Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quiet, Discrete Auroral Arcs—Observations

Abstract

Quiet, discrete auroral arcs are an important and fundamental consequence of solar wind-magnetosphere interaction. We summarize the current standing of observations of such auroral arcs. We review the basic characteristics of the arcs, including occurrence in time and space, lifetimes, width and length, as well as brightness, and the energy of the magnetospheric electrons responsible for the optical emission. We briefly discuss the connection between single and multiple discrete arcs. The acceleration of the magnetospheric electrons by high-altitude electric potential structure is reviewed, together with our current knowledge of these structures. Observations relating to the potential drop, altitude distribution and lifetimes are reviewed, as well as direct evidence for the parallel electric fields of the acceleration structures. The current closure in the ionosphere of the currents carried by the auroral electrons is discussed together with its impact on the ionosphere and thermosphere. The connection of auroral arcs to the magnetosphere and generator regions is briefly touched upon. Finally we discuss how to progress from the current observational status to further our understanding of auroral arcs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. A.T. Aikio, A. Selkälä, Statistical properties of Joule heating rate, electric field and conductances at high latitudes. Ann. Geophys. 27(7), 2661–2673 (2009). https://doi.org/10.5194/angeo-27-2661-2009. https://www.ann-geophys.net/27/2661/2009/

  2. A.T. Aikio, T. Lakkala, A. Kozlovsky, P.J.S. Williams, Electric fields and currents of stable drifting auroral arcs in the evening sector. J. Geophys. Res. Space Phys. 107(A12), 3–1314 (2002). https://doi.org/10.1029/2001JA009172. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JA009172

  3. A.T. Aikio, K. Mursula, S. Buchert, F. Forme, O. Amm, G. Marklund, M. Dunlop, D. Fontaine, A. Vaivads, A. Fazakerley, Temporal evolution of two auroral arcs as measured by the cluster satellite and coordinated ground-based instruments. Ann. Geophys. 22(12), 4089–4101 (2004). https://doi.org/10.5194/angeo-22-4089-2004. https://www.ann-geophys.net/22/4089/2004/

  4. A. Aikio, K. Mursula, S. Buchert, F. Forme, O. Amm, G. Marklund, M. Dunlop, D. Fontaine, A. Vaivads, A. Fazakerley, Temporal evolution of two auroral arcs as measured by the Cluster satellite and coordinated ground-based instruments, in Annales Geophysicae, vol. 22 (2004), pp. 4089–4101

  5. A.T. Aikio, H. Vanhamäki, A.B. Workayehu, I.I. Virtanen, K. Kauristie, L. Juusola, S. Buchert, D. Knudsen, Swarm satellite and EISCAT radar observations of a plasma flow channel in the auroral oval near magnetic midnight. J. Geophys. Res. Space Phys. 123(6), 5140–5158 (2018). https://doi.org/10.1029/2018JA025409. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JA025409

  6. S.-I. Akasofu, Dynamic morphology of auroras. Space Sci. Rev. 4(4), 498–540 (1965)

  7. S.-I. Akasofu, S. Chapman, A neutral line discharge theory of the aurora polaris. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 253(1031), 359–406 (1961). https://doi.org/10.1098/rsta.1961.0004

  8. S.-I. Akasofu, D. Kimball, C.-I. Meng, Dynamics of the aurora–VII equatorward motions and the multiplicity of auroral arcs. J. Atmos. Terr. Phys. 28, 627–635 (1966)

  9. S.-I. Akasofu, S. Chapman, P. Kendall, The Significance of the Multiple Structure of the Auroral Arc (1967)

  10. L. Alm, G.T. Marklund, T. Karlsson, A. Masson, Pseudo altitude: a new perspective on the auroral density cavity. J. Geophys. Res. Space Phys. 118(7), 4341–4351 (2013)

  11. L. Alm, B. Li, G. Marklund, T. Karlsson, Statistical altitude distribution of the auroral density cavity. J. Geophys. Res. Space Phys. 120(2), 996–1006 (2015)

  12. L. Alm, G.T. Marklund, T. Karlsson, Electron density and parallel electric field distribution of the auroral density cavity. J. Geophys. Res. Space Phys. 120(11), 9428–9441 (2015). https://doi.org/10.1002/2015JA021593. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021593

  13. O. Amm, A. Aruliah, S.C. Buchert, R. Fujii, J. Gjerloev, A. Ieda, T. Matsuo, C. Stolle, H. Vanhamäki, A. Yoshikawa, Towards understanding the electrodynamics of the 3-dimensional high-latitude ionosphere: present and future, in Annales Geophysicae: Atmospheres, Hydrospheres and Space Sciences, vol. 26 (2008), p. 3913

  14. O. Amm, R. Fujii, K. Kauristie, A. Aikio, A. Yoshikawa, A. Ieda, H. Vanhamäki, A statistical investigation of the Cowling channel efficiency in the auroral zone. J. Geophys. Res. Space Phys. 116(A2), A02304 (2011)

  15. L. Andersson, R. Ergun, Acceleration of antiearthward electron fluxes in the auroral region. J. Geophys. Res. Space Phys. 111(A7), A07203 (2006)

  16. L. Andersson, R. Ergun, The search for double layers in space plasmas, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophys. Monogr. Ser., vol. 197 (2012)

  17. L. Andersson, R. Ergun, D. Newman, J. McFadden, C. Carlson, Y.-J. Su, Characteristics of parallel electric fields in the downward current region of the aurora. Phys. Plasmas 9(8), 3600–3609 (2002)

  18. L. Andersson, D. Newman, R. Ergun, M. Goldman, C. Carlson, J. McFadden, Influence of suprathermal background electrons on strong auroral double layers: observations. Phys. Plasmas 15(7), 072901 (2008)

  19. V. Angelopoulos, W. Baumjohann, C. Kennel, F. Coroniti, M. Kivelson, R. Pellat, R. Walker, H. Lühr, G. Paschmann, Bursty bulk flows in the inner central plasma sheet. J. Geophys. Res. Space Phys. 97(A4), 4027–4039 (1992)

  20. V. Angelopoulos, C. Kennel, F. Coroniti, R. Pellat, M. Kivelson, R. Walker, C. Russell, W. Baumjohann, W. Feldman, J. Gosling, Statistical characteristics of bursty bulk flow events. J. Geophys. Res. Space Phys. 99(11), 257–280 (1994). Paper 94ja01263

  21. W. Archer, D.J. Knudsen, Distinguishing subauroral ion drifts from Birkeland current boundary flows. J. Geophys. Res. Space Phys. 123, 819–826 (2018). https://doi.org/10.1002/2017JA024577

  22. J. Archer, H. Dahlgren, N. Ivchenko, B. Lanchester, G. Marklund, Dynamics and characteristics of black aurora as observed by high-resolution ground-based imagers and radar. Int. J. Remote Sens. 32(11), 2973–2985 (2011)

  23. W.E. Archer, D.J. Knudsen, J.K. Burchill, B. Jackel, E. Donovan, M. Connors, L. Juusola, Birkeland current boundary flows. J. Geophys. Res. Space Phys. 122(4), 4617–4627 (2017)

  24. J.C. Armstrong, S.-I. Akasofu, G. Rostoker, A comparison of satellite observations of Birkeland currents with ground observations of visible aurora and ionospheric currents. J. Geophys. Res. 80(4), 575–586 (1975)

  25. G. Atkinson, Auroral arcs: result of the interaction of a dynamic magnetosphere with the ionosphere. J. Geophys. Res. 75(25), 4746–4755 (1970). https://doi.org/10.1029/JA075i025p04746. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA075i025p04746

  26. H. Bahcivan, D.L. Hysell, D. Lummerzheim, M.F. Larsen, R.F. Pfaff, Observations of colocated optical and radar aurora. J. Geophys. Res. 111(A12), 12308 (2006). https://doi.org/10.1029/2006JA011923. http://doi.wiley.com/10.1029/2006JA011923

  27. C.A. Barth, D.N. Baker, S.M. Bailey, Seasonal variation of auroral electron precipitation. Geophys. Res. Lett. 31(4), L04809 (2004). https://doi.org/10.1029/2003GL018892. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2003GL018892

  28. J. Birn, M. Hesse, Energy release and conversion by reconnection in the magnetotail, in Annales Geophysicae, vol. 23 (2005), pp. 3365–3373

  29. G.T. Blanchard, L.R. Lyons, J.C. Samson, F.J. Rich, Locating the polar cap boundary from observations of 6300 Å auroral emission. J. Geophys. Res. Space Phys. 100(A5), 7855–7862 (1995). https://doi.org/10.1029/94JA02631. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/94JA02631

  30. G.T. Blanchard, L.R. Lyons, J.C. Samson, Accuracy of using 6300 Å auroral emission to identify the magnetic separatrix on the nightside of Earth. J. Geophys. Res. Space Phys. 102(A5), 9697–9703 (1997). https://doi.org/10.1029/96JA04000. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/96JA04000

  31. E. Blixt, M. Kosch, J. Semeter, Relative drift between black aurora and the ionospheric plasma, in Annales Geophysicae, vol. 23 (2005), pp. 1611–1621

  32. L.P. Block, C.-G. Fälthammar, P.-A. Lindqvist, G. Marklund, F. Mozer, A. Pedersen, T. Potemra, L. Zanetti, Electric field measurements on viking: first results. Geophys. Res. Lett. 14(4), 435–438 (1987)

  33. J.E. Borovsky, Auroral arc thicknesses as predicted by various theories. J. Geophys. Res. Space Phys. 98(A4), 6101–6138 (1993)

  34. R. Boström, A model of the auroral electrojets. J. Geophys. Res. 69(23), 4983–4999 (1964)

  35. A. Boudouridis, H.E. Spence, Separation of spatial and temporal structure of auroral particle precipitation. J. Geophys. Res. Space Phys. 112(A12), A12217 (2007)

