Advertisement

Space Science Reviews

, 215:51 | Cite as

Dayside Aurora

  • Harald U. FreyEmail author
  • Desheng Han
  • Ryuho Kataoka
  • Marc R. Lessard
  • Stephen E. Milan
  • Yukitoshi Nishimura
  • Robert J. Strangeway
  • Ying Zou
Article
  • 122 Downloads
Part of the following topical collections:
  1. Auroral Physics

Abstract

Dayside aurora is related to processes in the dayside magnetosphere and especially at the dayside magnetopause. A number of dayside aurora phenomena are driven by reconnection between the solar wind interplanetary magnetic field and the Earth’s internal magnetic field at the magnetopause. We summarize the properties and origin of aurora at the cusp foot point, High Latitude Dayside Aurora (HiLDA), Poleward Moving Auroral Forms (PMAFs), aurora related to traveling convection vortices (TCV), and throat aurora. Furthermore we discuss dayside diffuse aurora, morning side diffuse aurora spots, and shock aurora.

Keywords

Auroral phenomena Dayside aurora Cusp Magnetic reconnection MI-coupling Energetic particles Field-aligned currents and current systems Energetic particle precipitation 

Notes

Acknowledgements

HUF was supported by NSF award AGS-1004736 and NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I. The work of D. Han is supported by the National Key R & D Program of China (2018YFC1407303) and National Natural Science Foundation of China (NSFC) (41774174). SEM was supported by the Science and Technology Facilities Council (STFC), UK, grant no. ST/N000749/1. The work at the Birkeland Centre for Space Centre, University of Bergen, Norway, was supported by the Research Council of Norway/CoE under contract 223252/F50.

References

  1. G.A. Abel, M.P. Freeman, A statistical analysis of ionospheric velocity and magnetic field power spectra at the time of pulsed ionospheric flows. J. Geophys. Res. 107, 1470 (2002).  https://doi.org/10.1029/2002JA009402 CrossRefGoogle Scholar
  2. R.L. Arnoldy, M.J. Engebretson, J.L. Alford, R.E. Erlandson, B.J. Anderson, Magnetic impulse events and associated Pc 1 bursts at dayside high latitudes. J. Geophys. Res. 101, 7793 (1996a).  https://doi.org/10.1029/95JA03378 ADSCrossRefGoogle Scholar
  3. R.L. Arnoldy, K.A. Lynch, P.M. Kintner, J. Bonnell, T.E. Moore, C.J. Pollock, SCIFER—Structure of the Cleft Ion Fountain at 1400 km altitude. Geophys. Res. Lett. 23, 1869–1872 (1996b).  https://doi.org/10.1029/96GL00475 ADSCrossRefGoogle Scholar
  4. J. Berchem, C.T. Russell, Flux transfer events on the magnetopause—spatial distribution and controlling factors. J. Geophys. Res. 89, 6689 (1984).  https://doi.org/10.1029/JA089iA08p06689 ADSCrossRefGoogle Scholar
  5. H.C. Carlson, Sharpening our thinking about polar cap ionospheric patch morphology, research, and mitigation techniques. Radio Sci. 47, RS0L21 (2012).  https://doi.org/10.1029/2011RS004946 CrossRefGoogle Scholar
  6. H.C. Carlson, T. Spain, A. Aruliah, A. Skjaeveland, J. Moen, First principles physics of cusp/polar cap thermospheric disturbances. Geophys. Res. Lett. 39, L19103 (2012).  https://doi.org/10.1029/2012GL053034 ADSCrossRefGoogle Scholar
  7. J.A. Carter, S.E. Milan, A.R. Fogg, L.J. Paxton, B.J. Anderson, The association of high-latitude dayside aurora with NBZ field-aligned currents. J. Geophys. Res. (2018).  https://doi.org/10.1029/2017JA025082 CrossRefGoogle Scholar
