Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Particle Detector (PD) Experiment of the Korea Space Environment Monitor (KSEM) Aboard Geostationary Satellite GK2A

  • 29 Accesses

Abstract

The Particle Detector (PD) experiment aboard the geostationary satellite GEO-KOMPSAT-2A (GK2A) measures populations of electrons and positive ions in the Earth’s geostationary orbit at a geographic longitude of \(128.2^{\circ }\mbox{E}\), inclination of \(0^{\circ }\) and a mean orbital radius of 6.6 Earth radii (\(R_{E}\)). The PD experiment consists of three sensors with different viewing angles relative to the spacecraft. Each sensor consists of two telescopes that are mechanically configured back-to-back with a field-of-view of \(20^{\circ }\times 20^{\circ }\) and measures electrons and ions, using silicon detectors equipped with foils and magnets for the separation of ions and electrons. The energy ranges of the sensor for electrons and ions are 100–3800 keV and 148–22500 keV, respectively. A particular emphasis on electron measurement is given by allocating 48 energy bins in the measured energy range, whereas 22 energy bins are allocated for ion measurements. This unprecedented energy resolution of \(\Delta E/E\) in the range 5–25% for the electron and ion flux measurements is acquired every three seconds with cyclic polling of each sensor every second to provide an effective temporal resolution of one second. Together with the magnetometer aboard the spacecraft, the PD experiment will provide quantitative observations that will enable improved understanding of the adiabatic and nonadiabatic dynamics of the Earth’s magnetosphere for space weather studies at geostationary orbits from the vantage point of a far-east longitude.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. S. Agostinelli, J. Allison, et al., K. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai, D. Axen, S. Banerjee, G. Barrand, Geant4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 506(3), 250–303 (2003)

  2. J. Allison, K. Amako, J. Apostolakis, H. Araujo, P.A. Dubois, M. Asai, G. Barrand, R. Capra, S. Chauvie, R. Chytracek, Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53(1), 270–278 (2006)

  3. R.L. Arnoldy, K.W. Chan, Particle substorms observed at the geostationary orbit. J. Geophys. Res. 74(21), 5019–5028 (1969). https://doi.org/10.1029/JA074i021p05019

  4. D. Baker, T. Fritz, B. Wilken, P. Higbie, S. Kaye, M. Kivelson, T. Moore, W. Stüdemann, A. Masley, P. Smith, Observation and modeling of energetic particles at synchronous orbit on July 29, 1977. J. Geophys. Res. Space Phys. 87(A8), 5917–5932 (1982)

  5. R. Belian, D. Baker, P. Higbie, E.H. Jr, High-resolution energetic particle measurements at 6.6 RE, 2. High-energy proton drift echoes. J. Geophys. Res. Space Phys. 83(A10), 4857–4862 (1978)

  6. M. Berger, S. Seltzer, S. Chappell, J. Humphreys, J. Motz, Response of silicon detectors to monoenergetic electrons with energies between 0.15 and 5.0 MeV. Nucl. Instrum. Methods 69(2), 181–193 (1969)

  7. F. Bogott, F. Mozer, Nightside energetic particle decreases at the synchronous orbit. J. Geophys. Res. 78(34), 8119–8127 (1973)

  8. V. Bothmer, I.A. Daglis, Space Weather—Physics and Effects (Springer, Berlin, 2007)

  9. W. Cummings, P.C. Jr, Magnetic fields in the magnetopause and vicinity at synchronous altitude. J. Geophys. Res. 73(17), 5699–5718 (1968)

  10. D.A. Gurnett, A. Bhattacharjee, Introduction to Plasma Physics (Cambridge University Press, Cambridge, 2005)

  11. D. Hastings, H. Garrett, Spacecraft Environment Interactions (Cambridge University Press, Cambridge, 2004)

  12. D. Heynderickx, B. Quaghebeur, E. Speelman, E. Daly, ESA’s SPace ENVironment Information System (SPENVIS)—a WWW interface to models of the space environment and its effects, in 38th Aerospace Sciences Meeting and Exhibit (2000), p. 371

  13. M.G. Kivelson, C.T. Russell, Introduction to Space Physics (Cambridge University Press, Cambridge, 1995)

  14. D. Larson, T. Moreau, Geospace environment modeling (gem) workshop, in Using the THEMIS Energetic Particle Data (2009)