  36. W. Bristow, G. Sofko, H. Stenbaek-Nielsen, S. Wei, D. Lummerzheim, A. Otto, Detailed analysis of substorm observations using superDARN, UVI, ground-based magnetometers, and all-sky imagers. J. Geophys. Res. Space Phys. 108(A3), 1124 (2003). https://doi.org/10.1029/2002JA009242

  37. P. Carlqvist, R. Boström, Space-charge regions above the aurora. J. Geophys. Res. 75(34), 7140–7146 (1970)

  38. C. Carlson, R. Pfaff, J. Watzin, The FAST Auroral SnapshoT (FAST) mission. Geophys. Res. Lett. 25(12), 2013–2016 (1998a)

  39. C. Carlson, J. McFadden, R. Ergun, M. Temerin, W. Peria, F. Mozer, D. Klumpar, E. Shelley, W. Peterson, E. Moebius, et al., Fast observations in the downward auroral current region: energetic upgoing electron beams, parallel potential drops, and ion heating. Geophys. Res. Lett. 25(12), 2017–2020 (1998b)

  40. C. Cattell, L. Johnson, R. Bergmann, D. Klumpar, C. Carlson, J. McFadden, R. Strangeway, R. Ergun, K. Sigsbee, R. Pfaff, FAST observations of discrete electrostatic waves in association with down-going ion beams in the auroral zone. J. Geophys. Res. Space Phys. 107(A9), 1238 (2002)

  41. C. Cattell, J. Dombeck, L. Hanson, Solar cycle effects on parallel electric field acceleration of auroral electron beams. J. Geophys. Res. Space Phys. 118(9), 5673–5680 (2013). https://doi.org/10.1002/jgra.50546. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgra.50546

  42. S. Chapman, The electrical conductivity of the ionosphere: a review. Nuovo Cimento (1955–1965) 4, 1385–1412 (1956)

  43. C. Chaston, ULF waves and auroral electrons, in Magnetospheric ULF Waves: Synthesis and New Directions, vol. 169 (2006), pp. 239–257

  44. C.C. Chaston, Magnetic reconnection in the auroral acceleration region. Geophys. Res. Lett. 42(6), 1646–1653 (2015). https://doi.org/10.1002/2015GL063164. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL063164

  45. C. Chaston, J. Bonnell, C. Carlson, M. Berthomier, L. Peticolas, I. Roth, J. McFadden, R. Ergun, R. Strangeway, Electron acceleration in the ionospheric Alfven resonator. J. Geophys. Res. Space Phys. 107(A11), 41 (2002)

  46. Y. Chiu, J. Cornwall, J. Fennell, D. Gorney, P. Mizera, Auroral plasmas in the evening sector: satellite observations and theoretical interpretations. Space Sci. Rev. 35(3), 211–257 (1983)

  47. A. Christensen, L. Lyons, J. Hecht, G. Sivjee, R. Meier, D. Strickland, Magnetic field-aligned electric field acceleration and the characteristics of the optical aurora. J. Geophys. Res. Space Phys. 92(A6), 6163–6167 (1987)

  48. R. Clayton, M. Burleigh, K. Lynch, M. Zettergren, M. Conde, T. Evans, G. Grubbs, D. Hampton, D. Hysell, M. Lessard, R. Michell, A. Reimer, T.M. Roberts, M. Samara, R. Varney, 3d modeling results of the GEMINI model using reconstructed 2d maps of auroral data (2019a), in preparation

  49. R. Clayton, K. Lynch, M. Zettergren, M. Burleigh, M. Conde, G. Grubbs, D. Hampton, D. Hysell, M. Lessard, R. Michell, A. Reimer, T.M. Roberts, M. Samara, R. Varney, Two-dimensional maps of in situ ionospheric plasma flow data near auroral arcs using auroral imagery. J. Geophys. Res. Space Phys. 124(4), 3036–3056 (2019b). https://doi.org/10.1029/2018JA026440. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018JA026440

  50. C.A. Colpitts, S. Hakimi, C.A. Cattell, J. Dombeck, M. Maas, Simultaneous ground and satellite observations of discrete auroral arcs, substorm aurora, and Alfvénic aurora with FAST and THEMIS GBO. J. Geophys. Res. Space Phys. 118(11), 6998–7010 (2013). https://doi.org/10.1002/2013JA018796. http://doi.wiley.com/10.1002/2013JA018796

  51. M. Conde, J.D. Craven, T. Immel, E. Hoch, H. Stenbaek-Nielsen, T. Hallinan, R.W. Smith, J. Olson, W. Sun, L.A. Frank, J. Sigwarth, Assimilated observations of thermospheric winds, the aurora, and ionospheric currents over Alaska. J. Geophys. Res. Space Phys. 106(A6), 10493–10508 (2001). https://doi.org/10.1029/2000JA000135. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000JA000135

  52. B. Coppi, G. Laval, R. Pellat, Dynamics of the geomagnetic tail. Phys. Rev. Lett. 16, 1207–1210 (1966). https://doi.org/10.1103/PhysRevLett.16.1207. https://link.aps.org/doi/10.1103/PhysRevLett.16.1207

  53. T. Cowling, Magnetism, solar: the electrical conductivity of an ionised gas in the presence of a magnetic field. Mon. Not. R. Astron. Soc. 93, 90 (1932)

  54. H. Dahlgren, N. Ivchenko, B.S. Lanchester, M. Ashrafi, D. Whiter, G. Marklund, J. Sullivan, First direct optical observations of plasma flows using afterglow of O+ in discrete aurora. J. Atmos. Sol.-Terr. Phys. 71(2), 228–238 (2009). https://doi.org/10.1016/J.JASTP.2008.11.015. https://www.sciencedirect.com/science/article/pii/S1364682608003751?via%3Dihub

  55. T.N. Davis, Observed characteristics of auroral forms. Space Sci. Rev. 22(1), 77–113 (1978). https://doi.org/10.1007/BF00215814.

  56. C. Deehr, D. Lummerzheim, Ground-based optical observations of hydrogen emission in the auroral substorm. J. Geophys. Res. Space Phys. 106(A1), 33–44 (2001). https://doi.org/10.1029/2000JA002010. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000JA002010

  57. C.S. Deehr, M.H. Rees, A.E.H. Belon, G.J. Romick, D. Lummerzheim, Influence of the ionosphere on the altitude of discrete auroral arcs. Ann. Geophys. 23(3), 759–766 (2005). https://doi.org/10.5194/angeo-23-759-2005. http://www.ann-geophys.net/23/759/2005/

  58. R.A. Doe, M. Mendillo, J.F. Vickrey, L.J. Zanetti, R.W. Eastes, Observations of nightside auroral cavities. J. Geophys. Res. Space Phys. 98(A1), 293–310 (1993)

  59. R. Doe, M. Mendillo, J. Vickrey, J. Ruohoniemi, R. Greenwald, Coordinated convection measurements in the vicinity of auroral cavities. Radio Sci. 29(1), 293–309 (1994)

  60. E.F. Donovan, B.J. Jackel, I. Voronkov, T. Sotirelis, F. Creutzberg, N.A. Nicholson, Ground-based optical determination of the b2i boundary: a basis for an optical MT-index. J. Geophys. Res. Space Phys. 108(A3), 1115 (2003). https://doi.org/10.1029/2001JA009198. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JA009198

  61. E. Donovan, W. Liu, J. Liang, E. Spanswick, I. Voronkov, M. Connors, M. Syrjäsuo, G. Baker, B. Jackel, T. Trondsen, M. Greffen, V. Angelopoulos, C.T. Russell, S.B. Mende, H.U. Frey, A. Keiling, C.W. Carlson, J.P. McFadden, K.-H. Glassmeier, U. Auster, K. Hayashi, K. Sakaguchi, K. Shiokawa, J.A. Wild, I.J. Rae, Simultaneous THEMIS in situ and auroral observations of a small substorm. Geophys. Res. Lett. 35(17), L17S18 (2008). https://doi.org/10.1029/2008GL033794. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008GL033794

  62. R. Elphic, J. Bonnell, R. Strangeway, L. Kepko, R. Ergun, J. McFadden, C. Carlson, W. Peria, C. Cattell, D. Klumpar, et al., The auroral current circuit and field-aligned currents observed by fast. Geophys. Res. Lett. 25(12), 2033–2036 (1998)

  63. R. Elphinstone, J. Murphree, L. Cogger, What is a global auroral substorm? Rev. Geophys. 34(2), 169–232 (1996)

  64. R. Ergun, L. Andersson, D. Main, Y.-J. Su, C. Carlson, J. McFadden, F. Mozer, Parallel electric fields in the upward current region of the aurora: indirect and direct observations. Phys. Plasmas 9(9), 3685–3694 (2002a)

  65. R. Ergun, L. Andersson, D. Main, Y.-J. Su, D. Newman, M. Goldman, C. Carlson, J. McFadden, F. Mozer, Parallel electric fields in the upward current region of the aurora: numerical solutions. Phys. Plasmas 9(9), 3695–3704 (2002b)

  66. R. Ergun, L. Andersson, C. Carlson, D. Newman, M. Goldman, Double layers in the downward current region of the aurora. Nonlinear Process. Geophys. 10(1/2), 45–52 (2003)

  67. R. Ergun, L. Andersson, D. Main, Y.-J. Su, D. Newman, M. Goldman, C. Carlson, A. Hull, J. McFadden, F. Mozer, Auroral particle acceleration by strong double layers: the upward current region. J. Geophys. Res. Space Phys. 109(A12), A12220 (2004)

  68. C. Escoubet, M. Fehringer, M. Goldstein, The cluster mission—introduction, in Annales Geophysicae, vol. 19, (Eur. Math. Soc., Lindau, 2001), pp. 1197–1200