  8. C.C. Chaston, L.M. Peticolas, C.W. Carlson, J.P. McFadden, F. Mozer, M. Wilber, G.K. Parks, A. Hull, R.E. Ergun, R.J. Strangeway, M. Andre, Y. Khotyaintsev, M.L. Goldstein, M. Acuna, E.J. Lund, H. Reme, I. Dandouras, A.N. Fazakerley, A. Balogh, Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations. J. Geophys. Res. 110, A02211 (2005).  https://doi.org/10.1029/2004JA010483 ADSCrossRefGoogle Scholar
  9. X.C. Chen, D.S. Han, D.A. Lorentzen, K. Oksavik, J.I. Moen, L.J. Baddeley, Dynamic properties of throat aurora revealed by simultaneous ground and satellite observations. J. Geophys. Res. 122, 3469–3486 (2017).  https://doi.org/10.1002/2016JA023033 CrossRefGoogle Scholar
  10. G. Chisham, M. Lester, S.E. Milan, M.P. Freeman, W.A. Bristow, A. Grocott, K.A. McWilliams, J.M. Ruohoniemi, T.K. Yeoman, P.L. Dyson, R.A. Greenwald, T. Kikuchi, M. Pinnock, J.P.S. Rash, N. Sato, G.J. Sofko, J.-P. Villain, A.D.M. Walker, A decade of the Super Dual Auroral Radar Net-work (SuperDARN): scientific achievements, new techniques and future directions. Surv. Geophys. 28, 33–109 (2007).  https://doi.org/10.1007/s10712-007-9017-8 ADSCrossRefGoogle Scholar
  11. J.H. Clemmons, R.L. Walterscheid, D.G. Brinkman, J.H. Hecht, M.R. Lessard, B.A. Fritz, D.R. Kenward, L.B.N. Clausen, D.L. Hysell, The neutral atmosphere during the RENU2 investigation. Geophys. Res. Lett. (2019, submitted) Google Scholar
  12. I.J. Coleman, G. Chisham, M. Pinnock, M.P. Freeman, An ionospheric convection signature of antiparallel reconnection. J. Geophys. Res. 106, 28,995–29,007 (2001) ADSCrossRefGoogle Scholar
  13. B.M.A. Cooling, C.J. Owen, S.J. Schwartz, Role of the magnetosheath flow in determining the motion of open flux tubes. J. Geophys. Res. 106, 18,763–18,776 (2001) ADSCrossRefGoogle Scholar
  14. S.W.H. Cowley, M. Lockwood, Excitation and decay of solar wind-driven flows in the magnetosphere-ionosphere system. Ann. Geophys. 10, 103–115 (1992) ADSGoogle Scholar
  15. S.A. Cummer, R.R. Vondrak, N. Østgaard, J. Stadsnes, J. Bjordal, D.L. Chenette, M.J. Brittnacher, G.K. Parks, J.B. Sigwarth, L.A. Frank, Global multispectral auroral imaging of an isolated substorm. Geophys. Res. Lett. 27, 637–640 (2000).  https://doi.org/10.1029/1999GL003678 ADSCrossRefGoogle Scholar
  16. J.A. Davies, T.K. Yeoman, I.J. Rae, S.E. Milan, M. Lester, M. Lockwood, A. McWilliams, Ground-based observations of the auroral zone and polar cap ionospheric responses to dayside transient reconnection. Ann. Geophys. 20, 781–794 (2000).  https://doi.org/10.5194/angeo-20-781-2002 ADSCrossRefGoogle Scholar
  17. E.E. Drury, S.B. Mende, H.U. Frey, J.H. Doolittle, Southern Hemisphere poleward moving auroral forms. J. Geophys. Res. 108, 1114 (2003).  https://doi.org/10.1029/2001JA007536 CrossRefGoogle Scholar
  18. Y. Ebihara, Y.M. Tanaka, S. Takasaki, A.T. Weatherwax, M. Taguchi, Quasi-stationary auroral patches observed at the South Pole Station. J. Geophys. Res. 112, A01201 (2007).  https://doi.org/10.1029/2006JA012087 ADSCrossRefGoogle Scholar
  19. Y. Ebihara, R. Kataoka, A.T. Weatherwax, M. Yamauchi, J. Geophys. Res. 113, A07209 (2008).  https://doi.org/10.1029/2008JA013099 CrossRefGoogle Scholar
  20. M.J. Engebretson et al., Multi-instrument observations from Svalbard of a traveling convection vortex, electromagnetic ion cyclotron wave burst, and proton precipitation associated with a bow shock instability. J. Geophys. Res. 118, 2975 (2013).  https://doi.org/10.1002/jgra.50291 CrossRefGoogle Scholar
