Advertisement

Space Science Reviews

, 216:4 | Cite as

Diffuse and Pulsating Aurora

  • Yukitoshi NishimuraEmail author
  • Marc R. Lessard
  • Yuto Katoh
  • Yoshizumi Miyoshi
  • Eric Grono
  • Noora Partamies
  • Nithin Sivadas
  • Keisuke Hosokawa
  • Mizuki Fukizawa
  • Marilia Samara
  • Robert G. Michell
  • Ryuho Kataoka
  • Takeshi Sakanoi
  • Daniel K. Whiter
  • Shin-ichiro Oyama
  • Yasunobu Ogawa
  • Satoshi Kurita
Article
Part of the following topical collections:
  1. Auroral Physics

Abstract

This chapter reviews fundamental properties and recent advances of diffuse and pulsating aurora. Diffuse and pulsating aurora often occurs on closed field lines and involves energetic electron precipitation by wave-particle interaction. After summarizing the definition, large-scale morphology, types of pulsation, and driving processes, we review observation techniques, occurrence, duration, altitude, evolution, small-scale structures, fast modulation, relation to high-energy precipitation, the role of ECH waves, reflected and secondary electrons, ionosphere dynamics, and simulation of wave-particle interaction. Finally we discuss open questions of diffuse and pulsating aurora.

Keywords

Pulsating aurora Diffuse aurora Wave-particle interaction Whistler-mode chorus Energetic electron precipitation 

Notes

Acknowledgements

The work of Y.N. was supported by NASA grant NNX17AL22G and 80NSSC18K0657, NSF grants PLR-1341359, AGS-1737823, and AFOSR FA9559-16-1-0364. The work by NP was supported by the Research Council of Norway under CoE contract 223252. Y.K., Y.M., and K.H. are supported by JSPS Kakenhi (15H05747). Y.K, and Y.M are supported by JSPS Kakenhi (15H05815). Y.M is supported by JSPS Kakenhi (16H06286). Y.K is supported by JSPS Kakenhi (18H03727). Y.K., Y.M., and K.H. are supported by the International Space Science Institutes Beijing (ISSI-BJ) International Team program. The work of NS was supported by NASA Earth & Space Science Fellowship Program grant 80NSSC17K0433. The THEMIS mission and all-sky imagers are supported by NASA contract NAS5-02099, CSA contract 9F007-046101 and NSF grant AGS-1004736. ML was supported by NASA grant 80NSSC18K0950. DKW was supported by the Natural Environment Research Council (NERC) of the UK under grant NE/N004051/1. The PWING imager was installed and operated by the pulsating aurora project (http://www.psa-research.org) and PWING project (http://www.isee.nagoya-u.ac.jp/dimr/PWING/en/).

Supplementary material

11214_2019_629_MOESM1_ESM.mp4 (254.3 mb)
(MP4 254.3 MB)
11214_2019_629_MOESM2_ESM.mp4 (260.5 mb)
(MP4 260.5 MB)
11214_2019_629_MOESM3_ESM.mp4 (1.6 mb)
(MP4 1.6 MB)
11214_2019_629_MOESM4_ESM.mp4 (1.4 mb)
(MP4 1.4 MB)
11214_2019_629_MOESM5_ESM.avi (39.4 mb)
(AVI 39.4 MB)
11214_2019_629_MOESM6_ESM.avi (86.1 mb)
(AVI 86.1 MB)