  69. D.S. Evans, The observations of a near monoenergetic flux of auroral electrons. J. Geophys. Res. 73(7), 2315–2323 (1968)

  70. D.S. Evans, Precipitating electron fluxes formed by a magnetic field aligned potential difference. J. Geophys. Res. 79(19), 2853–2858 (1974)

  71. D.S. Evans, The characteristics of a persistent auroral arc at high latitude in the 1400 MLT sector, in The Polar Cusp, ed. by J.A. Holtet, A. Egeland (Springer, Dordrecht, 1985), pp. 99–109. ISBN 978-94-009-5295-9

  72. S. Figueiredo, G. Marklund, T. Karlsson, T. Johansson, Y. Ebihara, M. Ejiri, N. Ivchenko, P.-A. Lindqvist, H. Nilsson, A. Fazakerley, Temporal and spatial evolution of discrete auroral arcs as seen by cluster. Ann. Geophys. 23(7), 2531–2557 (2005)

  73. C. Forsyth, A. Fazakerley, A. Walsh, C.E. Watt, K. Garza, C. Owen, D. Constantinescu, I. Dandouras, K.-H. Fornaçon, E. Lucek, et al., Temporal evolution and electric potential structure of the auroral acceleration region from multispacecraft measurements. J. Geophys. Res. Space Phys. 117(A12), A12203 (2012)

  74. H.U. Frey, O. Amm, C.C. Chaston, S. Fu, G. Haerendel, L. Juusola, T. Karlsson, B. Lanchester, R. Nakamura, N. Østgaard, T. Sakanoi, E. Séran, D. Whiter, J. Weygand, K. Asamura, M. Hirahara, Small and meso-scale properties of a substorm onset auroral arc. J. Geophys. Res. Space Phys. 115(A10), A10209 (2010a). https://doi.org/10.1029/2010JA015537. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JA015537

  75. H. Frey, O. Amm, C. Chaston, S. Fu, G. Haerendel, L. Juusola, T. Karlsson, B. Lanchester, R. Nakamura, N. Østgaard, et al., Small and meso-scale properties of a substorm onset auroral arc. J. Geophys. Res. Space Phys. 115(A10), A10209 (2010b). https://doi.org/10.1029/2010JA015537

  76. E. Friis-Christensen, H. Lühr, D. Knudsen, R. Haagmans, Swarm–an Earth observation mission investigating geospace. Adv. Space Res. 41(1), 210–216 (2008)

  77. R. Fujii, O. Amm, A. Yoshikawa, A. Ieda, H. Vanhamäki, Reformulation and energy flow of the Cowling channel. J. Geophys. Res. Space Phys. 116(A2), A02305 (2011)

  78. R. Fujii, O. Amm, H. Vanhamäki, A. Yoshikawa, A. Ieda, An application of the finite length Cowling channel model to auroral arcs with longitudinal variations. J. Geophys. Res. Space Phys. 117(A11), A11217 (2012)

  79. Y.I. Galperin, Multiple scales in auroral plasmas. J. Atmos. Sol.-Terr. Phys. 64(2), 211–229 (2002)

  80. D.M. Gillies, D.J. Knudsen, E.F. Donovan, E.L. Spanswick, C. Hansen, D. Keating, S. Erion, A survey of quiet auroral arc orientation and the effects of the interplanetary magnetic field. J. Geophys. Res. Space Phys. 119(4), 2550–2562 (2014). https://doi.org/10.1002/2013JA019469. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JA019469

  81. D. Gillies, D. Knudsen, E. Spanswick, E. Donovan, J. Burchill, M. Patrick, Swarm observations of field-aligned currents associated with pulsating auroral patches. J. Geophys. Res. Space Phys. 120(11), 9484–9499 (2015). https://doi.org/10.1002/2015JA021416

  82. D.M. Gillies, D. Knudsen, R. Rankin, S. Milan, E. Donovan, A statistical survey of the 630.0 nm optical signature of periodic auroral arcs resulting from magnetospheric field line resonances. Geophys. Res. Lett. 45, 4648–4655 (2018)

  83. J. Gjerloev, S. Ohtani, T. Iijima, B. Anderson, J. Slavin, G. Le, Characteristics of the terrestrial field-aligned current system. Ann. Geophys. 29(10) 1713–1729 (2011)

  84. G. Grubbs II, R. Michell, M. Samara, D. Hampton, J.-M. Jahn, Predicting electron population characteristics in 2-d using multispectral ground-based imaging. Geophys. Res. Lett. 45(1), 15–20 (2018). https://doi.org/10.1002/2017GL075873. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL075873

  85. G. Grubbs, R. Michell, M. Samara, D. Hampton, J. Hecht, S. Solomon, J.-M. Jahn, A comparative study of spectral auroral intensity predictions from multiple electron transport models. J. Geophys. Res. Space Phys. 123(1), 993–1005 (2018a)

  86. G. Grubbs, R. Michell, M. Samara, D. Hampton, J.-M. Jahn, Predicting electron population characteristics in 2-d using multispectral ground-based imaging. Geophys. Res. Lett. 45(1), 15–20 (2018b)

  87. D.A. Gurnett, Electric Field and Plasma Observations in the Magnetosphere, Technical report, Iowa Univ. Iowa City Dept. Of Physics and Astronomy, 1972

  88. B. Gustavsson, M.J. Kosch, A. Senior, A.J. Kavanagh, B. Brändström, E. Blixt, Combined EISCAT radar and optical multispectral and tomographic observations of black aurora. J. Geophys. Res. Space Phys. 113(A6), A06308 (2008)

  89. G. Haerendel, Acceleration from field-aligned potential drops. Int. Astron. Union Colloq. 142, 765–774 (1994). https://doi.org/10.1017/S0252921100078076

  90. G. Haerendel, H. Frey, Role and origin of the poleward Alfvénic arc. J. Geophys. Res. Space Phys. 119(4), 2945–2962 (2014). https://doi.org/10.1002/2014JA019786

  91. G. Haerendel, H.U. Frey, C.C. Chaston, O. Amm, L. Juusola, R. Nakamura, E. Seran, J. Weygand, Birth and life of auroral arcs embedded in the evening auroral oval convection: a critical comparison of observations with theory. J. Geophys. Res. Space Phys. 117(A12), A12220 (2012). https://doi.org/10.1029/2012JA018128

  92. T.J. Hallinan, T.N. Davis, Small-scale auroral arc distortions. Planet. Space Sci. 18(12), 1735–1744 (1970)

  93. T. Hallinan, H. Stenbaek-Nielsen, The connection between auroral acceleration and auroral morphology. Phys. Chem. Earth, Part C, Sol.-Terr. Planet. Sci. 26(1–3), 169–177 (2001)

  94. T.J. Hallinan, J. Kimball, H.C. Stenbaek-Nielsen, K. Lynch, R. Arnoldy, J. Bonnell, P. Kintner, Relation between optical emissions, particles, electric fields, and Alfvén waves in a multiple rayed arc. J. Geophys. Res. 106, 15445 (2001)

  95. T.J. Hallinan, J. Kimball, H.C. Stenbaek-Nielsen, K. Lynch, R. Arnoldy, J. Bonnell, P. Kintner, Relation between optical emissions, particles, electric fields, and Alfvén waves in a multiple rayed arc. J. Geophys. Res. Space Phys. 106(A8), 15445–15454 (2001). https://doi.org/10.1029/2000JA000321. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000JA000321

  96. M. Hamrin, O. Marghitu, K. Rönnmark, B. Klecker, M. André, S. Buchert, L. Kistler, J. McFadden, H. Reme, A. Vaivads, Observations of concentrated generator regions in the nightside magnetosphere by Cluster/FAST conjunctions, in Annales Geophysicae, vol. 24 (2006), pp. 637–649

  97. M. Hamrin, O. Marghitu, P. Norqvist, S. Buchert, M. André, B. Klecker, L.M. Kistler, I. Dandouras, Energy conversion regions as observed by cluster in the plasma sheet. J. Geophys. Res. Space Phys. 116(A1), A00K08 (2011)

  98. M. Hamrin, P. Norqvist, T. Karlsson, H. Nilsson, H. Fu, S. Buchert, M. André, O. Marghitu, T. Pitkänen, B. Klecker, et al., The evolution of flux pileup regions in the plasma sheet: cluster observations. J. Geophys. Res. Space Phys. 118(10), 6279–6290 (2013)

  99. M. Hamrin, T. Pitkänen, P. Norqvist, T. Karlsson, H. Nilsson, M. André, S. Buchert, A. Vaivads, O. Marghitu, B. Klecker, et al., Evidence for the braking of flow bursts as they propagate toward the Earth. J. Geophys. Res. Space Phys. 119(11), 9004–9018 (2014)

  100. P. Hanna, C. Anger, Auroral colour variations. Planet. Space Sci. 19(4), 399–411 (1971)

  101. Z.-J. Hu, H. Yang, D. Huang, T. Araki, N. Sato, M. Taguchi, E. Seran, H. Hu, R. Liu, B. Zhang, D. Han, Z. Chen, Q. Zhang, J. Liang, S. Liu, Synoptic distribution of dayside aurora: multiple-wavelength all-sky observation at yellow river station in ny-Ålesund, svalbard. J. Atmos. Sol.-Terr. Phys. 71(8), 794–804 (2009). https://doi.org/10.1016/j.jastp.2009.02.010. http://www.sciencedirect.com/science/article/pii/S1364682609000339

  102. A. Hull, J. Bonnell, F. Mozer, J. Scudder, C. Chaston, Large parallel electric fields in the upward current region of the aurora: evidence for ambipolar effects. J. Geophys. Res. Space Phys. 108(A6), 1265 (2003a)

  103. A. Hull, J. Bonnell, F. Mozer, J. Scudder, A statistical study of large-amplitude parallel electric fields in the upward current region of the auroral acceleration region. J. Geophys. Res. Space Phys. 108(A1), 1007 (2003b)