  21. C.J. Farrugia, R.P. Rijnbeek, M.A. Saunders, D.J. Southwood, D.J. Rodgers, M.F. Smith, L.J.C. Woolliscroft, A multi-instrument study of flux transfer event structure. J. Geophys. Res. 93, 14,465–14,477 (1988).  https://doi.org/10.1029/JA093iA12p14465 ADSCrossRefGoogle Scholar
  22. C.J. Farrugia et al., Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a Cluster–FAST–SuperDARN- Søndrestrøm conjunction under a southwest IMF. Ann. Geophys. 22, 2891–2905 (2004).  https://doi.org/10.5194/angeo-22-2891-2004 ADSCrossRefGoogle Scholar
  23. G.J. Fasel, Dayside poleward moving auroral forms: a statistical study. J. Geophys. Res. 100(A7), 11891–11905 (1995).  https://doi.org/10.1029/95JA00854 ADSCrossRefGoogle Scholar
  24. G.J. Fasel, L.C. Lee, R.W. Smith, A mechanism for the multiple brightenings of dayside poleward-moving auroral forms. Geophys. Res. Lett. 20(20), 2247–2250 (1993).  https://doi.org/10.1029/93GL02487 ADSCrossRefGoogle Scholar
  25. R.C. Fear et al., Motion of flux transfer events: a test of the Cooling model. Ann. Geophys. 25, 1669–1690 (2007). www.ann-geophys.net/25/1669/2007/ ADSCrossRefGoogle Scholar
  26. R.C. Fear, L. Trenchi, J.C. Coxon, S.E. Milan, How much flux does a flux transfer event transfer? J. Geophys. Res. 122, 12,310–12,327 (2017).  https://doi.org/10.1002/2017JA024730 CrossRefGoogle Scholar
  27. Y.I. Feldstein, Auroral oval. J. Geophys. Res. 78, 1210 (1973) ADSCrossRefGoogle Scholar
  28. L.A. Frank, J.B. Sigwarth, J.D. Craven, J.P. Cravens, J.S. Dolan, M.R. Dvorsky, P.K. Hardebeck, J.D. Harvey, D.W. Muller, The Visible Imaging System (VIS) for the polar spacecraft. Space Sci. Rev. 71, 297–328 (1995).  https://doi.org/10.1007/BF00751334 ADSCrossRefGoogle Scholar
  29. H.U. Frey, Localized aurora beyond the auroral oval. Rev. Geophys. 45 (2007).  https://doi.org/10.1029/2005RG000174
  30. H.U. Frey, S.B. Mende, T.J. Immel, S.A. Fuselier, E.S. Claflin, J.-C. Gérard, B. Hubert, Proton aurora in the cusp. J. Geophys. Res. 107, 1091 (2002).  https://doi.org/10.1029/2001JA900161 CrossRefGoogle Scholar
  31. H.U. Frey, T.J. Immel, G. Lu, J. Bonnell, S.A. Fuselier, S.B. Mende, B. Hubert, N. Østgaard, G. Le, Properties of localized, high latitude, dayside aurora. J. Geophys. Res. 108, 8008 (2003a).  https://doi.org/10.1029/2002JA009332 CrossRefGoogle Scholar
  32. H.U. Frey, S.B. Mende, S.A. Fuselier, T.J. Immel, N. Østgaard, Proton aurora in the cusp during southward IMF. J. Geophys. Res. 108, 1277 (2003b).  https://doi.org/10.1029/2003JA009861 CrossRefGoogle Scholar
  33. H.U. Frey, T.D. Phan, S.A. Fuselier, S.B. Mende, Continuous magnetic reconnection at Earth’s magnetopause. Nature 426, 533–537 (2003c) ADSCrossRefGoogle Scholar
  34. H.U. Frey, N. Østgaard, T.J. Immel, H. Korth, S.B. Mende, Seasonal dependence of localized, High Latitude Dayside Aurora (HiLDA). J. Geophys. Res. 109, A04303 (2004).  https://doi.org/10.1029/2003JA010293 ADSCrossRefGoogle Scholar
  35. E. Friis-Christensen, M.A. McHenry, C.R. Clauer, S. Vennerstrøm, Ionospheric traveling convection vortices observed near the polar cleft—a triggered response to sudden changes in the solar wind. Geophys. Res. Lett. 15, 253 (1988).  https://doi.org/10.1029/GL015i003p00253 ADSCrossRefGoogle Scholar
  36. B.A. Fritz, M.R. Lessard, K.F. Dymond, D.L. Kenward, K.A. Lynch, J.H. Hecht, J.H. Clemmons, RENU2 UV PMT observations in the cusp. Geophys. Res. Lett. (2019).  https://doi.org/10.1029/2019GL082314 CrossRefGoogle Scholar
  37. S.A. Fuselier, H.U. Frey, K.J. Trattner, S.B. Mende, J.L. Burch, Cusp aurora dependence on IMF \(B_{z}\). J. Geophys. Res. 107 (2002).  https://doi.org/10.1029/2001JA900165