References

  1. S.I. Akasofu, Polar and Magnetospheric Substorms (Reidel, Dordrecht, 1968), p. 223 CrossRefGoogle Scholar
  2. R.L. Arnoldy, K. Dragoon, L.J. Cahill, S.B. Mende, T.J. Rosenberg, Detailed correlations of magnetic field and riometer observations at \(L = 4.2\) with pulsating aurora. J. Geophys. Res. 87(A12), 10449 (1982).  https://doi.org/10.1029/JA087iA12p10449 ADSCrossRefGoogle Scholar
  3. M. Ashour-Abdalla, C. Kennel, Nonconvective and convective electron cyclotron harmonic instabilities. J. Geophys. Res. 83, 1531–1543 (1978).  https://doi.org/10.1029/JA083iA04p01531 ADSCrossRefGoogle Scholar
  4. K. Axelsson, T. Sergienko, H. Nilsson, U. Brändstrm, Y. Ebihara, K. Asamura, M. Hirahara, Spatial characteristics of wave-like structures in diffuse aurora obtained using optical observations. Ann. Geophys. 30(12), 1693–1701 (2012).  https://doi.org/10.5194/angeo-30-1693-2012 ADSCrossRefGoogle Scholar
  5. F.T. Berkey, Observations of pulsating aurora in the day sector auroral zone. Planet. Space Sci. 26, 635–650 (1978) ADSCrossRefGoogle Scholar
  6. F.T. Berkey, C.D. Anger, S.-I. Akasofu, E.P. Rieger, The signature of large-scale auroral structure in radio wave absorption. J. Geophys. Res. 85(A2), 593 (1980).  https://doi.org/10.1029/JA085iA02p00593 ADSCrossRefGoogle Scholar
  7. E.C. Bland, E. Heino, M.J. Kosch, N. Partamies, SuperDARN radar-derived HF radio attenuation during the September 2017 solar proton events. Space Weather 16(10), 1455–1469 (2018).  https://doi.org/10.1029/2018SW001916 ADSCrossRefGoogle Scholar
  8. E.C. Bland, N. Partamies, E. Heino, A.S. Yukimatu, H. Miyaoka, Energetic electron precipitation occurrence rates determined using the Syowa East SuperDARN radar. J. Geophys. Res. Space Phys. 124, 6253–6265 (2019).  https://doi.org/10.1029/2018JA026437 ADSCrossRefGoogle Scholar
  9. U. Brändström, the auroral large imaging system-design, operation and scientific results. IRF Scientific Report 279, Kiruna (2003) Google Scholar
  10. A. Brekke, H. Pettersen, Some observations of pulsating aurora at Spitzbergen. Planet. Space Sci. 19, 536540 (1971) Google Scholar
  11. N.B. Brown, T.N. Davis, T.J. Hallinan, H.C. Stenbaek-Nielsen, Altitude of pulsating aurora determined by a new instrumental technique. Geophys. Res. Lett. 3, 403–404 (1976).  https://doi.org/10.1029/GL003i007p00403 ADSCrossRefGoogle Scholar
  12. D. Bryant, G. Courtier, A. Johnstone, Modulation of auroral electrons at large distances from the Earth. J. Atmos. Terr. Phys. 31(4), 579–592 (1969).  https://doi.org/10.1016/0021-9169(69)90010-5 ADSCrossRefGoogle Scholar
  13. D. Bryant, M.J. Smith, G.M. Courtier, Distant modulation of electron intensity during the expansion phase of an auroral substorm. Planet. Space Sci. 23, 867 (1975).  https://doi.org/10.1016/0032-0633(75)90022-7 ADSCrossRefGoogle Scholar
  14. L.B.N. Clausen, H. Nickisch, Automatic classification of auroral images from the Oslo Auroral THEMIS (OATH) data set using machine learning. J. Geophys. Res. Space Phys. 123(7), 5640–5647 (2018).  https://doi.org/10.1029/2018JA025274 ADSCrossRefGoogle Scholar
  15. J.M. Comberiate, F. Kamalabadi, L.J. Paxton, A tomographic model for ionospheric imaging with the Global Ultraviolet Imager. Radio Sci. 42(2), RS2011 (2007).  https://doi.org/10.1029/2005RS003348 ADSCrossRefGoogle Scholar
  16. M. Craven, G.B. Burns, High latitude pulsating aurora. Geophys. Res. Lett. 17(9), 1251–1254 (1990) ADSCrossRefGoogle Scholar
  17. F. Creutzberg, R. Gattinger, F. Harris, A. Vallance Jones, Pulsating auroras in relation to proton and electron auroras. Can. J. Phys. 59, 1124–1130 (1981) ADSCrossRefGoogle Scholar
  18. A.B. Crew, H.E. Spence, J.B. Blake, D.M. Lumpar, B.A. Larsen, T.P. O’Brien, S. Driscoll, M. Handley, J. Legere, S. Longworth, K. Mashburn, E. Mosleh, N. Ryhajlo, S. Smith, L. Springer, M. Widholm, First multipoint in situ observations of electron microbursts: initial results from the NSF FIREBIRD II mission. J. Geophys. Res. 121, 5272–5283 (2016).  https://doi.org/10.1002/2016JA022485 CrossRefGoogle Scholar
  19. H. Dahlgren, N. Ivchenko, J. Sullivan, B.S. Lanchester, G. Marklund, D. Whiter, Morphology and dynamics of aurora at fine scale: first results from the ASK instrument. Ann. Geophys. 26, 1041–1048 (2008).  https://doi.org/10.5194/angeo-26-1041-2008 ADSCrossRefGoogle Scholar
  20. H. Dahlgren, N. Ivchenko, B.S. Lanchester, Monoenergetic high-energy electron precipitation in thin auroral filaments. Geophys. Res. Lett. 39(20), L20101 (2012).  https://doi.org/10.1029/2012GL053466 ADSCrossRefGoogle Scholar
  21. H. Dahlgren, B.S. Lanchester, N. Ivchenko, D.K. Whiter, Electrodynamics and energy characteristics of aurora at high resolution by optical methods. J. Geophys. Res. 121(6), 5966–5974 (2016).  https://doi.org/10.1002/2016JA022446 CrossRefGoogle Scholar
  22. H. Dahlgren, B.S. Lanchester, N. Ivchenko, D.K. Whiter, Variations in energy, flux, and brightness of pulsating aurora measured at high time resolution. Ann. Geophys. 35(3), 493–503 (2017).  https://doi.org/10.5194/angeo-35-493-2017. https://www.ann-geophys.net/35/493/2017/ ADSCrossRefGoogle Scholar
  23. C. Deehr, D. Lummerzheim, Ground-based optical observations of hydrogen emission in the auroral substorm. J. Geophys. Res. Space Phys. 106(A1), 33–44 (2001).  https://doi.org/10.1029/2000JA002010 ADSCrossRefGoogle Scholar
  24. A.G. Demekhov, V.Y. Trakhtengerts, A mechanism of formation of pulsating aurorae. J. Geophys. Res. 99(A4), 5831–5841 (1994).  https://doi.org/10.1029/93JA01804 ADSCrossRefGoogle Scholar
  25. A.G. Demekhov, U. Taubenschuss, O. Santolik, Simulation of VLF chorus emissions in the magnetosphere and comparison with THEMIS spacecraft data. J. Geophys. Res. Space Phys. 122, 166–184 (2016).  https://doi.org/10.1002/2016JA023057 ADSCrossRefGoogle Scholar
  26. E.F. Donovan, B.J. Jackel, I. Voronkov, T. Sotirelis, F. Creutzberg, N.A. Nicholson, Ground-based optical determination of the b2i boundary: a basis for an optical MT-index. J. Geophys. Res. Space Phys. 108(A3), 1115 (2003).  https://doi.org/10.1029/2001JA009198 ADSCrossRefGoogle Scholar
  27. E. Donovan, S. Mende, B. Jackel, H. Frey, M. Syrjasuo, I. Voronkov, T. Trondsen, L. Peticolas, V. Angelopoulos, S. Harris, M. Green, M. Connors, The THEMIS all-sky imaging array—system design and initial results from the prototype imager. J. Atmos. Sol.-Terr. Phys. 68, 1472–1487 (2006).  https://doi.org/10.1016/j.jastp.2005.03.027 ADSCrossRefGoogle Scholar
  28. C.N. Duncan, F. Creutzberg, R.L. Gattinger, F.R. Harris, A. Vallance Jones, Latitudinal and temporal characteristics of pulsating auroras. Can. J. Phys. 59, 1063–1069 (1981) ADSCrossRefGoogle Scholar
  29. R.H. Eather, Short-period auroral pulsations in \(\lambda \)6300 OI. J. Geophys. Res. 74(21), 4998–5004 (1969).  https://doi.org/10.1029/JA074i021p04998 ADSCrossRefGoogle Scholar
  30. Y. Ebihara, T. Sakanoi, K. Asamura, M. Hirahara, M.F. Thomsen, Reimei observation of highly structured auroras caused by nonaccelerated electrons. J. Geophys. Res. Space Phys. 115(A8), n/a–n/a (2010).  https://doi.org/10.1029/2009JA015009 CrossRefGoogle Scholar
  31. C.-F. Enell, B. Gustavsson, B.U.E. Brändström, T.I. Sergienko, P.T. Verronen, P. Rydesäter, I. Sandahl, Tomography-like retrieval of auroral volume emission ratios for the 31 January 2008 Hotel Payload 2 event. Geosci. Instrum. Method. Data Syst. 2(1), 1–21 (2012).  https://doi.org/10.5194/gid-2-1-2012 CrossRefGoogle Scholar
  32. D.S. Evans, G.T. Davidson, H.D. Voss, W.L. Imhof, J. Mobilia, Y.T. Chiu, Interpretation of electron spectra in morningside pulsating aurorae. J. Geophys. Res. 92(A11), 12295 (1987).  https://doi.org/10.1029/JA092iA11p12295 ADSCrossRefGoogle Scholar
  33. X. Fang, C.E. Randall, D. Lummerzheim, W. Wang, G. Lu, S.C. Solomon, R.A. Frahm, Parameterization of monoenergetic electron impact ionization. Geophys. Res. Lett. 37(22), n/a–n/a (2010).  https://doi.org/10.1029/2010GL045406 CrossRefGoogle Scholar