  104. A. Hull, C. Chaston, H. Frey, M. Fillingim, M. Goldstein, J. Bonnell, F. Mozer, The “Alfvénic surge” at substorm onset/expansion and the formation of “Inverted Vs”: Cluster and IMAGE observations. J. Geophys. Res. Space Phys. 121(5), 3978–4004 (2016)

  105. B. Hultqvist, Downward ion acceleration at auroral latitudes: cause of parallel electric field, in Annales Geophysicae, vol. 20 (2002), pp. 1117–1136

  106. K.-J. Hwang, K. Lynch, C. Carlson, J. Bonnell, W. Peria, Fast auroral snapshot observations of perpendicular dc electric field structures in downward auroral current regions: morphology. J. Geophys. Res. Space Phys. 111(A9), A09205 (2006a)

  107. K.-J. Hwang, K. Lynch, C. Carlson, J. Bonnell, W. Peria, Fast auroral snapshot observations of perpendicular DC electric field structures in downward current regions: implications. J. Geophys. Res. Space Phys. 111(A9), A09206 (2006b)

  108. K.-J. Hwang, R. Ergun, L. Andersson, D. Newman, C. Carlson, Test particle simulations of the effect of moving DLs on ion outflow in the auroral downward-current region. J. Geophys. Res. Space Phys. 113(A1), A01308 (2008)

  109. T. Iijima, T.A. Potemra, The amplitude distribution of field-aligned currents at northern high latitudes observed by triad. J. Geophys. Res. 81(13), 2165–2174 (1976)

  110. P. Israelevich, I. Podgorny, A. Kuzmin, N. Nikolaeva, E. Dubinin, Convection and field-aligned currents, related to polar cap arcs, during strongly northward IMF (11 January 1983). Planet. Space Sci. 36(12), 1317–1328 (1988)

  111. P.T. Jayachandran, E.F. Donovan, J.W. MacDougall, D.R. Moorcroft, J.-P. St. Maurice, P. Prikryl, Superdarn e-region backscatter boundary in the dusk-midnight sector—tracer of equatorward boundary of the auroral oval. Ann. Geophys. 20(12), 1899–1904 (2002). https://doi.org/10.5194/angeo-20-1899-2002. https://www.ann-geophys.net/20/1899/2002/

  112. F. Jiang, R.J. Strangeway, M.G. Kivelson, J.M. Weygand, R.J. Walker, K.K. Khurana, Y. Nishimura, V. Angelopoulos, E. Donovan, In situ observations of the “preexisting auroral arc” by themis all sky imagers and the fast spacecraft. J. Geophys. Res. Space Phys. 117(A5) (2012). https://doi.org/10.1029/2011JA017128. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JA017128

  113. F. Jiang, M.G. Kivelson, R.J. Strangeway, K.K. Khurana, R. Walker, Ionospheric flow shear associated with the preexisting auroral arc: a statistical study from the fast spacecraft data. J. Geophys. Res. Space Phys. 120(6), 5194–5213 (2015a). https://doi.org/10.1002/2013JA019255. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JA019255

  114. F. Jiang, M.G. Kivelson, R.J. Strangeway, K.K. Khurana, R. Walker, Ionospheric flow shear associated with the preexisting auroral arc: a statistical study from the FAST spacecraft data. J. Geophys. Res. Space Phys. 120(6), 5194–5213 (2015b)

  115. T. Johansson, G. Marklund, T. Karlsson, S. Liléo, P.-A. Lindqvist, A. Marchaudon, H. Nilsson, A. Fazakerley, On the profile of intense high-altitude auroral electric fields at magnetospheric boundaries, in Annales Geophysicae, vol. 24 (2006), pp. 1713–1723

  116. T. Johansson, G. Marklund, T. Karlsson, S. Liléo, P.-A. Lindqvist, H. Nilsson, S. Buchert, Scale sizes of intense auroral electric fields observed by Cluster, in Annales Geophysicae, vol. 25 (2007), pp. 2413–2425

  117. M.G. Johnsen, D.A. Lorentzen, A statistical analysis of the optical dayside open/closed field line boundary. J. Geophys. Res. Space Phys. 117(A2), A02218 (2012). https://doi.org/10.1029/2011JA016984. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016984

  118. J.R.T. Jussila, A.T. Aikio, S. Shalimov, S.R. Marple, Cosmic radio noise absorption events associated with equatorward drifting arcs during a substorm growth phase. Ann. Geophys. 22(5), 1675–1686 (2004). https://doi.org/10.5194/angeo-22-1675-2004. https://www.ann-geophys.net/22/1675/2004/

  119. L. Juusola, K. Kauristie, H. Vanhamäki, A. Aikio, M. Kamp, Comparison of auroral ionospheric and field-aligned currents derived from swarm and ground magnetic field measurements. J. Geophys. Res. Space Phys. 121(9), 9256–9283 (2016a)

  120. L. Juusola, W.E. Archer, K. Kauristie, J.K. Burchill, H. Vanhamäki, A.T. Aikio, Ionospheric conductances and currents of a morning sector auroral arc from Swarm-A electric and magnetic field measurements. Geophys. Res. Lett. 43(22), 11519–11527 (2016b). https://doi.org/10.1002/2016GL070248. http://doi.wiley.com/10.1002/2016GL070248

  121. S.R. Kaeppler, M.J. Nicolls, A. Strømme, C.A. Kletzing, S.R. Bounds, Observations in the E region ionosphere of kappa distribution functions associated with precipitating auroral electrons and discrete aurorae. J. Geophys. Res. Space Phys. 119(12), 10164–10183 (2014). https://doi.org/10.1002/2014JA020356. http://doi.wiley.com/10.1002/2014JA020356

  122. Y. Kamide, S.-I. Akasofu, The location of the field-aligned currents with respect to discrete auroral arcs. J. Geophys. Res. 81(22), 3999–4003 (1976)

  123. T. Karlsson, The acceleration region of stable auroral arcs, in Chapman Conference on the Relationship Between Auroral Phenomenology and Magnetospheric Processes, Feb. 27–Mar. 04, 2011, Fairbanks, AK (Am. Geophys. Union, Washington, 2012), pp. 227–239

  124. T. Karlsson, The Acceleration Region of Stable Auroral Arcs (Am. Geophys. Union, Washington, 2013), pp. 227–240. https://doi.org/10.1029/2011GM001179. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011GM001179

  125. T. Karlsson, G. Marklund, A statistical study of intense low-altitude electric fields observed by freja. Geophys. Res. Lett. 23(9), 1005–1008 (1996)

  126. T. Karlsson, G. Marklund, N. Brenning, I. Axnäs, On enhanced aurora and low-altitude parallel electric fields. Phys. Scr. 72(5), 419 (2005)

  127. T. Karlsson, N. Brenning, O. Marghitu, G. Marklund, S. Buchert, High-altitude signatures of ionospheric density depletions caused by field-aligned currents. arXiv preprint, arXiv:0704.1610 (2007)

  128. A. Keiling, J. Wygant, C. Cattell, W. Peria, G. Parks, M. Temerin, F. Mozer, C. Russell, C. Kletzing, Correlation of Alfvén wave poynting flux in the plasma sheet at 4–7 RE with ionospheric electron energy flux. J. Geophys. Res. Space Phys. 107(A7), 24 (2002)

  129. A. Keiling, V. Angelopoulos, A. Runov, J. Weygand, S. Apatenkov, S. Mende, J. McFadden, D. Larson, O. Amm, K.-H. Glassmeier, et al., Substorm current wedge driven by plasma flow vortices: themis observations. J. Geophys. Res. Space Phys. 114(A1), A00C22 (2009)

  130. J. Kimball, T. Hallinan, Observations of black auroral patches and of their relationship to other types of aurora. J. Geophys. Res. Space Phys. 103(A7), 14671–14682 (1998)

  131. P.M. Kintner, H. Kil, C. Deehr, P. Schuck, Simultaneous total electron content and all-sky camera measurements of an auroral arc. J. Geophys. Res. Space Phys. 107(A7), 13–1136 (2002). https://doi.org/10.1029/2001JA000110. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JA000110

  132. S. Kirkwood, H. Opgenoorth, J.S. Murphree, Ionospheric conductivities, electric fields and currents associated with auroral substorms measured by the EISCAT radar. Planet. Space Sci. 36(12), 1359–1380 (1988). https://doi.org/10.1016/0032-0633(88)90005-0. https://www.sciencedirect.com/science/article/pii/0032063388900050?via%3Dihub

  133. D. Klumpar, W. Heikkila, Electrons in the ionospheric source cone: evidence for runaway electrons as carriers of downward Birkeland currents. Geophys. Res. Lett. 9(8), 873–876 (1982)

  134. S. Knight, Parallel electric fields. Planet. Space Sci. 21(5), 741–750 (1973)

  135. D.J. Knudsen, Spatial modulation of electron energy and density by nonlinear stationary inertial Alfvén waves. J. Geophys. Res. Space Phys. 101(A5), 10761–10772 (1996). https://doi.org/10.1029/96JA00429

  136. D. Knudsen, E. Donovan, L. Cogger, B. Jackel, W. Shaw, Width and structure of mesoscale optical auroral arcs. Geophys. Res. Lett. 28(4), 705–708 (2001)

  137. M.J. Kosch, C. Anderson, R.A. Makarevich, B.A. Carter, R.A.D. Fiori, M. Conde, P.L. Dyson, T. Davies, First E region observations of mesoscale neutral wind interaction with auroral arcs. J. Geophys. Res. Space Phys. 115(A2) A02303, (2010). https://doi.org/10.1029/2009JA014697. http://doi.wiley.com/10.1029/2009JA014697

  138. A. Kozlovsky, T. Lakkala, J. Kangas, A. Aikio, Response of the quiet auroral arc motion to ionospheric convection variations. J. Geophys. Res. Space Phys. 106(A10), 21463–21473 (2001). https://doi.org/10.1029/2001JA900043. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2001JA900043

  139. A.E. Kozlovsky, V.V. Safargaleev, J.R.T. Jussila, A.V. Koustov, Pre-noon high-latitude auroral arcs as a manifestation of the interchange instability. Ann. Geophys. 21(12), 2303–2314 (2003). https://doi.org/10.5194/angeo-21-2303-2003. https://www.ann-geophys.net/21/2303/2003/

  140. A.E. Kozlovsky, H. Nilsson, V.V. Safargaleev, Complex study of the auroral arc dynamics and ionospheric plasma convection in prenoon hours. Geomagn. Aeron. 46(4), 473–484 (2006). https://doi.org/10.1134/S0016793206040098.