  38. S.A. Fuselier, S.B. Mende, T.E. Moore, H.U. Frey, S.B. Petrinec, E.S. Claflin, M.R. Collier, Cusp dynamics and ionospheric outflow. Space Sci. Rev. 109, 285–312 (2003).  https://doi.org/10.1023/B:SPAC.0000007522.71147.b3 ADSCrossRefGoogle Scholar
  39. S.A. Fuselier, K.J. Trattner, S.M. Petrinec, Antiparallel and component reconnection at the dayside magnetopause. J. Geophys. Res. 116, A10227 (2011).  https://doi.org/10.1029/2011JA016888 ADSCrossRefGoogle Scholar
  40. K.-H. Glassmeier, C. Heppner, Traveling magnetospheric convection twin vortices: another case study, global characteristics, and a model. J. Geophys. Res. 97(A4), 3977 (1992).  https://doi.org/10.1029/91JA02464 ADSCrossRefGoogle Scholar
  41. K.H. Glassmeier, M. Stellmacher, Mapping flux transfer events to the ionosphere. Adv. Space Res. 18(8), 151 (1996) ADSCrossRefGoogle Scholar
  42. N.H. Godbole et al., RENU2 observations of ion upflow and downflow. Geophys. Res. Lett. (2019, submitted) Google Scholar
  43. G. Haerendel, Six auroral generators: a review. J. Geophys. Res. 116, A00K05 (2011).  https://doi.org/10.1029/2010JA016425. Printed 117(A1) (2012) ADSCrossRefGoogle Scholar
  44. G. Haerendel, G. Paschmann, N. Sckopke, H. Rosenbauer, P.C. Hedgecock, The frontside boundary layer of the magnetosphere and the problem of reconnection. J. Geophys. Res. 83(A7), 3195 (1978).  https://doi.org/10.1029/JA083iA07p03195 ADSCrossRefGoogle Scholar
  45. D.S. Han, Ionospheric polarization electric field guiding magnetopause reconnection: a conceptual model of throat aurora. Sci. China Earth Sci. 62 (2019).  https://doi.org/10.1007/s11430-019-9358-8
  46. D. Han, X.-C. Chen, J.-J. Liu, Q. Qiu, K. Keika, Z.-J. Hu, J.-M. Liu, H.-Q. Hu, H.-G. Yang, An extensive survey of dayside diffuse aurora based on optical observations at Yellow River Station. J. Geophys. Res. 120(9), 7447 (2015).  https://doi.org/10.1002/2015ja021699 CrossRefGoogle Scholar
  47. D.S. Han, Y. Nishimura, L.R. Lyons, H.Q. Hu, H.G. Yang, Throat aurora: the ionospheric signature of magnetosheath particles penetrating into the magnetosphere. Geophys. Res. Lett. 43, 1819–1827 (2016).  https://doi.org/10.1002/2016GL068181 ADSCrossRefGoogle Scholar
  48. D.S. Han, H. Hietala, X.C. Chen, Y. Nishimura, L.R. Lyons, J.J. Liu, H.Q. Hu, H.G. Yang, Observational properties of dayside throat aurora and implications on the possible generation mechanisms. J. Geophys. Res. 122, 1853 (2017a).  https://doi.org/10.1002/2016ja023394 CrossRefGoogle Scholar
  49. D.S. Han, J.-X. Li et al., Coordinated observations of two types of diffuse auroras near magnetic local noon by Magnetospheric Multiscale mission and ground all-sky camera. Geophys. Res. Lett. 44(16), 8130 (2017b).  https://doi.org/10.1002/2017gl074447 ADSCrossRefGoogle Scholar
  50. D.-S. Han, J.J. Liu, X.C. Chen, T. Xu, B. Li, Z.J. Hu, H.Q. Hu, H.G. Yang, S.A. Fuselier, C.J. Pollock, Direct evidence for throat aurora being the ionospheric signature of magnetopause transient and reflecting localized magnetopause indentations. J. Geophys. Res. (2018).  https://doi.org/10.1002/2017ja024945 CrossRefGoogle Scholar
  51. D.S. Han, T. Xu, Y. Jin, K. Oksavik, X.C. Chen, J.J. Liu et al., Observational evidence for throat aurora being associated with magnetopause reconnection. Geophys. Res. Lett. 46, 7113–7120 (2019).  https://doi.org/10.1029/2019GL083593 ADSCrossRefGoogle Scholar