  34. B.A. Fritz, M.L. Lessard, M.J. Blandin, P.A. Fernandes, Structure of black aurora associated with pulsating aurora. J. Geophys. Res. Space Phys. 120, 10,096–10,106 (2015).  https://doi.org/10.1002/2015JA021397 CrossRefGoogle Scholar
  35. R. Fujii, T. Oguti, T. Yamamoto, Relationships between pulsating auroras and field-aligned electric currents. Mem. Natl. Inst. Polar Res. 36, 95–103 (1985) ADSGoogle Scholar
  36. R. Fujii, N. Sato, T. Ono, H. Fukunishi, T. Hirasawa, S. Kokubun, T. Araki, T. Saemundsson, Conjugacies of pulsating auroras by all-sky TV observations. Geophys. Res. Lett. 14, 115–118 (1987) ADSCrossRefGoogle Scholar
  37. M. Fukizawa, T. Sakanoi, Y. Miyoshi, K. Hosokawa, K. Shiokawa, Y. Katoh et al., Electrostatic electron cyclotron harmonic waves as a candidate to cause pulsating auroras. Geophys. Res. Lett. 45, 12,661–12,668 (2018).  https://doi.org/10.1029/2018GL080145 CrossRefGoogle Scholar
  38. Y. Fukuda, R. Kataoka, Y. Miyoshi, Y. Katoh, T. Nishiyama, K. Shiokawa, Y. Ebihara, D. Hampton, N. Iwagami, Quasi-periodic rapid motion of pulsating auroras. Polar Sci. 10, 183–191 (2016).  https://doi.org/10.1016/j.polar.2016.03.005 ADSCrossRefGoogle Scholar
  39. D.M. Gillies, D. Knudsen, E. Spanswick, E. Donovan, J. Burchill, M. Patrick, Swarm observations of field-aligned currents associated with pulsating auroral patches. J. Geophys. Res. Space Phys. 120, 9484–9499 (2015).  https://doi.org/10.1002/2015JA021416 ADSCrossRefGoogle Scholar
  40. M. Grandin, A. Kero, N. Partamies, D. McKay, D. Whiter, A. Kozlovsky, Y. Miyoshi, Observation of pulsating aurora signatures in cosmic noise absorption data. Geophys. Res. Lett. 44, 5292–5300 (2017).  https://doi.org/10.1002/2017GL073901 ADSCrossRefGoogle Scholar
  41. E. Grono, E. Donovan, Differentiating diffuse auroras based on phenomenology. Ann. Geophys. 36(3), 891–898 (2018).  https://doi.org/10.5194/angeo-36-891-2018 ADSCrossRefGoogle Scholar
  42. E. Grono, E. Donovan, Constraining the source regions of pulsating auroras. Geophys. Res. Lett. 46, 10267–10273 (2019).  https://doi.org/10.1029/2019GL084611 ADSCrossRefGoogle Scholar
  43. E. Grono, E. Donovan, K.R. Murphy, Tracking patchy pulsating aurora through all-sky images. Ann. Geophys. 35(4), 777–784 (2017).  https://doi.org/10.5194/angeo-35-777-2017 ADSCrossRefGoogle Scholar
  44. G. Grubbs, R. Michell, M. Samara, D. Hampton, J.-M. Jahn, Predicting electron population characteristics in 2-D using multispectral ground-based imaging. Geophys. Res. Lett. 45, 15–20 (2018).  https://doi.org/10.1002/2017GL075873 ADSCrossRefGoogle Scholar
  45. D.-S. Han, X.-C. Chen, J.-J. Liu, Q. Qiu, K. Keika, Z.-J. Hu et al., An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station. J. Geophys. Res. Space Phys. 120(9), 7447–7465 (2015).  https://doi.org/10.1002/2015JA021699 ADSCrossRefGoogle Scholar
  46. D.-S. Han, J.-X. Li, Y. Nishimura, L.R. Lyons, J. Bortnik, M. Zhou et al., Coordinated observations of two types of diffuse auroras near magnetic local noon by Magnetospheric Multiscale mission and ground all-sky camera. Geophys. Res. Lett. 44(16), 8130–8139 (2017).  https://doi.org/10.1002/2017GL074447 ADSCrossRefGoogle Scholar
  47. M.G. Henderson, Auroral substorms, poleward boundary activations, auroral streamers, omega bands, and onset precursor activity, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophysical Monograph Series, vol. 197 (Am. Geophys. Union, Washington, 2012).  https://doi.org/10.1029/2011GM001165 CrossRefGoogle Scholar
  48. M. Hikishima, S. Yagitani, Y. Omura, I. Nagano, Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere. J. Geophys. Res. 114, A01203 (2009).  https://doi.org/10.1029/2008JA013625 ADSCrossRefGoogle Scholar
  49. M. Hikishima, Y. Omura, D. Summers, Microburst precipitation of energetic electrons associated with chorus wave generation. Geophys. Res. Lett. 37, L07103 (2010).  https://doi.org/10.1029/2010GL042678 ADSCrossRefGoogle Scholar
  50. F. Honary, S.R. Marple, K. Barratt, P. Chapman, M. Grill, E. Nielsen, Invited article: Digital beam-forming imaging riometer systems. Rev. Sci. Instrum. 82(3), 031301 (2011).  https://doi.org/10.1063/1.3567309 ADSCrossRefGoogle Scholar
  51. R.B. Horne, R.M. Thorne, Relativistic electron acceleration and precipiation during resonant interactions with whistler-mode chorus. Geophys. Res. Lett. 30, 1527 (2003).  https://doi.org/10.1029/2003GL016973 ADSCrossRefGoogle Scholar
  52. K. Hosokawa, Y. Ogawa, Ionospheric variation during pulsating aurora. J. Geophys. Res. Space Phys. 120, 5943–5957 (2015).  https://doi.org/10.1002/2015JA021401 ADSCrossRefGoogle Scholar
  53. K. Hosokawa, A. Kadokura, N. Sato, S.E. Milan, M. Lester, G. Bjornsson, T. Saemundsson, Electric field modulation behind pulsating aurora. J. Geophys. Res. 113, A11322 (2008).  https://doi.org/10.1029/2008JA013601 ADSCrossRefGoogle Scholar
  54. K. Hosokawa, Y. Ogawa, A. Kadokura, H. Miyaoka, N. Sato, Modulation of ionospheric conductance and electric field associated with pulsating aurora. J. Geophys. Res. Space Phys. 115(A3), n/a–n/a (2010).  https://doi.org/10.1029/2009JA014683 CrossRefGoogle Scholar
  55. B.K. Humberset, J.W. Gjerloev, M. Samara, R.G. Michell, I.R. Mann, Temporal characteristics and energy deposition of pulsating auroral patches. J. Geophys. Res. Space Phys. 121, 7087–7107 (2016).  https://doi.org/10.1002/2016JA022921 ADSCrossRefGoogle Scholar
  56. B.K. Humberset, J.W. Gjerloev, I.R. Mann, R.G. Michell, M. Samara, On the persistent shape and coherence of pulsating auroral patches. J. Geophys. Res. Space Phys. 123, 4272–4289 (2018).  https://doi.org/10.1029/2017JA024405 ADSCrossRefGoogle Scholar
  57. B.J. Jackel, F. Creutzberg, E.F. Donovan, L.L. Cogger, Triangulation of auroral red-line emission heights, in Proceedings of the 28th Annual European Meeting on Atmospheric Studies by Optical Methods, vol. 92, ed. by K.U. Kaila, J.R.T. Jussila, H. Holma (Sodankyla Geophysical Observatory Publications, Oulu, 2003), pp. 97–100 Google Scholar
  58. A.N. Jaynes, M.R. Lessard, J.V. Rodriguez, E. Donovan, T.M. Loto’aniu, K. Rychert, Pulsating aurora electron flux modulations in the equatorial magnetosphere. J. Geophys. Res. Space Phys. 118, 884–894 (2013).  https://doi.org/10.1002/jgra.50434 CrossRefGoogle Scholar
  59. A.N. Jaynes et al., Correlated Pc4–5 ULF waves, whistler-mode chorus and pulsating aurora observed by the Van Allen Probes and ground-based systems. J. Geophys. Res. Space Phys. 120, 8749–8761 (2015).  https://doi.org/10.1002/2015JA021380 ADSCrossRefGoogle Scholar
  60. S.F. Johnston, Autonomous meridian scanning photometer for auroral observations. Opt. Eng. 28(1), 280120 (1989).  https://doi.org/10.1117/12.7976895 ADSCrossRefGoogle Scholar
  61. A.D. Johnstone, Pulsating aurora. Nature 274, 119–126 (1978) ADSCrossRefGoogle Scholar
  62. S.L. Jones, M.R. Lessard, P.A. Fernandes, D. Lummerzheim, J.L. Semeter, C.J. Heinselman, K.A. Lynch, G. Michell, P.M. Kintner, H.C. Stenbaek-Nielsen, K. Asamura, PFISR and ROPA observations of pulsating aurora. J. Atmos. Sol.-Terr. Phys. 71, 708–716 (2009).  https://doi.org/10.1016/j.jastp.2008.10.004 ADSCrossRefGoogle Scholar
  63. S.L. Jones, M.R. Lessard, K. Rychert, E. Spanswick, E. Donovan, Large-scale aspects and temporal evolution of pulsating aurora. J. Geophys. Res. Space Phys. 116, A03214 (2011).  https://doi.org/10.1029/2010ja015840 ADSCrossRefGoogle Scholar
  64. S.L. Jones, M.R. Lessard, K. Rychert, E. Spanswick, E. Donovan, A.N. Jaynes, Persistent, widespread pulsating aurora: a case study. J. Geophys. Res. Space Phys. 118, 2998–3006 (2013).  https://doi.org/10.1002/jgra.50301 ADSCrossRefGoogle Scholar
  65. S. Kasahara, Y. Miyoshi, S. Yokota, T. Mitani, Y. Kasahara, S. Matsuda et al., Pulsating aurora from electron scattering by chorus waves. Nature 554(7692), 337–340 (2018).  https://doi.org/10.1038/nature25505 ADSCrossRefGoogle Scholar