  141. A. Kozlovsky, T. Turunen, S. Massetti, Field-aligned currents of postnoon auroral arcs. J. Geophys. Res. Space Phys. 114(A3), A03301 (2009)

  142. E.A. Kronberg, M. Ashour-Abdalla, I. Dandouras, D.C. Delcourt, E.E. Grigorenko, L.M. Kistler, I.V. Kuzichev, J. Liao, R. Maggiolo, H.V. Malova, et al., Circulation of heavy ions and their dynamical effects in the magnetosphere: recent observations and models. Space Sci. Rev. 184(1-4), 173–235 (2014)

  143. B. Lanchester, B. Gustavsson, Imaging of aurora to estimate the energy and flux of electron precipitation, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, vol. 197 (2012), pp. 171–182

  144. K. Laundal, N. Østgaard, Asymmetric auroral intensities in the Earth’s northern and southern hemispheres. Nature 460(7254), 491 (2009)

  145. K.M. Laundal, I. Cnossen, S.E. Milan, S. Haaland, J. Coxon, N. Pedatella, M. Förster, J.P. Reistad, North–South asymmetries in Earth’s magnetic field. Space Sci. Rev. 206(1–4), 225–257 (2017)

  146. G. Le, Y. Wang, J. Slavin, R. Strangeway, Space Technology 5 multipoint observations of temporal and spatial variability of field-aligned currents. J. Geophys. Res. Space Phys. 114(A8), A08206 (2009)

  147. M.R. Lessard, W. Lotko, J. LaBelle, W. Peria, C.W. Carlson, F. Creutzberg, D.D. Wallis, Ground and satellite observations of the evolution of growth phase auroral arcs. J. Geophys. Res. Space Phys. 112(A9), A09304 (2007). https://doi.org/10.1029/2006JA011794. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2006JA011794

  148. B. Li, G. Marklund, T. Karlsson, S. Sadeghi, P.-A. Lindqvist, A. Vaivads, A. Fazakerley, Y. Zhang, E. Lucek, T. Sergienko, et al., Inverted-v and low-energy broadband electron acceleration features of multiple auroras within a large-scale surge. J. Geophys. Res. Space Phys. 118(9), 5543–5552 (2013)

  149. P.-A. Lindqvist, G.T. Marklund, A statistical study of high-altitude electric fields measured on the viking satellite. J. Geophys. Res. Space Phys. 95(A5), 5867–5876 (1990). https://doi.org/10.1029/JA095iA05p05867

  150. K. Liou, P.T. Newell, C.-I. Meng, M. Brittnacher, G. Parks, Synoptic auroral distribution: a survey using polar ultraviolet imagery. J. Geophys. Res. Space Phys. 102(A12), 27197–27205 (1997). https://doi.org/10.1029/97JA02638. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/97JA02638

  151. J. Liu, V. Angelopoulos, Z. Yao, X. Chu, X.-Z. Zhou, A. Runov, The current system of dipolarizing flux bundles and their role as wedgelets in the substorm current wedge, in Electric Currents in Geospace and Beyond, vol. 235, (Wiley Online Library, New York, 2018a), pp. 323–337

  152. J. Liu, L. Lyons, W. Archer, B. Gallardo-Lacourt, Y. Nishimura, Y. Zou, C. Gabrielse, J. Weygand, Flow shears at the poleward boundary of omega bands observed during conjunctions of swarm and THEMIS ASI. Geophys. Res. Lett. 45(3), 1218–1227 (2018b). https://doi.org/10.1002/2017GL076485

  153. E. Lund, E. Möbius, R. Ergun, C. Carlson, Mass-dependent effects in ion conic production: the role of parallel electric fields. Geophys. Res. Lett. 26(24), 3593–3596 (1999)

  154. R. Lundin, D.S. Evans, Boundary layer plasmas as a source for high-latitude, early afternoon, auroral arcs. Planet. Space Sci. 33(12), 1389–1406 (1985)

  155. R. Lundin, I. Sandahl, Some characteristics of the parallel electric field acceleration of electrons over discrete auroral arcs as observed from two rocket flights, in European Sounding Rocket, Balloon and Related Research, with Emphasis on Experiments at High Latitudes, vol. 135 (1978)

  156. K. Lynch, J. Bonnell, C. Carlson, W. Peria, Return current region aurora: E\(_{\|}\), jz, particle energization, and broadband ELF wave activity. J. Geophys. Res. Space Phys. 107(A7), 1115 (2002)

  157. K. Lynch, D. Hampton, M. Zettergren, T. Bekkeng, M. Conde, P. Fernandes, P. Horak, M. Lessard, R. Miceli, R. Michell, et al., Mica sounding rocket observations of conductivity-gradient-generated auroral ionospheric responses: small-scale structure with large-scale drivers. J. Geophys. Res. Space Phys. 120(11), 9661–9682 (2015)

  158. L. Lyons, D. Evans, R. Lundin, An observed relationship between magnetic field-aligned electric fields and downward electron energy fluxes in the vicinity of auroral forms. J. Geophys. Res. 84, 457 (1979)

  159. L. Lyons, J. Fennell, A. Vampola, A general association between discrete auroras and ion precipitation from the tail. J. Geophys. Res. Space Phys. 93(A11), 12932–12940 (1988)

  160. L.R. Lyons, I.O. Voronkov, E.F. Donovan, E. Zesta, Relation of substorm breakup arc to other growth-phase auroral arcs. J. Geophys. Res. Space Phys. 107(A11), 26–12610 (2002). https://doi.org/10.1029/2002JA009317. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002JA009317

  161. R.L. Lysak, Auroral electrodynamics with current and voltage generators. J. Geophys. Res. Space Phys. 90(A5), 4178–4190 (1985)

  162. R.L. Lysak, Electrodynamic coupling of the magnetosphere and ionosphere. Space Sci. Rev. 52(1), 33–87 (1990). https://doi.org/10.1007/BF00704239

  163. R.L. Lysak, Propagation of Alfvén waves through the ionosphere: dependence on ionospheric parameters. J. Geophys. Res. 104, 10017–10030 (1999). https://doi.org/10.1029/1999JA900024

  164. J. Maggs, T. Davis, Measurements of the thicknesses of auroral structures. Planet. Space Sci. 16(2), 205–209 (1968)

  165. A.J. Mallinckrodt, C.W. Carlson, Relations between transverse electric fields and field-aligned currents. J. Geophys. Res. Space Phys. 83(A4), 1426–1432 (1978). https://doi.org/10.1029/JA083iA04p01426. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JA083iA04p01426

  166. Y.P. Maltsev, W.B. Lyatsky, A.M. Lyatskaya, Currents over the auroral arc. Planet. Space Sci. 25(1), 53–57 (1977). https://doi.org/10.1016/0032-0633(77)90117-9. http://www.sciencedirect.com/science/article/pii/0032063377901179

  167. O. Marghitu, Auroral arc electrodynamics: review and outlook, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, vol. 197 (2012), pp. 143–158

  168. O. Marghitu, B. Klecker, G. Haerendel, J. McFadden, ALADYN: a method to investigate auroral arc electrodynamics from satellite data. J. Geophys. Res. Space Phys. 109(A11), A11305 (2004)

  169. O. Marghitu, M. Hamrin, B. Klecker, A. Vaivads, J. McFadden, S. Buchert, L.M. Kistler, I. Dandouras, M. André, H. Rème, Experimental investigation of auroral generator regions with conjugate Cluster and FAST data, in Annales Geophysicae, vol. 24 (2006), pp. 619–635

  170. O. Marghitu, B. Klecker, J. McFadden, The anisotropy of precipitating auroral electrons: a fast case study. Adv. Space Res. 38(8), 1694–1701 (2006)

  171. O. Marghitu, T. Karlsson, B. Klecker, G. Haerendel, J. McFadden, Auroral arc and oval electrodynamics in the Harang region. J. Geophys. Res. Space Phys. 114(A3), A03214 (2009)

  172. O. Marghitu, C. Bunescu, T. Karlsson, B. Klecker, H.C. Stenbaek-Nielsen, On the divergence of the auroral electrojets. J. Geophys. Res. Space Phys. 116(A1), A00K17 (2011)

  173. G. Marklund, Auroral arc classification scheme based on the observed arc-associated electric field pattern. Planet. Space Sci. 32(2), 193–211 (1984)

  174. G. Marklund, I. Sandahl, H. Opgenoorth, A study of the dynamics of a discrete auroral arc. Planet. Space Sci. 30(2), 179–197 (1982). https://doi.org/10.1016/0032-0633(82)90088-5. https://www.sciencedirect.com/science/article/pii/0032063382900885?via%3Dihub

  175. G. Marklund, L. Blomberg, C.-G. Fälthammar, P.-A. Lindqvist, On intense diverging electric fields associated with black aurora. Geophys. Res. Lett. 21(17), 1859–1862 (1994)