  52. J.H. Hecht, J.H. Clemmons, M.R. Lessard, D.L. Kenward, B.F. Sadler, B.A. Fritz, J.S. Evans, K.A. Lynch, A new technique for estimating the lifetime of bursts of electron precipitation from sounding rocket measurementsb. Geophys. Res. Lett. (2019).  https://doi.org/10.1029/2019GL082894 CrossRefGoogle Scholar
  53. J.L. Horwitz, S.I. Akasofu, The response of the dayside aurora to sharp northward and southward transitions of the interplanetary magnetic field and to magnetospheric substorms. J. Geophys. Res. 82(19), 2723 (1977).  https://doi.org/10.1029/JA082i019p02723 ADSCrossRefGoogle Scholar
  54. S.M. Imber, S.E. Milan, B. Hubert, Ionospheric flow and auroral signatures of dual lobe re-connection. Ann. Geophys. 24, 3115–3129 (2006) ADSCrossRefGoogle Scholar
  55. W.L. Imhof, K.A. Spear, J.W. Hamilton, B.R. Higgins, M.J. Murphy, J.G. Pronko, R.R. Vondrak, D.L. McKenzie, C.J. Rice, D.J. Gorney, D.A. Roux, R.L. Williams, J.A. Stein, J. Bjordal, J. Stadsnes, K. Njoten, T.J. Rosenberg, L. Lutz, D. Detrick, The Polar Ionospheric X-Ray Imaging Experiment (PIXIE). Space Sci. Rev. 71, 385–408 (1995).  https://doi.org/10.1007/BF00751336 ADSCrossRefGoogle Scholar
  56. M.G. Johnsen, D.A. Lorentzen, A statistical analysis of the optical dayside open/closed field line boundary. J. Geophys. Res. 117, A02218 (2012).  https://doi.org/10.1029/2011JA016984 ADSCrossRefGoogle Scholar
  57. R. Kataoka, H. Fukunishi, L.J. Lanzerotti, C.G. Maclennan, H.U. Frey, S.B. Mende, J.H. Doolittle, T.J. Rosenberg, A.T. Weatherwax, Magnetic impulse event: a detailed case study of extended ground and space observations. J. Geophys. Res. 106(A11), 25873 (2001).  https://doi.org/10.1029/2000JA000314 ADSCrossRefGoogle Scholar
  58. R. Kataoka, H. Fukunishi, K. Hosokawa, H. Fujiwara, A.S. Yukimatu, N. Sato, Y.-K. Tung, Transient production of F-region irregularities associated with TCV passage. Ann. Geophys. 21, 1531 (2003).  https://doi.org/10.5194/angeo-21-1531-2003 ADSCrossRefGoogle Scholar
  59. D.L. Kenward, M.R. Lessard, B.A. Fritz, I.J. Cohen, Characterization of soft electron precipitation in the cusp region during poleward moving auroral form event. Geophys. Res. Lett. (2019, submitted) Google Scholar
  60. H. Kim et al., Conjugate observations of electromagnetic ion cyclotron waves associated with traveling convection vortex events. J. Geophys. Res. 122, 7336 (2017a).  https://doi.org/10.1002/2017JA024108 CrossRefGoogle Scholar
  61. H. Kim et al., Simultaneous observations of traveling convection vortices: ionosphere-thermosphere coupling. J. Geophys. Res. 122, 4943 (2017b).  https://doi.org/10.1002/2017JA023904 CrossRefGoogle Scholar
  62. P.M. Kintner et al., The SCIFER experiment. Geophys. Res. Lett. 23, 1865 (1996).  https://doi.org/10.1029/96GL01260 ADSCrossRefGoogle Scholar
  63. S. Knight, Parallel electric fields. Planet. Space Sci. 21, 741–750 (1973) ADSCrossRefGoogle Scholar
  64. J. Kuijpers, H.U. Frey, L. Fletcher, Electric current circuits in astrophysics. Space Sci. Rev. 188, 3–57 (2015).  https://doi.org/10.1007/s11214-014-0041-y ADSCrossRefGoogle Scholar
  65. L.J. Lanzerotti, L.C. Lee, C.G. Maclennan, A. Wolfe, L.V. Medford, Possible evidence of flux transfer events in the polar ionosphere. Geophys. Res. Lett. 13, 1089 (1986).  https://doi.org/10.1029/GL013i011p01089 ADSCrossRefGoogle Scholar
  66. L.J. Lanzerotti, A. Wolfe, N. Trivedi, C.G. Maclennan, L.V. Medford, Magnetic impulse events at high latitudes—magnetopause and boundary layer plasma processes. J. Geophys. Res. 95, 97 (1990).  https://doi.org/10.1029/JA095iA01p00097 ADSCrossRefGoogle Scholar