  66. R. Kataoka, Y. Miyoshi, D. Hampton, T. Ishii, H. Kozako, Pulsating aurora beyond the ultra-low-frequency range. J. Geophys. Res. Space Phys. 117, A8 (2012).  https://doi.org/10.1029/2012JA017987. CrossRefGoogle Scholar
  67. R. Kataoka, Y. Miyoshi, K. Shigematsu, D. Hampton, Y. Mori, T. Kubo, A. Yamashita, M. Tanaka, T. Taka- hei, T. Nakai, H. Miyahara, K. Shiokawa, Stereoscopic determination of all-sky altitude map of aurora using two ground-based Nikon DSLR cameras. Ann. Geophys. 31(9), 1543–1548 (2013).  https://doi.org/10.5194/angeo-31-1543-2013. https://www.ann-geophys.net/31/1543/2013/ ADSCrossRefGoogle Scholar
  68. R. Kataoka, Y. Fukuda, Y. Miyoshi, H. Miyahara, S. Itoya, Y. Ebihara, D. Hampton, H. Dahlgren, D. Whiter, N. Ivchenko, Compound auroral micromorphology: ground-based high-speed imaging. Earth Planets Space 67(1), 23 (2015).  https://doi.org/10.1186/s40623-015-0190-6 ADSCrossRefGoogle Scholar
  69. R. Kataoka, Y. Fukuda, H.A. Uchida, H. Yamada, Y. Miyoshi, Y. Ebihara, D. Hampton, High-speed stereoscopy of aurora. Ann. Geophys. 34(1), 41–44 (2016).  https://doi.org/10.5194/angeo-34-41-2016 ADSCrossRefGoogle Scholar
  70. R. Kataoka, T. Nishiyama, Y. Tanaka, A. Kadokura, H.A. Uchida, Y. Ebihara, M.K. Ejiri, Y. Tomikawa, M. Tsutsumi, K. Sato, Y. Miyoshi, K. Shiokawa, S. Kurita, Y. Kasahara, M. Ozaki, K. Hosokawa, S. Matsuda, I. Shinohara, T. Takashima, T. Sato, T. Mitani, T. Hori, N. Higashio, Transient ionization of the mesosphere during auroral breakup: Arase satellite and ground-based conjugate observations at Syowa Station. Earth Planets Space 7, 19 (2019).  https://doi.org/10.1186/s40623-019-0989-7 CrossRefGoogle Scholar
  71. Y. Katoh, A simulation study of the propagation of whistler-mode chorus in the Earth’s inner magnetosphere. Earth Planets Space 66, 6 (2014).  https://doi.org/10.1186/1880-5981-66-6 ADSCrossRefGoogle Scholar
  72. Y. Katoh, Y. Omura, Computer simulation of chorus wave generation in the Earth’s inner magnetosphere. Geophys. Res. Lett. 34, L03102 (2007).  https://doi.org/10.1029/2006GL028594 ADSCrossRefGoogle Scholar
  73. Y. Katoh, Y. Omura, Amplitude dependence of frequency sweep rates of whistler mode chorus emissions. J. Geophys. Res. 116, A07201 (2011).  https://doi.org/10.1029/2011JA016496 ADSCrossRefGoogle Scholar
  74. Y. Katoh, Y. Omura, Effect of the background magnetic field inhomogeneity on generation processes of whistler-mode chorus and hiss-like broadband emissions. J. Geophys. Res. Space Phys. 118, 4189–4198 (2013).  https://doi.org/10.1002/jgra.50395 ADSCrossRefGoogle Scholar
  75. Y. Katoh, Y. Omura, Electron hybrid code simulation of whistler-mode chorus generation with real parameters in the Earth’s inner magnetosphere. Earth Planets Space 68, 192 (2016).  https://doi.org/10.1186/s40623-016-0568-0 ADSCrossRefGoogle Scholar
  76. Y. Katoh, Y. Omura, Y. Miyake, H. Usui, H. Nakashima, Dependence of generation of whistler-mode chorus emissions on the temperature anisotropy and density of energetic electrons in the Earth’s inner magnetosphere. J. Geophys. Res. Space Phys. 123, 1165–1177 (2018).  https://doi.org/10.1002/2017JA024801 ADSCrossRefGoogle Scholar
  77. S. Kawamura, K. Hosokawa, S. Kurita, S. Oyama, Y. Miyoshi, Y. Kasahara et al., Tracking the region of high correlation between pulsating aurora and chorus: simultaneous observations with Arase satellite and ground-based all-sky imager in Russia. J. Geophys. Res. Space Phys. 124, 2769–2778 (2019).  https://doi.org/10.1029/2019JA026496 ADSCrossRefGoogle Scholar
  78. Y. Kazama, H. Kojima, Y. Miyoshi, Y. Kasahara, H. Usui, B.-J. Wang et al., Density depletions associated with enhancements of electron cyclotron harmonic emissions: an ERG observation. Geophys. Res. Lett. 45, 10,075–10,083 (2018).  https://doi.org/10.1029/2018GL080117 CrossRefGoogle Scholar
  79. C.F. Kennel, H.E. Petschek, Limits on stably trapped particle fluxes. J. Geophys. Res. 71, 1 (1966).  https://doi.org/10.1029/JZ071i001p00001 ADSCrossRefGoogle Scholar
  80. D.R. Kenward, M.R. Lessard, B.A. Fritz, R. Varney, R.G. Michell, D. Hampton, Observations of ion upflow during pulsating aurora. J. Geophys. Res. Space Phys. (2019, submitted) Google Scholar
  81. G.V. Khazanov, D.G. Sibeck, E. Zesta, Is diffuse aurora driven from above or below? Geophys. Res. Lett. 44, 641–647 (2017).  https://doi.org/10.1002/2016GL072063 ADSCrossRefGoogle Scholar
  82. S. Kirkwood, H. Opgenoorth, J.S. Murphree, Ionospheric conductivities, electric fields and currents associated with auroral substorms measured by the EISCAT radar. Planet. Space Sci. 36(12), 1359–1380 (1988).  https://doi.org/10.1016/0032-0633(88)90005-0 ADSCrossRefGoogle Scholar
  83. D.J. Knudsen, J.K. Burchill, T.G. Cameron, G.A. Enno, A. Howarth, A.W. Yau, The CASSIOPE/e-POP Suprathermal Electron Imager (SEI). Space Sci. Rev. 189, 65 (2015) ADSCrossRefGoogle Scholar
  84. D.J. Knudsen, J.K. Burchill, S.C. Buchert, A.I. Eriksson, R. Gill, J.-E. Wahlund, L. Åhlen, M. Smith, B. Moffat, Thermal ion imagers and Langmuir probes in the Swarm electric field instruments. J. Geophys. Res. Space Phys. 122, 2655–2673 (2017).  https://doi.org/10.1002/2016JA022571 ADSCrossRefGoogle Scholar
  85. M.J. Kosch, F. Honary, C.F. del Pozo, S.R. Marple, T. Hagfors, High-resolution maps of the characteristic energy of precipitating auroral particles. J. Geophys. Res. 106(A12), 28925–28937 (2001).  https://doi.org/10.1029/2001JA900107 ADSCrossRefGoogle Scholar
  86. S. Kurita, Y. Katoh, Y. Omura, V. Angelopoulos, C.M. Cully, O. Le Contel, H. Misawa, THEMIS observation of chorus elements without a gap at half the gyrofrequency. J. Geophys. Res. 117, A11223 (2012).  https://doi.org/10.1029/2012JA018076 ADSCrossRefGoogle Scholar
  87. B.S. Lanchester, M. Ashrafi, N. Ivchenko, Simultaneous imaging of aurora on small scale in OI (777.4 nm) and N2 1P to estimate energy and flux of precipitation. Ann. Geophys. 27, 2881–2891 (2009).  https://doi.org/10.5194/angeo-27-2881-2009 ADSCrossRefGoogle Scholar
  88. M.R. Lessard, in A Review of Pulsating Aurora. Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets. Geophys. Monogr. Ser., vol. 197 (2013), pp. 55–68.  https://doi.org/10.1029/2011GM001187 CrossRefGoogle Scholar
  89. W. Li, J. Bortnik, Y. Nishimura, R.M. Thorne, V. Angelopoulos, The origin of pulsating aurora: modulated whistler mode chorus waves, in Auroral Phenomenology and Magnetospheric Processes: Earth and Other Planets, ed. by A. Keiling, E. Donovan, F. Bagenal, T. Karlsson (2013).  https://doi.org/10.1029/2011GM001164 CrossRefGoogle Scholar
  90. J. Liang, V. Uritsky, E. Donovan, B. Ni, E. Spanswick, T. Trondsen, J. Bonnell, A. Roux, U. Auster, D. Larson, THEMIS observations of electron cyclotron harmonic emissions, ULF waves, and pulsating auroras. J. Geophys. Res. 115, A10235 (2010).  https://doi.org/10.1029/2009JA015148 ADSCrossRefGoogle Scholar
  91. J. Liang, B. Ni, E. Spanswick, M. Kubyshkina, E.F. Donovan, V.M. Uritsky, R.M. Thorne, V. Angelopoulos, Fast earthward flows, electron cyclotron harmonic waves, and diffuse auroras: conjunctive observations and a synthesized scenario. J. Geophys. Res. 116, A12220 (2011).  https://doi.org/10.1029/2011JA017094 ADSCrossRefGoogle Scholar
  92. J. Liang, E. Donovan, Y. Nishimura, B. Yang, E. Spanswick, K. Asamura, T. Sakanoi, D. Evans, R. Redmon, Low-energy ion precipitation structures associated with pulsating auroral patches. J. Geophys. Res. Space Phys. 120, 5408–5431 (2015).  https://doi.org/10.1002/2015JA021094 ADSCrossRefGoogle Scholar
  93. J. Liang, E. Donovan, B. Jackel, E. Spanswick, M. Gillies, On the 630 nm red-line pulsating aurora: red-line emission geospace observatory observations and model simulations. J. Geophys. Res. Space Phys. 121(8), 7988–8012 (2016).  https://doi.org/10.1002/2016JA022901 ADSCrossRefGoogle Scholar
