handbook II: Affective domain*. New York: David McKay Co., Inc.Google Scholar - Lawvere, F. W. (1976). Variable quantities and variable structures in Topoi.
*In algebra, topology and category theory: A collection of papers in honour of S. Eilenberg*(pp. 101–131). N.Y.: Academic press.Google Scholar - Lawvere, F. W. & Schanuel, S. H. (2001).
*Conceptual mathematics: A first introduction to categories*. Cambridge, UK: Cambridge University Press.Google Scholar - Lester, F. K. (1994). Musings about mathematical problem solving research: 1970–1994.
*Journal for Research in Mathematics Education, 25*, 660–675.CrossRefGoogle Scholar - Mac Lane, S. (1986).
*Mathematics: Form and function*N.Y.: Springer-Verlag.Google Scholar - Mayer, R. E. (1992).
*Thinking, problem solving, cognition*. N.Y.: Freeman & Co.Google Scholar - NCTM (2000).
*Principals and standards for school mathematics*. Reston, VA.Google Scholar - Piaget, J. (1978).
*Judgment and reasoning in the child*. London: Routledge and Kegan Paul.Google Scholar - Rey, G. (1997).
*Contemporary philosophy of mind*. Cambridge, MA: Blackwell.Google Scholar - Rosenbloom, P. S. et al. (1993).
*The soar papers: Research on integrated intelligence*. Cambridge, Mass.: MIT Press.Google Scholar - Rucker, R. (1988).
*Mind tools: The mathematics of information*. N.Y.: Penguin Books.Google Scholar - Searle, J. (1980). Minds, brains and programs.
*The Behavioural and Brain Sciences, 3*, 417–457.Google Scholar - Searle, J. (1984).
*Minds, brains and science*. Cambridge, MA: Harvard University Press.Google Scholar - Searle, J. (1989). Reply to Jacquette.
*Philosophy and Phenomenological Research, XLIX*, 701–708.CrossRefGoogle Scholar - Searle, J. (1990). Is the brain’s mind a computer program?
*Scientific American, 262*, 26–31.CrossRefGoogle Scholar - Senge, P. et al. (2003).
*Schools that learn*. London: Nicholas Brealey Publishing.Google Scholar - Shoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition and sense-making in mathematics. In D. A. Grouws (Ed.),
*Handbook for research on mathematics teaching and learning*. (pp. 334–370). N.Y.: Macmillan Publishing Co.Google Scholar - Simpson E. J. (1972).
*The classification of educational objectives in the psychomotor domain*. Washington, DC: Gryphon House.Google Scholar - Skemp, R. R. (1972).
*The psychology of learning mathematics*N.Y.: Penguin Books.Google Scholar - Skemp, R. R. (1976). Relational understanding and instrumental understanding.
*Mathematics Teaching, 77*, 20–26.Google Scholar - Skemp, R. (1987).
*The psychology of learning mathematics*. Hillsdale, N.J.: Lawrence Erlbaum Associates, Publishers.Google Scholar - Sterenly, K. (1990).
*The representational theory of mind*. Cambridge, MA: Blackwell.Google Scholar - Tall, D. O. (1978). The dynamics of understanding mathematics.
*Mathematics Teaching, 81*, 50–52.Google Scholar - Tall, D. & Thomas, M. (Eds.) (2002).
*Intelligence, learning and understanding in mathematics: a tribute to Richard Skemp*. Post Pressed, Teneriffe, Brisbane.Google Scholar - Vygotsky, L. S. (1978).
*Mind in society: The development of higher psychological processes*. Cambridge: Harvard University Press.Google Scholar - Wilson, P. S. (Ed.) (1993).
*Research ideas for the classroom: High school mathematics*. N.Y.: Macmillan Publishing Company.Google Scholar - Yalom, I. (2002). Religious and psychotherapy.
*American Journal of Psychotherapy 3*.Google Scholar - Zeleke, A. & Lee, C. (2002). On students’ conceptual understanding of ‘variation’ in introductory statistics. www.hicstatistics.org/2003StatsProceedings/Akilulu%20Zeleke.pdf.Google Scholar