  67. L.C. Lee, Z.F. Fu, A theory of magnetic flux transfer at the Earth’s magnetopause. Geophys. Res. Lett. 12, 105 (1985).  https://doi.org/10.1029/GL012i002p00105 ADSMathSciNetCrossRefGoogle Scholar
  68. M.R. Lessard et al., Overview of the Rocket Experiment for Neutral Upwelling sounding Rocket 2 (RENU2). Geophys. Res. Lett. (2019).  https://doi.org/10.1029/2018GL081885 CrossRefGoogle Scholar
  69. W. Li, J. Bortnik, R.M. Thorne, V. Angelopoulos, Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations. J. Geophys. Res. 116, A12205 (2011).  https://doi.org/10.1029/2011JA017035 ADSCrossRefGoogle Scholar
  70. M. Lockwood, Relationship of dayside auroral precipitations to the open-closed separatrix and the pattern of convective flow. J. Geophys. Res. 102(17), 17,475–17,487 (1997) ADSCrossRefGoogle Scholar
  71. M. Lockwood, Identifying the open-closed field line boundary, in Polar Cap Boundary Phenomena, ed. by J. Moen, A. Egeland, M. Lockwood. NATO ASI Series, vol. 509 (Kluwer Academic Publishers, Dordrecht, 1998), pp. 73–90 CrossRefGoogle Scholar
  72. M. Lockwood, S.W.H. Cowley, P.E. Sandholt, R.P. Lepping, The ionospheric signatures of flux transfer events and solar wind dynamic pressure changes. J. Geophys. Res. 95, 17,113 (1990).  https://doi.org/10.1029/JA095iA10p17113 ADSCrossRefGoogle Scholar
  73. M. Lockwood, H.C. Carlson, P.E. Sandholt, The implications of the altitude of transient 630 nm dayside auroral emission. J. Geophys. Res. 98, 15,571–15,587 (1993) ADSCrossRefGoogle Scholar
  74. M. Lockwood, S.W.H. Cowley, M.F. Smith, R.P. Rijnbeek, R.C. Elphic, The contribution of flux transfer events to convection. Geophys. Res. Lett. 22, 1185–1188 (1995) ADSCrossRefGoogle Scholar
  75. M. Lockwood, C.J. Davis, T.G. Onsager, J.A. Scudder, Modelling signatures of pulsed magnetopause reconnection in cusp ion dispersion signatures seen at middle altitudes. Geophys. Res. Lett. 25, 591–594 (1998) ADSCrossRefGoogle Scholar
  76. M. Lockwood, I.W. McCrea, S.E. Milan, J. Moen, J.C. Cerisier, A. Thorolfsson, Plasma structure within poleward-moving cusp-cleft auroral transients: EISCAT Svalbard radar observations and an explanation in terms of large local time extent of events. Ann. Geophys. 18, 1027 (2000) ADSCrossRefGoogle Scholar
  77. M. Lockwood, S.E. Milan, T. Onsager, C.H. Perry, J.A. Scudder, C.T. Russell, M. Brittnacher, Cusp ion steps, field-aligned currents and poleward moving auroral forms. J. Geophys. Res. 106, 29,555–29,569 (2001a) ADSCrossRefGoogle Scholar
  78. M. Lockwood, H. Opgenoorth et al., Coordinated Cluster, ground-based instrumentation and low-altitude satellite observations of transient poleward-moving events in the ionosphere and in the tail lobe. Ann. Geophys. 19, 1589–1612 (2001b).  https://doi.org/10.5194/angeo-19-1589-2001 ADSCrossRefGoogle Scholar
  79. D.A. Lorentzen, C.S. Deehr, J.I. Minow, R.W. Smith, H.C. Stenbaek-Nielsen, F. Sigernes, SCIFER-dayside auroral signatures of magnetospheric energetic electrons. Geophys. Res. Lett. 23, 1885 (1996).  https://doi.org/10.1029/96GL00593 ADSCrossRefGoogle Scholar
  80. D.A. Lorentzen, J. Moen, K. Oksavik, F. Sigernes, Y. Saito, M.G. Johnsen, In situ measurement of a newly created polar cap patch. J. Geophys. Res. 115, A12323 (2010).  https://doi.org/10.1029/2010JA015710 ADSCrossRefGoogle Scholar