  176. G.T. Marklund, N. Ivchenko, T. Karlsson, A. Fazakerley, M. Dunlop, P.-A. Lindqvist, S. Buchert, C. Owen, M. Taylor, A. Vaivalds, et al., Temporal evolution of the electric field accelerating electrons away from the auroral ionosphere. Nature 414(6865), 724 (2001)

  177. G.T. Marklund, S. Sadeghi, T. Karlsson, P.-A. Lindqvist, H. Nilsson, C. Forsyth, A. Fazakerley, E.A. Lucek, J. Pickett, Altitude distribution of the auroral acceleration potential determined from cluster satellite data at different heights. Phys. Rev. Lett. 106(5), 055002 (2011a)

  178. G.T. Marklund, S. Sadeghi, J.A. Cumnock, T. Karlsson, P.-A. Lindqvist, H. Nilsson, A. Masson, A. Fazakerley, E. Lucek, J. Pickett, et al., Evolution in space and time of the quasi-static acceleration potential of inverted-V aurora and its interaction with Alfvénic boundary processes. J. Geophys. Res. Space Phys. 116(A1), A00K13 (2011b)

  179. I. McCrea, A. Aikio, L. Alfonsi, E. Belova, S. Buchert, M. Clilverd, N. Engler, B. Gustavsson, C. Heinselman, J. Kero, et al., The science case for the EISCAT_3d radar. Prog. Earth Planet. Sci. 2(1), 21 (2015)

  180. J.P. McFadden, C.W. Carlson, R.E. Ergun, Microstructure of the auroral acceleration region as observed by fast. J. Geophys. Res. Space Phys. 104(A7), 14453–14480 (1999). https://doi.org/10.1029/1998JA900167. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1998JA900167

  181. C.E. McIlwain, Direct measurement of particles producing visible auroras. J. Geophys. Res. 65(9), 2727–2747 (1960)

  182. D. McKay, N. Partamies, J. Vierinen, Pulsating aurora and cosmic noise absorption associated with growth-phase arcs. Ann. Geophys. 36(1), 59–69 (2018). https://doi.org/10.5194/angeo-36-59-2018. https://www.ann-geophys.net/36/59/2018/

  183. R.L. McPherron, C.T. Russell, M.P. Aubry, Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms. J. Geophys. Res. 78(16), 3131–3149 (1973)

  184. S. Mende, The THEMIS array of ground-based observatories for the study of auroral substorms. Space Sci. Rev. 141, 357 (2008). https://doi.org/10.1007/s11214-008-9380-x

  185. S. Mende, R. Eather, Monochromatic all-sky observations and auroral precipitation patterns. J. Geophys. Res. 81(22), 3771–3780 (1976)

  186. C.-I. Meng, R. Lundin, Auroral morphology of the midday oval. J. Geophys. Res. Space Phys. 91(A2), 1572–1584 (1986)

  187. D. Miles, I.R. Mann, I. Pakhotin, J.K. Burchill, A.D. Howarth, D.J. Knudsen, R.L. Lysak, D. Wallis, L. Cogger, A. Yau, Alfvénic dynamics and fine structuring of discrete auroral arcs: swarm and e-pop observations. Geophys. Res. Lett. 45(2), 545–555 (2018)

  188. J. Moen, P. Sandholt, M. Lockwood, A. Egeland, K. Fukui, Multiple, discrete arcs on sunward convecting field lines in the 14-15 MLT region. J. Geophys. Res. Space Phys. 99(A4), 6113–6123 (1994)

  189. T. Moore, M.-C. Fok, K. Garcia-Sage, The ionospheric outflow feedback loop. J. Atmos. Sol.-Terr. Phys. 115, 59–66 (2014)

  190. M. Morooka, T. Mukai, Density as a controlling factor for seasonal and altitudinal variations of the auroral particle acceleration region. J. Geophys. Res. Space Phys. 108(A7), 1306 (2003)

  191. T. Motoba, M. Hirahara, High-resolution auroral acceleration signatures within a highly dynamic onset arc. Geophys. Res. Lett. 43(5), 1793–1801 (2016). https://doi.org/10.1002/2015GL067580. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL067580

  192. T. Motoba, S. Ohtani, B.J. Anderson, H. Korth, D. Mitchell, L.J. Lanzerotti, K. Shiokawa, M. Connors, C.A. Kletzing, G.D. Reeves, On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space-ground observations. J. Geophys. Res. Space Phys. 120(10), 8707–8722 (2015). https://doi.org/10.1002/2015JA021676. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021676

  193. F.S. Mozer, A. Hull, Origin and geometry of upward parallel electric fields in the auroral acceleration region. J. Geophys. Res. Space Phys. 106(A4), 5763–5778 (2001). https://doi.org/10.1029/2000JA900117

  194. F. Mozer, C. Kletzing, Direct observation of large, quasi-static, parallel electric fields in the auroral acceleration region. Geophys. Res. Lett. 25(10), 1629–1632 (1998)

  195. F.S. Mozer, C.W. Carlson, M. Hudson, R. Torbert, B. Parady, J. Yatteau, M.C. Kelley, Observations of paired electrostatic shocks in the polar magnetosphere. Phys. Rev. Lett. 38(6), 292 (1977)

  196. F.S. Mozer, C. Cattell, M. Hudson, R. Lysak, M. Temerin, R. Torbert, Satellite measurements and theories of low altitude auroral particle acceleration. Space Sci. Rev. 27(2), 155–213 (1980)

  197. H. Nevanlinna, T.I. Pulkkinen, Auroral observations in Finland: results from all-sky cameras, 1973–1997. J. Geophys. Res. Space Phys. 106(A5), 8109–8118 (2001). https://doi.org/10.1029/1999JA000362. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/1999JA000362

  198. P.T. Newell, Y.I. Feldstein, Y.I. Galperin, C.-I. Meng, Morphology of nightside precipitation. J. Geophys. Res. Space Phys. 101(A5), 10737–10748 (1996)

  199. P.T. Newell, K.M. Lyons, C.-I. Meng, A large survey of electron acceleration events. J. Geophys. Res. Space Phys. 101(A2), 2599–2614 (1996a). https://doi.org/10.1029/95JA03147. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/95JA03147

  200. P.T. Newell, C.-I. Meng, K.M. Lyons, Suppression of discrete aurorae by sunlight. Nature 381(6585), 766–767 (1996b). https://doi.org/10.1038/381766a0. http://www.nature.com/articles/381766a0

  201. P.T. Newell, R.A. Greenwald, J.M. Ruohoniemi, The role of the ionosphere in aurora and space weather. Rev. Geophys. 39(2), 137–149 (2001)

  202. P.T. Newell, T. Sotirelis, S. Wing, Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res. Space Phys. 114(A9) A09207, (2009). https://doi.org/10.1029/2009JA014326. http://doi.wiley.com/10.1029/2009JA014326

  203. P.T. Newell, T. Sotirelis, S. Wing, Seasonal variations in diffuse, monoenergetic, and broadband aurora. J. Geophys. Res. Space Phys. 115(A3), A03216 (2010). https://doi.org/10.1029/2009JA014805. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014805

  204. M.J. Nicolls, S.L. Vadas, J.W. Meriwether, M.G. Conde, D. Hampton, The phases and amplitudes of gravity waves propagating and dissipating in the thermosphere: application to measurements over Alaska. J. Geophys. Res. Space Phys. 117(A5), A03216 (2012). https://doi.org/10.1029/2012JA017542. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JA017542

  205. H. Nilsson, A. Kozlovsky, T. Sergienko, A. Kotikov, Radar observations in the vicinity of pre-noon auroral arcs. Ann. Geophys. 23(5), 1785–1796 (2005). https://doi.org/10.5194/angeo-23-1785-2005. http://www.ann-geophys.net/23/1785/2005/

  206. Y. Nishimura, L.R. Lyons, V. Angelopoulos, T. Kikuchi, S. Zou, S.B. Mende, Relations between multiple auroral streamers, pre-onset thin arc formation, and substorm auroral onset. J. Geophys. Res. Space Phys. 116(A9), A09214 (2011). https://doi.org/10.1029/2011JA016768. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JA016768

  207. Y. Nishimura, L.R. Lyons, T. Kikuchi, V. Angelopoulos, E.F. Donovan, S.B. Mende, H. Lühr, Relation of substorm pre-onset arc to large-scale field-aligned current distribution. Geophys. Res. Lett. 39(22), L22101 (2012). https://doi.org/10.1029/2012GL053761. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012GL053761

  208. Y. Nishimura, L.R. Lyons, M.J. Nicolls, D.L. Hampton, R.G. Michell, M. Samara, W.A. Bristow, E.F. Donovan, E. Spanswick, V. Angelopoulos, S.B. Mende, Coordinated ionospheric observations indicating coupling between preonset flow bursts and waves that lead to substorm onset. J. Geophys. Res. Space Phys. 119(5), 3333–3344 (2014). https://doi.org/10.1002/2014JA019773. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JA019773

  209. Y. Obuchi, T. Sakanoi, K. Asamura, A. Yamazaki, Y. Kasaba, M. Hirahara, Y. Ebihara, S. Okano, Fine-scale dynamics of black auroras obtained from simultaneous imaging and particle observations with the reimei satellite. J. Geophys. Res. Space Phys. 116(A1), A00K07 (2011)

  210. N. Østgaard, N. Tsyganenko, S. Mende, H. Frey, T. Immel, M. Fillingim, L. Frank, J. Sigwarth, Observations and model predictions of substorm auroral asymmetries in the conjugate hemispheres. Geophys. Res. Lett. 32(5) (2005). https://doi.org/10.1029/2004GL022166

  211. N. Østgaard, J.P. Reistad, P. Tenfjord, K.M. Laundal, K. Snekvik, S. Milan, S. Haaland, Mechanisms that produce auroral asymmetries in conjugate hemispheres, in Auroral Dynamics and Space Weather, vol. 215 (2015), p. 133