  94. J. Liang, E. Donovan, A. Reimer, D. Hampton, S. Zou, R. Varney, Ionospheric electron heating associated with pulsating auroras: joint optical and PFISR observations. J. Geophys. Res. Space Phys. 123, 4430–4456 (2018).  https://doi.org/10.1029/2017JA025138 ADSCrossRefGoogle Scholar
  95. X. Liu, L. Chen, W. Gu, X.-J. Zhang, Electron cyclotron harmonic wave instability by loss cone distribution. J. Geophys. Res. 123, 9035–9044 (2018).  https://doi.org/10.1029/2018JA025925 CrossRefGoogle Scholar
  96. A.T.Y. Lui, P. Perreault, S.I. Akasofu, C.D. Anger, The diffuse aurora. Planet. Space Sci. 21(5), 857–858 (1973) ADSCrossRefGoogle Scholar
  97. A.T.Y. Lui, C.D. Anger, W.J. Heikkila, J.R. Burrows, Simultaneous observations of particle precipitations and auroral. J. Geophys. Res. 82(16), 2210–2226 (1977) ADSCrossRefGoogle Scholar
  98. A.T.Y. Lui, L.L. Cogger, A. Howarth, A.W. Yau, First satellite imaging of auroral pulsations by the Fast Auroral Imager on e-POP. Geophys. Res. Lett. 42, 6877–6882 (2015).  https://doi.org/10.1002/2015GL065331 ADSCrossRefGoogle Scholar
  99. R. Lyons, Electron diffusion driven by magnetospheric electrostatic waves. J. Geophys. Res. 79(4), 575–580 (1974).  https://doi.org/10.1029/JA079i004p00575 ADSCrossRefGoogle Scholar
  100. J.E. Maggs, T.N. Davis, Measurements of the thicknesses of auroral structures. Planet. Space Sci. 16(2), 205–209 (1968).  https://doi.org/10.1016/0032-0633(68)90069-X ADSCrossRefGoogle Scholar
  101. D.J. McEwan, C.N. Duncan, A campaign to study pulsating auroras. Can. J. Phys. 59(8), 1029–1033 (1981).  https://doi.org/10.1139/p81-135 ADSCrossRefGoogle Scholar
  102. D.J. McEwen, E. Yee, B.A. Whalen, A.W. Yau, Electron energy measurements in pulsating auroras. Can. J. Phys. 59(8), 1106–1115 (1981).  https://doi.org/10.1139/p81-146 ADSCrossRefGoogle Scholar
  103. D. McKay, N. Partamies, J. Vierinen, Pulsating aurora and cosmic noise absorption associated with growth-phase arcs. Ann. Geophys. 36(1), 59–69 (2018).  https://doi.org/10.5194/angeo-36-59-2018 ADSCrossRefGoogle Scholar
  104. D. McKay, T. Paavilainen, B. Gustavsson, A. Kvammen, N. Partamies, Lumikot: fast auroral transients during the growth phase of substorms. Geophys. Res. Lett. 46, 7214–7221 (2019).  https://doi.org/10.1029/2019GL082985 ADSCrossRefGoogle Scholar
  105. S.B. Mende, H.U. Frey, C.W. Carlson, J. McFadden, J. Gérard, B. Hubert et al., IMAGE and FAST observations of substorm recovery phase aurora. Geophys. Res. Lett. 29(12), 1602 (2002).  https://doi.org/10.1029/2001GL013027 ADSCrossRefGoogle Scholar
  106. S.B. Mende, S.E. Harris, H.U. Frey, V. Angelopoulos, C.T. Russell, E. Donovan, L.M. Peticolas, The THEMIS array of ground-based observatories for the study of auroral substorms. Space Sci. Rev. 141(1–4), 357–387 (2008).  https://doi.org/10.1007/s11214-008-9380-x ADSCrossRefGoogle Scholar
  107. R.G. Michell, M. Samara, Ground magnetic field fluctuations associated with pulsating aurora. J. Geophys. Res. Space Phys. 120, 9192–9201 (2015).  https://doi.org/10.1002/2015JA021252 ADSCrossRefGoogle Scholar
  108. R.G. Michell, M.G. McHarg, M. Samara, D.L. Hampton, Spectral analysis of flickering aurora. J. Geophys. Res. 117, A03321 (2012).  https://doi.org/10.1029/2011JA016703 ADSCrossRefGoogle Scholar
  109. R.G. Michell, T. Grydeland, M. Samara, Characteristics of Poker Flat Incoherent Scatter Radar (PFISR) naturally enhanced ion-acoustic lines (NEIALs) in relation to auroral forms. Ann. Geophys. 32, 1333–1347 (2014).  https://doi.org/10.5194/angeo-32-1333-2014 ADSCrossRefGoogle Scholar
  110. Y. Miyoshi, Y. Katoh, T. Nishiyama, T. Sakanoi, K. Asamura, M. Hirahara, Time of flight analysis of pulsating aurora electrons, considering wave-particle interactions with propagating whistler mode waves. J. Geophys. Res. 115, A10312 (2010).  https://doi.org/10.1029/2009JA015127 ADSCrossRefGoogle Scholar
  111. Y. Miyoshi, S. Oyama, S. Saito, S. Kurita, H. Fujiwara, R. Kataoka, Y. Ebihara, C. Kletzing, G. Reeves, O. Santolik, M. Clilverd, C.J. Rodger, E. Turunen, F. Tsuchiya, Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations. J. Geophys. Res. 120, 2754–2766 (2015a).  https://doi.org/10.1002/2014JA020690 CrossRefGoogle Scholar
  112. Y. Miyoshi, S. Saito, K. Seki, T. Nishiyama, R. Kataoka, K. Asamura, Y. Katoh, Y. Ebihara, T. Sakanoi, M. Hirahara, S. Oyama, S. Kurita, O. Santolik, Relation between fine structure of energy spectra for pulsating aurora electrons and frequency spectra of whistler mode chorus waves. J. Geophys. Res. 120, 7728–7736 (2015b).  https://doi.org/10.1002/2015JA021562 CrossRefGoogle Scholar
  113. T. Motoba, Y. Ebihara, A. Kadokura, M.J. Engebretson, M.R. Lessard, A.T. Weatherwax, A.J. Gerrard, Fast-moving diffuse auroral patches: a new aspect of daytime Pc3 auroral pulsations. J. Geophys. Res. Space Phys. 122, 1542–1554 (2017).  https://doi.org/10.1002/2016JA023285 ADSCrossRefGoogle Scholar
  114. R. Nakamura, T. Oguti, Drifts of auroral structures and magnetospheric electric fields. J. Geophys. Res. 92(A10), 11241–11247 (1987).  https://doi.org/10.1029/JA092iA10p11241 ADSCrossRefGoogle Scholar
  115. P.T. Newell, Y.I. Feldstein, Y.I. Galperin, C.-I. Meng, Morphology of nightside precipitation. J. Geophys. Res. 101(A5), 10737–10748 (1996).  https://doi.org/10.1029/95JA03516 ADSCrossRefGoogle Scholar
  116. B. Ni, R.M. Thorne, Y.Y. Shprits, J. Bortnik, Resonant scattering of plasma sheet electrons by whistler-mode chorus: contribution to diffuse auroral precipitation. Geophys. Res. Lett. 35, L11106 (2008).  https://doi.org/10.1029/2008GL034032 ADSCrossRefGoogle Scholar
  117. B. Ni, R. Thorne, J. Liang, V. Angelopoulos, C. Cully, W. Li, X. Zhang, M. Hartinger, O. Le Contel, A. Roux, Global distribution of electrostatic electron cyclotron harmonic waves observed on THEMIS. Geophys. Res. Lett. 38, L17105 (2011).  https://doi.org/10.1029/2011GL048793 ADSCrossRefGoogle Scholar
  118. B. Ni, J. Liang, R.M. Thorne, V. Angelopoulos, R.B. Horne, M. Kubyshkina, E. Spanswick, E.F. Donovan, D. Lummerzheim, Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: a detailed case study. J. Geophys. Res. 117, A01218 (2012).  https://doi.org/10.1029/2011JA017095 ADSCrossRefGoogle Scholar
  119. B. Ni, R.M. Thorne, X. Zhang, J. Bortnik, Z. Pu, L. Xie, Z.-J. Hu, D. Han, R. Shi, C. Zhou, X. Gu, Origins of the Earth’s diffuse auroral precipitation. Space Sci. Rev. 200(1–4), 205–259 (2016).  https://doi.org/10.1007/s11214-016-0234-7 ADSCrossRefGoogle Scholar
  120. B. Ni, X. Gu, S. Fu, Z. Xiang, Y. Lou, A statistical survey of electrostatic electron cyclotron harmonic waves based on THEMIS FFF wave data. J. Geophys. Res. Space Phys. 122, 3342–3353 (2017).  https://doi.org/10.1002/2016JA023433 ADSCrossRefGoogle Scholar
  121. M.J. Nicolls, C.J. Heinselman, Three-dimensional measurements of traveling ionospheric disturbances with the poker flat incoherent scatter radar. Geophys. Res. Lett. 34(21), L21104 (2007).  https://doi.org/10.1029/2007GL031506 ADSCrossRefGoogle Scholar
  122. K. Nishi, K. Shiokawa, H. Spence, Magnetospheric source region of auroral finger-like structures observed by the RBSP-a satellite. J. Geophys. Res. Space Phys. 123(9), 7513–7522 (2018a).  https://doi.org/10.1029/2018JA025480 ADSCrossRefGoogle Scholar
  123. Y. Nishimura et al., Identifying the driver of pulsating aurora. Science 330, 81 (2010) ADSCrossRefGoogle Scholar
  124. Y. Nishimura et al., Estimation of magnetic field mapping accuracy using the pulsating aurora-chorus connection. Geophys. Res. Lett. 38, L14110 (2011).  https://doi.org/10.1029/2011GL048281 ADSCrossRefGoogle Scholar
  125. Y. Nishimura, J. Bortnik, W. Li, R.M. Thorne, B. Ni, L.R. Lyons et al., Structures of dayside whistler-mode waves deduced from conjugate diffuse aurora. J. Geophys. Res. Space Phys. 118(2), 664–673 (2013).  https://doi.org/10.1029/2012JA018242 ADSCrossRefGoogle Scholar