  81. E.J. Lund et al., Electron temperature in the cusp as measured with the SCIFER-2 sounding rocket. J. Geophys. Res. 117, A06326 (2012).  https://doi.org/10.1029/2011JA017404 ADSCrossRefGoogle Scholar
  82. R.L. Lysak, Y. Song, Kinetic theory of the Alfvén wave acceleration of auroral electrons. J. Geophys. Res. 108(A4), 8005 (2003).  https://doi.org/10.1029/2002JA009406 CrossRefGoogle Scholar
  83. A. Marchaudon, J.-C. Cerisier, J.-M. Bosqued, M.W. Dunlop, J.A. Wild, P.M.E. Decreau, M. Forster, D. Fontaine, H. Laakso, Transient plasma injections in the dayside magnetosphere: one-to-one correlated observations by Cluster and SuperDARN. Ann. Geophys. 22, 141–158 (2004).  https://doi.org/10.5194/angeo-22-141-2004 ADSCrossRefGoogle Scholar
  84. N.C. Maynard et al., Characteristics of merging at the magnetopause inferred from dayside 557.7 nm all-sky images: IMF drivers of poleward moving auroral forms. Ann. Geophys. 24, 3071 (2006).  https://doi.org/10.5194/angeo-24-3071-2006 ADSCrossRefGoogle Scholar
  85. I.B. McDiarmid, J.R. Burrows, E.E. Budzinski, Average characteristics of magnetospheric electrons (140 eV to 200 keV) at 1400 kilometers. J. Geophys. Res. 80, 73–79 (1975) ADSCrossRefGoogle Scholar
  86. K.A. McWilliams, T.K. Yeoman, S.W.H. Cowley, Two-dimensional electric field measurements in the ionospheric footprint of a flux transfer event. Ann. Geophys. 18, 1584–1598 (2000a).  https://doi.org/10.1007/s00585-001-1584-2 ADSCrossRefGoogle Scholar
  87. K.A. McWilliams, T.K. Yeoman, G. Provan, A statistical survey of dayside pulsed ionospheric flows as seen by the CUTLASS Finland HF radar. Ann. Geophys. 18, 445–453 (2000b).  https://doi.org/10.1007/s00585-000-0445-8 ADSCrossRefGoogle Scholar
  88. S.B. Mende, R.L. Rairden, L.J. Lanzerotti, C.G. Maclennan, Magnetic impulses and associated optical signatures in the dayside aurora. Geophys. Res. Lett. 17, 131 (1990).  https://doi.org/10.1029/GL017i002p00131 ADSCrossRefGoogle Scholar
  89. S.B. Mende, H.U. Frey, J.H. Doolittle, L. Lanzerotti, C.G. Maclennan, Dayside optical and magnetic correlation events. J. Geophys. Res. 106, 24637 (2001).  https://doi.org/10.1029/2001JA900065 ADSCrossRefGoogle Scholar
  90. S.B. Mende, H.U. Frey, J. McFadden, C.W. Carlson, V. Angelopoulos, K.H. Glassmeier, D.G. Sibeck, A. Weatherwax, Coordinated observation of the dayside magnetospheric entry and exit of the THEMIS satellites with ground-based auroral imaging in Antarctica. J. Geophys. Res. 114, A00C23 (2009).  https://doi.org/10.1029/2008JA013496 CrossRefGoogle Scholar
  91. M. Meurant, J.-C. Gerard, B. Hubert, V. Coumans, C. Blockx, N. Østgaard, S.B. Mende, Dynamics of global scale electron and proton precipitation induced by a solar wind pressure pulse. Geophys. Res. Lett. 30, 2032 (2003).  https://doi.org/10.1029/2003GL018017 ADSCrossRefGoogle Scholar
  92. M. Meurant, J.-C. Gerard, C. Blockx, B. Hubert, V. Coumans, Propagation of electron and proton shock-induced aurora and the role of the interplanetary magnetic field and solar wind. J. Geophys. Res. 109, A10210 (2004).  https://doi.org/10.1029/2004JA010453 ADSCrossRefGoogle Scholar
  93. M. Meurant, J.-C. Gerard, C. Blockx, V. Coumans, B. Hubert, M. Connors, L.R. Lyons, E. Donovan, Comparison of intense nightside shock-induced precipitation and substorm activity. J. Geophys. Res. 110, A07228 (2005).  https://doi.org/10.1029/2004JA010916 ADSCrossRefGoogle Scholar