  212. N. Partamies, P. Janhunen, K. Kauristie, S. Mäkinen, T. Sergienko, Testing an inversion method for estimating electron energy fluxes from all-sky camera images. Ann. Geophys. 22, 1961–1971 (2004). https://doi.org/10.5194/angeo-22-1961-2004

  213. N. Partamies, E. Donovan, D. Knudsen, Statistical study of inverted-V structures in FAST data. Ann. Geophys. 26, 1439–1449 (2008). www.ann-geophys.net/26/1439/2008/

  214. N. Partamies, M. Syrjäsuo, E. Donovan, M. Connors, D. Charrois, D. Knudsen, Z. Kryzanowsky, Observations of the auroral width spectrum at kilometre-scale size. Ann. Geophys. 28, 711–718 (2010). www.ann-geophys.net/28/711/2010/

  215. N. Partamies, D. Whiter, M. Syrjäsuo, K. Kauristie, Solar cycle and diurnal dependence of auroral structures. J. Geophys. Res. Space Phys. 119(10), 8448–8461 (2014). https://doi.org/10.1002/2013JA019631. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013JA019631

  216. N. Partamies, L. Juusola, D. Whiter, K. Kauristie, Substorm evolution of auroral structures. J. Geophys. Res. Space Phys. 120(7), 5958–5972 (2015). https://doi.org/10.1002/2015JA021217. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021217

  217. G. Paschmann, S. Haaland, R. Treumann, Auroral Plasma Physics (2003)

  218. L. Peticolas, T. Hallinan, H. Stenbaek-Nielsen, J. Bonnell, C. Carlson, A study of black aurora from aircraft-based optical observations and plasma measurements on fast. J. Geophys. Res. Space Phys. 107(A8), 1217 (2002)

  219. T.I. Pulkkinen, E.I. Tanskanen, A. Viljanen, N. Partamies, K. Kauristie, Auroral electrojets during deep solar minimum at the end of solar cycle 23. J. Geophys. Res. Space Phys. 116(A4), A04207 (2011). https://doi.org/10.1029/2010JA016098. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010JA016098

  220. Q. Qiu, H.-G. Yang, Q.-M. Lu, Q.-H. Zhang, D.-S. Han, Z.-J. Hu, Widths of dayside auroral arcs observed at the Chinese yellow river station. J. Atmos. Sol.-Terr. Phys. 102, 222–227 (2013). https://doi.org/10.1016/j.jastp.2013.06.002. http://www.sciencedirect.com/science/article/pii/S1364682613001752

  221. Q. Qiu, H.-G. Yang, Q.-M. Lu, Z.-J. Hu, D.-S. Han, Q. Wang, Orientation variation of dayside auroral arc alignments obtained from all-sky observation at yellow river station, svalbard. J. Atmos. Sol.-Terr. Phys. 142, 20–24 (2016). https://doi.org/10.1016/j.jastp.2016.02.019. http://www.sciencedirect.com/science/article/pii/S1364682616300505

  222. A.J. Ridley, Y. Deng, G. Tóth, The global ionosphere-thermosphere model. J. Atmos. Sol.-Terr. Phys. 68(8), 839–864 (2006). https://doi.org/10.1016/j.jastp.2006.01.008. http://www.sciencedirect.com/science/article/pii/S1364682606000071

  223. R. Robinson, R. Vondrak, K. Miller, T. Dabbs, D. Hardy, On calculating ionospheric conductances from the flux and energy of precipitating electrons. J. Geophys. Res. Space Phys. 92(A3), 2565–2569 (1987)

  224. G. Rostoker, R. Boström, A mechanism for driving the Gross Birkeland current configuration in the auroral oval. J. Geophys. Res. 81(1), 235–244 (1976)

  225. S. Sadeghi, M. Emami, Large-scale altitude distribution profile of auroral parallel electric potentials: a statistical analysis of cluster data. Adv. Space Res. 64(2), 378–384 (2019)

  226. S. Sadeghi, G.T. Marklund, T. Karlsson, P.-A. Lindqvist, H. Nilsson, O. Marghitu, A. Fazakerley, E.A. Lucek, Spatiotemporal features of the auroral acceleration region as observed by cluster. J. Geophys. Res. Space Phys. 116(A1) (2011). https://doi.org/10.1029/2011JA016505

  227. V.V. Safargaleev, A.E. Kozlovsky, S.V. Osipenko, V.R. Tagirov, Azimuthal expansion of high-latitude auroral arcs. Ann. Geophys. 21(8), 1793–1805 (2003). https://doi.org/10.5194/angeo-21-1793-2003. https://www.ann-geophys.net/21/1793/2003/

  228. T. Sakanoi, Y. Obuchi, Y. Ebihara, Y. Miyoshi, K. Asamura, A. Yamazaki, Y. Kasaba, M. Hirahara, T. Nishiyama, S. Okano, Fine-Scale Characteristics of Black Aurora and Its Generation Process. Geophysical Monograph Series, vol. 197 (Am. Geophys. Union, Washington, 2012)

  229. P.E. Sandholt, H.C. Carlson, A. Egeland, Dayside and Polar Cap Aurora, vol. 270 (Springer, Berlin, 2006)

  230. L. Sangalli, B. Gustavsson, N. Partamies, K. Kauristie, Estimating the peak auroral emission altitude from all-sky images. Opt. Pura Apl. 44, 593–598 (2011)

  231. T.E. Sarris, E. R. Talaat, M. Palmroth, I. Dandouras, E. Armandillo, G. Kervalishvili, S. Buchert, D. Malaspina, A. Jaynes, N. Paschalidis, J. Sample, J. Halekas, S. Tourgaidis, V. Lappas, M. Clilverd, Q. Wu, I. Sandberg, A. Aikio, P. Pirnaris, Daedalus: a low-flying spacecraft for the exploration of the lower thermosphere—Ionosphere. Geoscientific Instrumentation, Methods and Data Systems Discussions, 1–59 (2019). https://doi.org/10.5194/gi-2019-3

  232. N. Sato, T. Nagaoka, K. Hashimoto, T. Saemundsson, Conjugacy of isolated auroral arcs and nonconjugate auroral breakups. J. Geophys. Res. Space Phys. 103(A6), 11641–11652 (1998)

  233. N. Sato, A. Kadokura, T. Motoba, K. Hosokawa, G. Björnsson, T. Saemundsson, Interhemispheric symmetries and asymmetries of aurora from ground-based conjugate observations, in Auroral Dynamics and Space Weather, vol. 215 (2015), p. 145

  234. J. Semeter, T. Butler, M. Zettergren, C. Heinselman, M. Nicolls, Composite imaging of auroral forms and convective flows during a substorm cycle. J. Geophys. Res. Space Phys. 115(A8) (2010). https://doi.org/10.1029/2009JA014931

  235. V. Sergeev, Y. Nishimura, M. Kubyshkina, V. Angelopoulos, R. Nakamura, H. Singer, Magnetospheric location of the equatorward prebreakup arc. J. Geophys. Res. Space Phys. 117(A1), A01212 (2012). https://doi.org/10.1029/2011JA017154. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JA017154

  236. J. Sesiano, P. Cloutier, Measurements of field-aligned currents in a multiple auroral arc system. J. Geophys. Res. 81(1), 116–122 (1976)

  237. Y. Shen, D.J. Knudsen, J.K. Burchill, A.D. Howarth, A.W. Yau, D.M. Miles, H.G. James, G.W. Perry, L. Cogger, Low-altitude ion heating, downflowing ions, and BBELF waves in the return current region. J. Geophys. Res. Space Phys. 123(4), 3087–3110 (2018). https://doi.org/10.1002/2017JA024955

  238. K. Shiokawa, K. Yago, K. Yumoto, D.G. Baishev, S.I. Solovyev, F.J. Rich, S.B. Mende, Ground and satellite observations of substorm onset arcs. J. Geophys. Res. Space Phys. 110(A12), A12225 (2005). https://doi.org/10.1029/2005JA011281. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005JA011281

  239. C. Simon Wedlund, H. Lamy, B. Gustavsson, T. Sergienko, U. Brändström, Estimating energy spectra of electron precipitation above auroral arcs from ground-based observations with radar and optics. J. Geophys. Res. Space Phys. 118(6), 3672–3691 (2013). https://doi.org/10.1002/jgra.50347. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgra.50347

  240. K. Stasiewicz, T. Potemra, Multiscale current structures observed by Freja. J. Geophys. Res. Space Phys. 103(A3), 4315–4325 (1998). https://doi.org/10.1029/97JA02396. http://doi.wiley.com/10.1029/97JA02396

  241. H.C. Stenbaek-Nielsen, T.J. Hallinan, D.L. Osborne, J. Kimball, C. Chaston, J. McFadden, G. Delory, M. Temerin, C.W. Carlson, Aircraft observations conjugate to fast: auroral are thicknesses. Geophys. Res. Lett. 25(12), 2073–2076 (1998). https://doi.org/10.1029/98GL01058. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98GL01058

  242. R. Strangeway, R. Ergun, Y.-J. Su, C. Carlson, R. Elphic, Factors controlling ionospheric outflows as observed at intermediate altitudes. J. Geophys. Res. Space Phys. 110(A3), A03221 (2005)

  243. A.V. Streltsov, Effects of ionospheric heating on feedback-unstable electromagnetic waves. J. Geophys. Res. Space Phys. 113(A9) A09211, (2008). https://doi.org/10.1029/2008JA013199. http://doi.wiley.com/10.1029/2008JA013199

  244. M. Sugiura, A fundamental magnetosphere-ionosphere coupling mode involving field-aligned currents as deduced from DE-2 observations. Geophys. Res. Lett. 11(9), 877–880 (1984)