  126. Y. Nishimura, J. Bortnik, W. Li, J. Liang, R.M. Thorne, V. Angelopoulos, O. Le Contel, U. Auster, J.W. Bonnell, Chorus intensity modulation driven by time-varying field-aligned low-energy plasma. J. Geophys. Res. Space Phys. 120, 7433–7446 (2015).  https://doi.org/10.1002/2015JA021330 ADSCrossRefGoogle Scholar
  127. Y. Nishimura, J. Bortnik, W. Li, V. Angelopoulos, E.F. Donovan, E.L. Spanswick, Comment on “pulsating auroras produced by interactions of electrons and time domain structures” by Mozer et al. J. Geophys. Res. Space Phys. 123, 2064–2070 (2018).  https://doi.org/10.1002/2017JA024844 ADSCrossRefGoogle Scholar
  128. T. Nishiyama, T. Sakanoi, Y. Miyoshi, Y. Katoh, K. Asamura, S. Okano, M. Hirahara, The source region and its characteristic of pulsating aurora based on the Reimei observations. J. Geophys. Res. 116, A03226 (2011a).  https://doi.org/10.1029/2010JA015507 ADSCrossRefGoogle Scholar
  129. T. Nishiyama, T. Sakanoi, Y. Miyoshi, Y. Katoh, K. Asamura, S. Okano, M. Hirahara, The source region and its characteristic of pulsating aurora based on the Reimei observations. J. Geophys. Res. Space Phys. 116, A03226 (2011b).  https://doi.org/10.1029/2010JA015507 ADSCrossRefGoogle Scholar
  130. T. Nishiyama, T. Sakanoi, Y. Miyoshi, R. Kataoka, D. Hampton, Y. Katoh, K. Asamura, S. Okano, Fine scale structures of pulsating auroras in the early recovery phase of substorm using ground-based EMCCD camera. J. Geophys. Res. Space Phys. 117(A10), A10229 (2012).  https://doi.org/10.1029/2012JA017921 ADSCrossRefGoogle Scholar
  131. T. Nishiyama, T. Sakanoi, Y. Miyoshi, D.L. Hampton, Y. Katoh, R. Kataoka, S. Okano, Multiscale temporal variations of pulsating auroras: on-off pulsation and a few Hz modulation. J. Geophys. Res. Space Phys. 119(5), 3514–3527 (2014).  https://doi.org/10.1002/2014JA019818. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JA019818 ADSCrossRefGoogle Scholar
  132. T. Nishiyama, Y. Miyoshi, Y. Katoh, T. Sakanoi, R. Kataoka, S. Okano, Substructures with luminosity modulation and horizontal oscillation in pulsating patch: principal component analysis application to pulsating aurora. J. Geophys. Res. Space Phys. 121(3), 2360–2373 (2016).  https://doi.org/10.1002/2015JA022288. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2015JA022288 ADSCrossRefGoogle Scholar
  133. B.J. O’Brien, High-latitude geophysical studies with satellite Injun 3: 3. Precipitation of electrons into the atmosphere. J. Geophys. Res. 69(1), 13–43 (1964).  https://doi.org/10.1029/JZ069i001p00013 ADSCrossRefGoogle Scholar
  134. T. Oguti, K. Hayashi, Multiple correlation between auroral and magnetic pulsations: 2. Determination of electric currents and electric fields around a pulsating auroral patch. J. Geophys. Res. Space Phys. 89(A9), 7467–7481 (1984).  https://doi.org/10.1029/JA089iA09p07467 ADSCrossRefGoogle Scholar
  135. T. Oguti, S. Kokubun, K. Hayashi, K. Tsuruda, S. Machida, T. Kitamura, O. Saka, T. Watanabe, Statistics of pulsating auroras on the basis of all-sky TV data from five stations. I—Occurrence frequency. Can. J. Phys. 59, 1150–1157 (1981a).  https://doi.org/10.1139/p81-152 ADSCrossRefGoogle Scholar
  136. T. Oguti, S. Kokubun, K. Hayashi, K. Tsuruda, S. Machida, T. Kitamura, O. Saka, T. Watanabe, Latitudinally propagating on-off switching aurorae and associated geomagnetic pulsations: a case study of an event of February 20, 1980. Can. J. Phys. 59, 1131–1136 (1981b) ADSCrossRefGoogle Scholar
  137. Y. Omura, D. Nunn, Triggering process of whistler-mode chorus emissions in the magnetosphere. J. Geophys. Res. 116, A05205 (2011).  https://doi.org/10.1029/2010JA016280 ADSCrossRefGoogle Scholar
  138. Y. Omura, Y. Katoh, D. Summers, Theory and simulation of the generation of whistler-mode chorus. J. Geophys. Res. 113, A04223 (2008).  https://doi.org/10.1029/2007JA012622 ADSCrossRefGoogle Scholar
  139. Y. Omura, M. Hikishima, Y. Katoh, D. Summers, S. Yagitani, Nonlinear mechanisms of lower band and upper band VLF chorus emissions in the magnetosphere. J. Geophys. Res. 114, A07217 (2009).  https://doi.org/10.1029/2009JA014206 ADSCrossRefGoogle Scholar
  140. S. Oyama, K. Shiokawa, J. Kurihara, T.T. Tsuda, S. Nozawa, Y. Ogawa, B.J. Watkins, Lower-thermospheric wind fluctuations measured with an FPI during pulsating aurora at Tromsø, Norway. Ann. Geophys. 28(10), 1847–1857 (2010).  https://doi.org/10.5194/angeo-28-1847-2010 ADSCrossRefGoogle Scholar
  141. S. Oyama, K. Shiokawa, Y. Miyoshi, K. Hosokawa, B.J. Watkins, J. Kurihara, C.T. Fallen, Lower thermospheric wind variations in auroral patches during the substorm recovery phase. J. Geophys. Res. Space Phys. 121(4), 3564–3577 (2016).  https://doi.org/10.1002/2015JA022129 ADSCrossRefGoogle Scholar
  142. S. Oyama, A. Kero, C.J. Rodger, M.A. Clilverd, Y. Miyoshi, N. Paratamies, E. Turunen, T. Raita, P.T. Verronen, S. Saito, Energetic electron precipitation and auroral morphology at the substorm recovery phase. J. Geophys. Res. 122, 6508–6527 (2017).  https://doi.org/10.1002/2016JA023484 CrossRefGoogle Scholar
  143. M. Ozaki et al., A direct link between chorus emissions and pulsating aurora on timescales from milliseconds to minutes: a case study at subauroral latitudes. J. Geophys. Res. Space Phys. 120, 9617–9631 (2015).  https://doi.org/10.1002/2015JA021381 ADSCrossRefGoogle Scholar
  144. M. Ozaki, K. Shiokawa, Y. Miyoshi, K. Hosokawa, S. Oyama, S. Yagitani, Y. Kasahara, Y. Kasaba, S. Matsuda, R. Kataoka, Y. Ebihara, Y. Ogawa, Y. Otsuka, S. Kurita, R.C. Moore, Y.-M. Tanaka Nos, T. Nagatsuma, M. Connors, N. Nishitani, Y. Katoh, M. Hikishima, A. Kumamoto, F. Tsuchiya, A. Kadokura, T. Nishiyama, T. Inoue, K. Imamura, A. Matsuoka, I. Shinohara, Microscopic observations of pulsating aurora associated with chorus element structures: coordinated arase satellite-pwing observations. Geophys. Res. Lett. 45(22), 12,125–12,134 (2018).  https://doi.org/10.1029/2018GL079812 CrossRefGoogle Scholar
  145. M. Ozaki et al., Visualization of rapid electron precipitation via chorus element wave–particle interactions. Nat. Commun. 10, 257 (2019).  https://doi.org/10.1038/s41467-018-07996-z ADSCrossRefGoogle Scholar
  146. N. Partamies, J.M. Weygand, L. Juusola, Statistical study of auroral omega bands. Ann. Geophys. 35, 1069–1083 (2017b).  https://doi.org/10.5194/angeo-35-1069-2017 ADSCrossRefGoogle Scholar
  147. N. Partamies, D. Whiter, A. Kadokura, K. Kauristie, H. Nesse Tyssøy, S. Massetti, P. Stauning, T. Raita, Occurrence and average behavior of pulsating aurora. J. Geophys. Res. Space Phys. 122, 5606–5618 (2017a).  https://doi.org/10.1002/2017JA024039 ADSCrossRefGoogle Scholar
  148. N. Partamies, K. Bolmgren, E. Heino, N. Ivchenko, J.E. Borovsky, H. Dahlgren, Patch size evolution during pulsating aurora. J. Geophys. Res. Space Phys. 124, 4725–4738 (2019).  https://doi.org/10.1029/2018JA026423 ADSCrossRefGoogle Scholar
  149. L.M. Peticolas, T.J. Hallinan, H.C. Stenbaek-Nielsen, J.W. Bonnell, C.W. Carlson, A study of black aurora from aircraft-based optical observations and plasma measurements on FAST. J. Geophys. Res. Space Phys. 107(A8), 30 (2002).  https://doi.org/10.1029/2001JA900157 CrossRefGoogle Scholar
  150. M.H. Rees, Conjugate effects of atmospherically scattered auroral electrons. Radio Sci. 3(7), 645–649 (1968).  https://doi.org/10.1002/rds196837645 ADSCrossRefGoogle Scholar
  151. R. Robinson, New techniques and results from incoherent scatter radars. URSI Radio Sci. Bull. 2004(311), 79–94 (2004).  https://doi.org/10.23919/URSIRSB.2004.7909637 CrossRefGoogle Scholar
  152. J.L. Roeder, H.C. Koons, A survey of electron cyclotron waves in the magnetosphere and the diffuse auroral electron precipitation. J. Geophys. Res. 94, 2529–2541 (1989).  https://doi.org/10.1029/JA094iA03p02529 ADSCrossRefGoogle Scholar
  153. O. Royrvik, T.N. Davis, Pulsating aurora: local and global morphology. J. Geophys. Res. 82(29), 4720–4740 (1977) ADSCrossRefGoogle Scholar