  15. D.E. Larson, R.J. Lillis, C.O. Lee, P.A. Dunn, K. Hatch, M. Robinson, D. Glaser, J. Chen, D. Curtis, C. Tiu, The maven solar energetic particle investigation. Space Sci. Rev. 195(1–4), 153–172 (2015)

  16. W. Lennartsson, D.L. Reasoner, Low-energy plasma observations at synchronous orbit. J. Geophys. Res. Space Phys. 83(A5), 2145–2156 (1978)

  17. T.W. Lezniak, J. Winckler, Experimental study of magnetospheric motions and the acceleration of energetic electrons during substorms. J. Geophys. Res. 75(34), 7075–7098 (1970)

  18. W. Magnes, O. Hillenmaier, U. Auster, P. Brown, S. Kraft, J. Seon, M. Delva, A. Valavanoglou, S. Leitner, D. Fischer, J. Wilfinger, C. Strauch, J. Ludwig, D. Constantinescu, K.H. Fornacon, K. Gebauer, D. Hercik, I. Richter, J. Eastwood, J.P. Luntama, G.W. Na, C.H. Lee, A. Hilgers, Sosmag: Space Weather Magnetometer Aboard Geo-Kompsat-2a (2019)

  19. A.G. Opp, Penetration of the magnetopause beyond 6.6 RE during the magnetic storm of January 13–14, 1967: introduction. J. Geophys. Res. 73(17), 5697–5698 (1968)

  20. S. Pak, Y. Shin, J. Woo, J. Seon, A numerical method to analyze geometric factors of a space particle detector relative to omnidirectional proton and electron fluxes. J. Korean Astron. Soc. 5(4), 111–117 (2018). https://doi.org/10.5303/JKAS.2018.51.4.111

  21. G.K. Parks, Physics of Space Plasmas (Westview Press, Boulder, 2004)

  22. D.M. Sawyer, J.I. Vette, Ap-8 trapped proton environment for solar maximum and solar minimum. NASA STI/Recon Technical Report N 77 (1976)

  23. A. Sicard-Piet, S. Bourdarie, D. Boscher, R. Friedel, M. Thomsen, T. Goka, H. Matsumoto, H. Koshiishi, A new international geostationary electron model: IGE-2006, from 1 keV to 5.2 MeV. Space Weather 6(7), S07003 (2008)

  24. T.L. Skillman, M. Sugiura, Magnetopause crossing of the geostationary satellite ATS 5 at 6.6 RE. J. Geophys. Res. 76(1), 44–50 (1971)

  25. J. Sullivan, Geometric factor and directional response of single and multi-element particle telescopes. Nucl. Instrum. Methods 95(1), 5–11 (1971)

  26. A.J. Tylka, J.H. Adams, P.R. Boberg, B. Brownstein, W.F. Dietrich, E.O. Flueckiger, E.L. Petersen, M.A. Shea, D.F. Smart, E.C. Smith, Creme96: a revision of the cosmic ray effects on micro-electronics code. IEEE Trans. Nucl. Sci. 44(6), 2150–2160 (1997)

  27. K. Yando, R.M. Millan, J.C. Green, D.S. Evans, A Monte Carlo simulation of the NOAA POES medium energy proton and electron detector instrument. J. Geophys. Res. Space Phys. 116(A10), A10231 (2011)

Download references

Acknowledgement

The authors wish to acknowledge and thank the GK2A project team of Korea Aerospace Research Institute (KARI) for support provided during the integration and testing of the KSEM instrument with the spacecraft. The authors also appreciate support from the National Meteorological Satellite Center (NMSC) of Korea Meteorological Administration (KMA) throughout the project. Findings and opinions included in the present paper should be considered as those assessed by instrument developers and may not necessarily coincide with official opinions and decisions related to the project. Details of the dissemination policy for KSEM data will be prepared and exercised by NMSC. Part of this work was supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of Korea.

Author information

Correspondence to J. Seon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seon, J., Chae, K., Na, G.W. et al. Particle Detector (PD) Experiment of the Korea Space Environment Monitor (KSEM) Aboard Geostationary Satellite GK2A. Space Sci Rev 216, 13 (2020). https://doi.org/10.1007/s11214-020-0636-4

Download citation

Keywords

  • Space weather
  • Geostationary orbit
  • Radiation belt
  • Charged particle detector
  • Silicon detectors