  245. D.W. Swift, D.J. Gorney, Production of very energetic electrons in discrete aurora. J. Geophys. Res. 94(A3), 2696 (1989). https://doi.org/10.1029/JA094iA03p02696. http://doi.wiley.com/10.1029/JA094iA03p02696

  246. M.T. Syrjäsuo, E.F. Donovan, Diurnal auroral occurrence statistics obtained via machine vision. Ann. Geophys. 22(4), 1103–1113 (2004). https://doi.org/10.5194/angeo-22-1103-2004. https://www.ann-geophys.net/22/1103/2004/

  247. J.R. Thieman, R.A. Hoffman, Determination of inverted-v stability from dynamics explorer satellite data. J. Geophys. Res. Space Phys. 90(A4), 3511–3516 (1985)

  248. T. Trondsen, L. Cogger, High-resolution television observations of black aurora. J. Geophys. Res. Space Phys. 102(A1), 363–378 (1997)

  249. H. Vanhamäki, O. Amm, Analysis of ionospheric electrodynamic parameters on mesoscales-a review of selected techniques using data from ground-based observation networks and satellites, in Annales Geophysicae, vol. 29 (2011), p. 467. Copernicus GmbH

  250. J. Vogt, Alfvén wave coupling in the auroral current circuit. Surv. Geophys. 23(4), 335–377 (2002)

  251. R. Vondrak, S. Harris, S. Mende, Ground-based observations of subauroral energetic-electron arcs. Geophys. Res. Lett. 10(7), 557–560 (1983)

  252. J. Vogt, G. Haerendel, K. Glassmeier, A model for the reflection of Alfvén waves at the source region of the Birkeland current system: the tau generator. J. Geophys. Res. Space Phys. 104(A1), 269–278 (1999a)

  253. J. Vogt, H. Frey, G. Haerendel, H. Höfner, J. Semeter, Shear velocity profiles associated with auroral curls. J. Geophys. Res. Space Phys. 104(A8), 17277–17288 (1999b)

  254. J.A. Wanliss, J.C. Samson, E. Friedrich, On the use of photometer data to map dynamics of the magnetotail current sheet during substorm growth phase. J. Geophys. Res. Space Phys. 105(A12), 27673–27684 (2000). https://doi.org/10.1029/2000JA000178. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000JA000178

  255. D.R. Weimer, D.A. Gurnett, Large-amplitude auroral electric fields measured with DE 1. J. Geophys. Res. Space Phys. 98(A8), 13557–13564 (1993). https://doi.org/10.1029/93JA00793

  256. D.R. Weimer, C. Goertz, D. Gurnett, N. Maynard, J. Burch, Auroral zone electric fields from DE 1 and 2 at magnetic conjunctions. J. Geophys. Res. Space Phys. 90(A8), 7479–7494 (1985)

  257. D.K. Whiter, B.S. Lanchester, T. Sakanoi, K. Asamura, Estimating high-energy electron fluxes by intercalibrating reimei optical and particle measurements using an ionospheric model. J. Atmos. Sol.-Terr. Phys. 89, 8–17 (2012). https://doi.org/10.1016/j.jastp.2012.06.014. http://www.sciencedirect.com/science/article/pii/S136468261200168X

  258. A.N. Wright, C.J. Owen, C.C. Chaston, M.W. Dunlop, Downward current electron beam observed by cluster and fast. J. Geophys. Res. Space Phys. 113(A6), A06202 (2008)

  259. J. Wu, D. Knudsen, D. Gillies, E. Donovan, J. Burchill, Swarm observation of field-aligned currents associated with multiple auroral arc systems. J. Geophys. Res. Space Phys. 122(10), 10145–10156 (2017)

  260. J. Wygant, A. Keiling, C. Cattell, l.M. Johnson, R. Lysak, M. Temerin, F. Mozer, C. Kletzing, J. Scudder, W. Peterson, et al., Polar spacecraft based comparisons of intense electric fields and poynting flux near and within the plasma sheet-tail lobe boundary to uvi images: an energy source for the aurora. J. Geophys. Res. Space Phys. 105(A8), 18675–18692 (2000)

  261. K. Yago, K. Shiokawa, K. Hayashi, K. Yumoto, Auroral particles associated with a substorm brightening arc. Geophys. Res. Lett. 32(6), L06104 (2005). https://doi.org/10.1029/2004GL021894. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2004GL021894

  262. A. Yoshikawa, Excitation of a Hall-current generator by field-aligned current closure, via an ionospheric, divergent Hall-current, during the transient phase of magnetosphere–ionosphere coupling. J. Geophys. Res. Space Phys. 107(A12), 1445 (2002a). https://doi.org/10.1029/2001JA009170

  263. A. Yoshikawa, How does the ionospheric rotational Hall current absorb the increasing energy from the field-aligned current system? Geophys. Res. Lett. 29(7), 37 (2002b)

  264. A. Yoshikawa, R. Fujii, Earth’s ionosphere: theory and phenomenology of Cowling channels, in Electric Currents in Geospace and Beyond, vol. 235 (Wiley Online Library, New York, 2018), pp. 427–443

  265. A. Yoshikawa, O. Amm, H. Vanhamäki, R. Fujii, Illustration of Cowling channel coupling to the shear Alfven wave. J. Geophys. Res. Space Phys. 118(10), 6405–6415 (2013)

  266. A. Yoshikawa, O. Amm, H. Vanhamäki, A. Nakamizo, R. Fujii, Theory of Cowling channel formation by reflection of shear Alfven waves from the auroral ionosphere. J. Geophys. Res. Space Phys. 118(10), 6416–6425 (2013)

  267. M. Zettergren, J. Semeter, Ionospheric plasma transport and loss in auroral downward current regions. J. Geophys. Res. Space Phys. 117(A6) A06306, (2012). https://doi.org/10.1029/2012JA017637. http://doi.wiley.com/10.1029/2012JA017637

  268. M. Zettergren, J. Semeter, Ionospheric plasma transport and loss in auroral downward current regions. J. Geophys. Res. Space Phys. 117(A16), 6306 (2012). https://doi.org/10.1029/2012JA017637

  269. M. Zettergren, J. Semeter, Ionospheric plasma transport and loss in auroral downward current regions. J. Geophys. Res. Space Phys. 117(A6), A06306 (2012)

  270. M.D. Zettergren, J.B. Snively, Ionospheric response to infrasonic-acoustic waves generated by natural hazard events. J. Geophys. Res. Space Phys. 120(9), 8002–8024 (2015). https://doi.org/10.1002/2015JA021116. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA021116

  271. M.D. Zettergren, J.B. Snively, Latitude and longitude dependence of ionospheric tec and magnetic perturbations from infrasonic-acoustic waves generated by strong seismic events. Geophys. Res. Lett. 46(3), 1132–1140 (2019). https://doi.org/10.1029/2018GL081569. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL081569

  272. M. Zettergren, K. Lynch, D. Hampton, M. Nicolls, B. Wright, M. Conde, J. Moen, M. Lessard, R. Miceli, S. Powell, Auroral ionospheric f region density cavity formation and evolution: MICA campaign results. J. Geophys. Res. Space Phys. 119(4), 3162–3178 (2014)

  273. M.D. Zettergren, J.L. Semeter, H. Dahlgren, Dynamics of density cavities generated by frictional heating: formation, distortion, and instability. Geophys. Res. Lett. 42(23), 10120–10125 (2015). https://doi.org/10.1002/2015GL066806. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015GL066806

  274. L. Zheng, S. Fu, Q. Zong, G. Parks, C. Wang, X. Chen, Solar cycle dependence of the seasonal variation of auroral hemispheric power. Chin. Sci. Bull. 58(4), 525–530 (2013). https://doi.org/10.1007/s11434-012-5378-6

  275. S. Zou, L.R. Lyons, M.J. Nicolls, C.J. Heinselman, S.B. Mende, Nightside ionospheric electrodynamics associated with substorms: PFISR and THEMIS ASI observations. J. Geophys. Res. Space Phys. 114(A12), A12301 (2009a). https://doi.org/10.1029/2009JA014259. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009JA014259

  276. S. Zou, L. Lyons, C.-P. Wang, A. Boudouridis, J. Ruohoniemi, P. Anderson, P. Dyson, J. Devlin, On the coupling between the Harang reversal evolution and substorm dynamics: a synthesis of SuperDARN, DMSP, and IMAGE observations. J. Geophys. Res. Space Phys. 114(A1), A01205 (2009b)

  277. S. Zou, L.R. Lyons, Y. Nishimura, Mutual Evolution of Aurora and Ionospheric Electrodynamic Features Near the Harang Reversal During Substorms. Geophysical Monograph Series, vol. 197 (Am. Geophys. Union, Washington, 2012). https://doi.org/10.1029/2011GM001163

  278. Y. Zou, Y. Nishimura, L. Lyons, M. Conde, R. Varney, V. Angelopoulos, S. Mende, Mesoscale F region neutral winds associated with quasi-steady and transient nightside auroral forms. J. Geophys. Res. Space Phys. 123(9), 7968–7984 (2018). https://doi.org/10.1029/2018JA025457. http://doi.wiley.com/10.1029/2018JA025457

Download references

Acknowledgements

The authors are grateful for the kind hospitality of the International Space Science Institute (ISSI), Bern, Switzerland.

Figures 4, and 11, and part of Fig. 17 were reproduced under the Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).

Author information

Correspondence to T. Karlsson.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Auroral Physics

Edited by David Knudsen, Joe Borovsky, Tomas Karlsson, Ryuho Kataoka and Noora Partmies

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karlsson, T., Andersson, L., Gillies, D.M. et al. Quiet, Discrete Auroral Arcs—Observations. Space Sci Rev 216, 16 (2020). https://doi.org/10.1007/s11214-020-0641-7

Download citation

Keywords

  • Discrete auroral arcs
  • Auroral acceleration region
  • Ionospheric currents