  154. S. Saito, Y. Miyoshi, K. Seki, Relativistic electron microbursts associated with whistler chorus rising tone elements: GEMSIS-RBW simulations. J. Geophys. Res. 117, A10206 (2012).  https://doi.org/10.1029/2012JA018020 ADSCrossRefGoogle Scholar
  155. S. Saito, Y. Miyoshi, K. Seki, Relativistic electron microbursts associated with whistler chorus rising tone elements: GEMSIS-RBW simulations. J. Geophys. Res. 117, A10206 (2012).  https://doi.org/10.1029/2012JA018020 ADSCrossRefGoogle Scholar
  156. M. Samara, R.G. Michell, Ground-based observations of diffuse auroral frequencies in the context of whistler mode chorus. J. Geophys. Res. 115, A00F18 (2010).  https://doi.org/10.1029/2009JA014852 ADSCrossRefGoogle Scholar
  157. M. Samara, R.G. Michell, K. Asamura, M. Hirahara, D.L. Hampton, H.C. Stenbaek-Nielsen, Ground-based observations of diffuse auroral structures in conjunction with Reimei measurements. Ann. Geophys. 28(3), 873–881 (2010).  https://doi.org/10.5194/angeo-28-873-2010 ADSCrossRefGoogle Scholar
  158. M. Samara, R.G. Michell, R.J. Redmon, Low- altitude satellite measurements of pulsating auroral electrons. J. Geophys. Res. Space Phys. 120, 8111–8124 (2015).  https://doi.org/10.1002/2015JA021292 ADSCrossRefGoogle Scholar
  159. M. Samara, R.G. Michell, G.V. Khazanov, First optical observations of interhemispheric electron reflections within pulsating aurora. Geophys. Res. Lett. 44, 2618–2623 (2017).  https://doi.org/10.1002/2017GL072794 ADSCrossRefGoogle Scholar
  160. I. Sandahl, The particle experiment on the substorm GEOS rockets. KGI Techn. Rep. 031 (1981) Google Scholar
  161. I. Sandahl, Pitch angle scattering and particle precipitation in a pulsating aurora: an experimental study. KGI Rept. 185, Kiruna, Sweden (1985) Google Scholar
  162. I. Sandahl, L. Eliasson, R. Lundin, Rocket observations of precipitating electrons over a pulsating aurora. Geophys. Res. Lett. 7, 309–312 (1980).  https://doi.org/10.1029/GL007i005p00309 ADSCrossRefGoogle Scholar
  163. L. Sangalli, N. Partamies, M. Syrjäsuo, C.-F. Enell, K. Kauristie, S. Mäkinen, Performance study of the new EMCCD-based all-sky cameras for auroral imaging. Int. J. Remote Sens. 32(11), 2987–3003 (2011).  https://doi.org/10.1080/01431161.2010.541505 ADSCrossRefGoogle Scholar
  164. O. Santolik, D.A. Gurnett, J.S. Pickett, M. Parrot, N. Cornilleau-Wehrlin, Spatio-temporal structure of storm-time chorus. J. Geophys. Res. 108(A7), 1278 (2003).  https://doi.org/10.1029/2002JA009791 CrossRefGoogle Scholar
  165. O. Santolik, E. Macusova, I. Kolmasova, N. Cornilleau-Wehrlin, Y. de Conchy, Propagation of lower-band whistler-mode waves in the outer Van Allen belt: systematic analysis of 11 years of multi-component data from the cluster. Geophys. Res. Lett. 41, 2729–2737 (2014).  https://doi.org/10.1002/2014GL059815 ADSCrossRefGoogle Scholar
  166. K. Sato, M. Tsutsumi, T. Sato, T. Nakamura, A. Saito, Y. Tomikawa, K. Nishimura, M. Kohma, H. Yamagishi, T. Yamanouchi, Program of the Antarctic Syowa MST/IS radar (PANSY). J. Atmos. Sol.-Terr. Phys. 118A, 2–15 (2014).  https://doi.org/10.1016/j.jastp.2013.08.022 ADSCrossRefGoogle Scholar
  167. N. Sato, A. Kadokura, Y. Tanaka, T. Nishiyama, T. Hori, A.S. Yukimatu, Omega band pulsating auroras observed onboard THEMIS spacecraft and on the ground. J. Geophys. Res. Space Phys. 120, 5524–5544 (2015).  https://doi.org/10.1002/2015JA021382 ADSCrossRefGoogle Scholar
  168. N. Sato, A.S. Yukimatu, Y. Tanaka, T. Hori, Morphologies of omega band auroras. Earth Planets Space 69, 103 (2017).  https://doi.org/10.1186/s40623-017-0688-1 ADSCrossRefGoogle Scholar
  169. M.W.J. Scourfield, W.F. Innes, N.R. Parsons, Spatial coherency in pulsating aurora. Planet. Space Sci. 20, 1843–1848 (1972) ADSCrossRefGoogle Scholar
  170. J. Semeter, F. Kamalabadi, Determination of primary electron spectra from incoherent scatter radar measurements of the auroral e region. Radio Sci. 40(2), 1–17 (2005).  https://doi.org/10.1029/2004RS003042 CrossRefGoogle Scholar
  171. J. Semeter, M. Mendillo, J. Baumgardner, Multispectral tomographic imaging of the midlatitude aurora. J. Geophys. Res. Space Phys. 104(A11), 24565–24585 (1999).  https://doi.org/10.1029/1999JA900305 ADSCrossRefGoogle Scholar
  172. V.A. Sergeev, E.M. Sazhina, N.A. Tsyganenko, J.A. Lundblad, F. Soraas, Pitch-angle scattering of energetic protons in the magnetotail current sheet as the dominant source of their isotropic precipitation into the nightside ionosphere. Planet. Space Sci. 31(10), 1147–1155 (1983).  https://doi.org/10.1016/0032-0633(83)90103-4 ADSCrossRefGoogle Scholar
  173. V.A. Sergeev, Y. Nishimura, M. Kubyshkina, V. Angelopoulos, R. Nakamura, H. Singer, Magnetospheric location of the equatorward pre-breakup arc. J. Geophys. Res. Space Phys. 117(A1), A01212 (2012).  https://doi.org/10.1029/2011JA017154 ADSCrossRefGoogle Scholar
  174. T. Sergienko, I. Sandahl, B. Gustavsson, L. Andersson, U. Brändström Å, Steen, a study of fine structure of diffuse aurora with ALIS-FAST measurements. 26 (2008). Retrieved from. www.ann-geophys.net/26/3185/2008/
  175. K. Shiokawa, A. Nakajima, A. Ieda, K. Sakaguchi, R. Nomura, T. Aslaksen, M. Greffen, E. Donovan, Rayleigh-Taylor type instability in auroral patches. J. Geophys. Res. Space Phys. 115(A2), A02211 (2009).  https://doi.org/10.1029/2009JA014273 ADSCrossRefGoogle Scholar
  176. K. Shiokawa et al., Auroral fragmentation into patches. J. Geophys. Res. Space Phys. 119, 8249–8261 (2014).  https://doi.org/10.1002/2014JA020050 ADSCrossRefGoogle Scholar
  177. K. Shiokawa, Y. Katoh, Y. Hamaguchi, Y. Yamamoto, T. Adachi et al., Ground-based instruments of the pwing project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the erg-ground coordinated observation network. Earth Planets Space 69(1), 160 (2017).  https://doi.org/10.1186/s40623-017-0745-9 ADSCrossRefGoogle Scholar
  178. N. Sivadas, J. Semeter, Y. Nishimura, A. Kero, Simultaneous measurements of substorm-related electron energization in the ionosphere and the plasma sheet. J. Geophys. Res. Space Phys. 122(10), 10,528–10,547 (2017).  https://doi.org/10.1002/2017JA023995 CrossRefGoogle Scholar
  179. N. Sivadas, J. Semeter, Y. Nishimura, S. Mrak, Optical signatures of the outer radiation belt boundary. Geophys. Res. Lett. 46, 8588–8596 (2019).  https://doi.org/10.1029/2019GL083908 ADSCrossRefGoogle Scholar
  180. M.J. Smith, D.A. Bryant, T. Edwards, Pulsations in auroral electrons and positive ions. J. Atmos. Terr. Phys. 42, 167 (1980) ADSCrossRefGoogle Scholar
  181. S.C. Solomon, P.B. Hays, V.J. Abreu, Tomographic inversion of satellite photometry. Appl. Opt. 23(19), 3409 (1984).  https://doi.org/10.1364/AO.23.003409 ADSCrossRefGoogle Scholar
  182. T. Sørensen, J. Bjordal, H. Trefall, G.J. Kvifte, H. Pettersen, Correlation between pulsations in auroral luminosity variations and X-rays. J. Atmos. Terr. Phys. 35(5), 961–969 (1973).  https://doi.org/10.1016/0021-9169(73)90075-5 ADSCrossRefGoogle Scholar
  183. E. Spanswick, E. Donovan, G. Baker, Pc5 modulation of high energy electron precipitation: particle interaction regions and scattering efficiency. Ann. Geophys. 23, 1533–1542 (2005) ADSCrossRefGoogle Scholar
  184. H.C. Stenbaek-Nielsen, Pulsating aurora—the importance of the ionosphere. Geophys. Res. Lett. 7, 353–356 (1980).  https://doi.org/10.1029/GL007i005p00353 ADSCrossRefGoogle Scholar
  185. H.C. Stenbaek-Nielsen, T.J. Hallinan, Pulsating auroras—evidence for noncollisional thermalization of precipitating electrons. J. Geophys. Res. 84, 3257–3271 (1979).  https://doi.org/10.1029/JA084iA07p03257 ADSCrossRefGoogle Scholar
  186. H.C. Stenbaek-Nielsen, T.J. Hallinan, L. Peticolas, Why do auroras look the way they do? Eos, Trans. Am. Geophys. Union 80(17), 193 (1999).  https://doi.org/10.1029/99EO00138 ADSCrossRefGoogle Scholar
  187. C. Størmer, The Polar Aurora (Clarendon, Oxford, 1955) zbMATHGoogle Scholar
  188. R.J. Strangeway, R.E. Ergun, Y.-J. Su, C.W. Carlson, R.C. Elphic, Factors controlling ionospheric outflows as observed at intermediate altitudes. J. Geophys. Res. 110, A03221 (2005).  https://doi.org/10.1029/2004JA010829 ADSCrossRefGoogle Scholar
  189. D. Summers, R. Tang, Y. Omura, D.-H. Lee, Parameter spaces for linear and nonlinear whistler-mode waves. Phys. Plasmas 20, 072110 (2013).  https://doi.org/10.1063/1.4816022 ADSCrossRefGoogle Scholar
  190. T. Takahashi et al., Depletion of mesospheric sodium during extended period of pulsating aurora. J. Geophys. Res. Space Phys. 122, 1212–1220 (2017).  https://doi.org/10.1002/2016JA023472 ADSCrossRefGoogle Scholar
  191. Y.-M. Tanaka, T. Aso, B. Gustavsson, K. Tanabe, Y. Ogawa, A. Kadokura, H. Miyaoka, T. Sergienko, U. Brändström, I. Sandahl, Feasibility study on generalized-aurora computed tomography. Ann. Geophys. 29, 551–562 (2011).  https://doi.org/10.5194/angeo-29-551-2011 ADSCrossRefGoogle Scholar
  192. Y. Tanaka, Y. Ogawa, A. Kadokura, N. Partamies, D. Whiter, C.-F. Enell, U. Brändström, T. Sergienko, B. Gustavsson, A. Kozlovsky, H. Miyaoka, A. Yoshikawa, Eastward-expanding auroral surges observed in the post-midnight sector during a multiple-onset substorm. Earth Planets Space 67(1), 182 (2015).  https://doi.org/10.1186/s40623-015-0350-8. ISSN 1880-5981 ADSCrossRefGoogle Scholar
  193. R.W. Thomas, H.C. Stenbaek-Nielsen, Recurrent propagating auroral forms in pulsating auroras. J. Atmos. Terr. Phys. 43, 243 (1981) ADSCrossRefGoogle Scholar
  194. R.M. Thorne, B. Ni, X. Tao, R.B. Horne, N.P. Meredith, Scattering by chorus waves as the dominant cause of diffuse auroral precipitation. Nature 467, 943–946 (2010).  https://doi.org/10.1038/nature09467 ADSCrossRefGoogle Scholar
  195. T.T. Tsuda et al., Decrease in sodium density observed during auroral particle precipitation over Tromsø, Norway. Geophys. Res. Lett. 40, 4486–4490 (2013).  https://doi.org/10.1002/grl.50897 ADSCrossRefGoogle Scholar
  196. K. Tsuruda, S. Machida, T. Oguti, S. Kokubun, K. Hayashi, T. Kitamura, O. Saka, T. Watanabe, Correlations between the very low frequency chorus and pulsating aurora observed by low-light-level television at \(L = 4.4\). Can. J. Phys. 59(8), 1042–1048 (1981).  https://doi.org/10.1139/p81-137 ADSCrossRefGoogle Scholar
  197. E. Turunen, A. Kero, P.T. Verronen, Y. Miyoshi, S-I. Oyama, S. Saito, Mesospheric ozone destruction by high-energy electron precipitation associated with pulsating aurora. J. Geophys. Res. 121, 11,155–11,879 (2016).  https://doi.org/10.1002/2016JD025015 CrossRefGoogle Scholar
  198. C.W. Unick, E. Donovan, M. Connors, B. Jackel, A dedicated H-beta meridian scanning photometer for proton aurora measurement. J. Geophys. Res. Space Phys. 122(1), 753–764 (2017).  https://doi.org/10.1002/2016JA022630 ADSCrossRefGoogle Scholar
  199. J.-E. Wahlund, H.J. Opgenoorth, I. Haggstrom, K.J. Winser, G.O.L. Jones, EISCAT observations of topside ionospheric ion outflows during auroral activity—revisited. J. Geophys. Res. 97, 3019–3037 (1992) ADSCrossRefGoogle Scholar
  200. M. Watanabe, A. Kadokura, N. Sato, T. Saemundsson, Absence of geomagnetic conjugacy in pulsating auroras. Geophys. Res. Lett. 34, L15107 (2007).  https://doi.org/10.1029/2007GL030469 ADSCrossRefGoogle Scholar
  201. J.M. Weygand, M.G. Kivelson, H.U. Frey, J.V. Rodriguez, V. Angelopoulos, R. Redmon, J. Barker-Ream Grocott, O. Amm, An interpretation of spacecraft and ground based observations of multiple omega band events. J. Atmos. Sol.-Terr. Phys. 133, 185–204 (2015).  https://doi.org/10.1016/j.jastp.2015.08.014 ADSCrossRefGoogle Scholar
  202. D.K. Whiter, B. Gustavsson, N. Partamies, L. Sangalli, A new automatic method for estimating the peak auroral emission height from all-sky camera images. Geosci. Instrum. Method. Data Syst. 2, 131–144 (2013).  https://doi.org/10.5194/gi-2-131-2013 ADSCrossRefGoogle Scholar
  203. C.R. Wilson, J.V. Olson, H.C. Stenbaek-Nielsen, High trace-velocity infrasound from pulsating auroras at Fairbanks, Alaska. Geophys. Res. Lett. 32(14), n/a–n/a (2005).  https://doi.org/10.1029/2005GL023188 CrossRefGoogle Scholar
  204. Q. Wu, T.J. Rosenberg, High latitude pulsating aurora revisited. Geophys. Res. Lett. 19(1), 69–72 (1992) ADSCrossRefGoogle Scholar
  205. T. Yamamoto, On the temporal fluctuations of pulsating auroral luminosity. J. Geophys. Res. 93(A2), 897–911 (1988).  https://doi.org/10.1029/JA093iA02p00897 ADSCrossRefGoogle Scholar
  206. T. Yamamoto, T. Oguti, Recurrent fast motions of pulsating auroral patches: 1. A case study on optical and quantitative characteristics during a slightly active period. J. Geophys. Res. 87(A9), 7603–7614 (1982).  https://doi.org/10.1029/JA087iA09p07603 ADSCrossRefGoogle Scholar
  207. B. Yang, E. Donovan, J. Liang, J.M. Ruohoniemi, E. Spanswick, Using patchy pulsating aurora to remote sense magnetospheric convection. Geophys. Res. Lett. 42, 5083–5089 (2015).  https://doi.org/10.1002/2015GL064700 ADSCrossRefGoogle Scholar
  208. B. Yang, E. Donovan, J. Liang, E. Spanswick, A statistical study of the motion of pulsating aurora patches: using the THEMIS All-Sky Imager. Ann. Geophys. 35, 217–225 (2017).  https://doi.org/10.5194/angeo-35-217-2017 ADSCrossRefGoogle Scholar
  209. B. Yang, E. Spanswick, J. Liang, E. Grono, E. Donovan, Responses of different types of pulsating aurora in cosmic noise absorption. Geophys. Res. Lett. 46, 5717–5724 (2019).  https://doi.org/10.1029/2019GL083289 ADSCrossRefGoogle Scholar
  210. Y. Zhang, L.J. Paxton, D. Morrison, A.T.Y. Lui, H. Kil, B. Wolven, C.-I. Meng, A.B. Christensen, Undulations on the equatorward edge of the diffuse proton aurora: TIMED/GUVI observations. J. Geophys. Res. Space Phys. 110(A8), A08211 (2005).  https://doi.org/10.1029/2004JA010668 ADSCrossRefGoogle Scholar
  211. X. Zhang, V. Angelopoulos, B. Ni, R.M. Thorne, Predominance of ECH wave contribution to diffuse aurora in Earth’s outer magnetosphere. J. Geophys. Res. 120, 295–309 (2015).  https://doi.org/10.1002/2014JA020455 CrossRefGoogle Scholar
  212. Q. Zhou, F. Xiao, C. Yang, S. Liu, Y. He, D.N. Baker, H.E. Spence, G.D. Reeves, H.O. Funsten, Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts. Geophys. Res. Lett. 44, 5251–5258 (2017).  https://doi.org/10.1002/2017GL073051 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • Yukitoshi Nishimura
    • 1
    Email author
  • Marc R. Lessard
    • 2
  • Yuto Katoh
    • 3
  • Yoshizumi Miyoshi
    • 4
  • Eric Grono
    • 5
  • Noora Partamies
    • 6
    • 7
  • Nithin Sivadas
    • 1
  • Keisuke Hosokawa
    • 8
  • Mizuki Fukizawa
    • 3
  • Marilia Samara
    • 9
  • Robert G. Michell
    • 9
    • 10
  • Ryuho Kataoka
    • 11
    • 12
  • Takeshi Sakanoi
    • 3
  • Daniel K. Whiter
    • 13
  • Shin-ichiro Oyama
    • 14
    • 15
    • 4
  • Yasunobu Ogawa
    • 11
    • 12
  • Satoshi Kurita
    • 4
  1. 1.Department of Electrical and Computer Engineering and Center for Space PhysicsBoston UniversityBostonUSA
  2. 2.Space Science CenterUniversity of New HampshireDurhamUSA
  3. 3.Department of Geophysics, Graduate School of ScienceTohoku UniversitySendaiJapan
  4. 4.Institute for Space Earth Environmental ResearchNagoya UniversityNagoyaJapan
  5. 5.Department of Physics and AstronomyUniversity of CalgaryCalgaryCanada
  6. 6.Department of Arctic GeophysicsThe University Centre in SvalbardLongyearbyenNorway
  7. 7.Birkeland Centre for Space ScienceBergenNorway
  8. 8.Department of Communication Engineering and InformaticsUniversity of Electro-CommunicationsTokyoJapan
  9. 9.NASA Goddard Space Flight CenterGreenbeltUSA
  10. 10.Department of AstronomyUniversity of MarylandCollege ParkUSA
  11. 11.National Institute of Polar Research (NIPR)TachikawaJapan
  12. 12.SOKENDAITachikawaJapan
  13. 13.Department of Physics and AstronomyUniversity of SouthamptonSouthamptonUK
  14. 14.National Institute of Polar ResearchTokyoJapan
  15. 15.Space Physics and Astronomy Research UnitUniversity of OuluOuluFinland

Personalised recommendations