  94. S.E. Milan, M. Lester, S.W.H. Cowley, J. Moen, P.E. Sandholt, C.J. Owen, Meridian-scanning photometer, coherent HF radar, and magnetometer observations of the cusp: a case study. Ann. Geophys. 17, 159–172 (1999a) ADSCrossRefGoogle Scholar
  95. S.E. Milan, T.K. Yeoman, M. Lester, J. Moen, P.E. Sandholt, Post-noon two-minute period pulsating aurora and their relationship to the dayside convection pattern. Ann. Geophys. 17(7), 877 (1999b).  https://doi.org/10.1007/s00585-999-0877-8 ADSCrossRefGoogle Scholar
  96. S.E. Milan, M. Lester, S.W.H. Cowley, M. Brittnacher, Convection and auroral response to a southward turning of the IMF: polar UVI, CUTLASS, and IMAGE signatures of transient magnetic flux transfer at the magnetopause. J. Geophys. Res. 105(A7), 15741 (2000a).  https://doi.org/10.1029/2000JA900022 ADSCrossRefGoogle Scholar
  97. S.E. Milan, M. Lester, S.W.H. Cowley, M. Brittnacher, Dayside convection and auroral morphology during an interval of northward interplanetary magnetic field. Ann. Geophys. 18, 436–444 (2000b) ADSCrossRefGoogle Scholar
  98. S.E. Milan, M. Lester, S.W.H. Cowley, K. Oksavik, M. Brittnacher, R.A. Greenwald, G. Sofko, J.-P. Villain, Variations in polar cap area during two substorm cycles. Ann. Geophys. 21, 1121–1140 (2003) ADSCrossRefGoogle Scholar
  99. S.E. Milan, G. Provan, B. Hubert, Magnetic flux transport in the Dungey cycle: a survey of dayside and nightside reconnection rates. J. Geophys. Res. 112, A01209 (2007).  https://doi.org/10.1029/2006JA011642 ADSCrossRefGoogle Scholar
  100. S.E. Milan, S.M. Imber, J.A. Carter, M.T. Walach, B. Hubert, What controls the local time extent of flux transfer events? J. Geophys. Res. 121, 1391 (2016).  https://doi.org/10.1002/2015JA022012 CrossRefGoogle Scholar
  101. S.E. Milan, L.B.N. Clausen, J.C. Coxon, J.A. Carter, M.-T. Walach, K. Laundal, N. Østgaard, P. Tenfjord, J. Reistad, K. Snekvik, H. Korth, B.J. Anderson, Overview of solar wind-magnetosphere-ionosphere-atmosphere coupling and the generation of magnetospheric currents. Space Sci. Rev. 206, 547–573 (2017).  https://doi.org/10.1007/s11214-017-0333-0 ADSCrossRefGoogle Scholar
  102. J. Moen, Y. Rinne, H.C. Carlson, K. Oksavik, R. Fujii, H. Opgenoorth, On the relationship between thin Birkeland current arcs and reversed flow channels in the winter cusp/cleft ionosphere. J. Geophys. Res. 113, A09220 (2008).  https://doi.org/10.1029/2008JA013061 ADSCrossRefGoogle Scholar
  103. J. Moen, H. Carlson, Y. Rinne, A. Skjaveland, Multi-scale features of solar terrestrial coupling in the cusp ionosphere. J. Atmos. Sol.-Terr. Phys. 87, 11 (2012).  https://doi.org/10.1016/j.jastp.2011.07.002 ADSCrossRefGoogle Scholar
  104. T. Motoba, Y. Ebihara, A. Kadokura, M.J. Engebretson, M.R. Lessard, A.T. Weatherwax, A.J. Gerrard, Fast-moving diffuse auroral patches: a new aspect of daytime Pc3 auroral pulsations. J. Geophys. Res. 122, 1542 (2017).  https://doi.org/10.1002/2016JA023285 CrossRefGoogle Scholar
  105. D.L. Murr, W.J. Hughes, Solar wind drivers of Traveling Convection Vortices. Geophys. Res. Lett. 30(7), 1354 (2003).  https://doi.org/10.1029/2002GL015498 ADSCrossRefGoogle Scholar
  106. D.L. Murr, W.J. Hughes, A.S. Rodger, E. Zesta, H.U. Frey, A.T. Weatherwax, Conjugate observations of traveling convection vortices: the field-aligned current system. J. Geophys. Res. 107, 1306 (2002).  https://doi.org/10.1029/2002JA009456 CrossRefGoogle Scholar
  107. D.A. Neudegg et al., A survey of magnetopause FTEs and associated flow bursts in the polar ionosphere. Ann. Geophys. 18, 416–435 (2000).  https://doi.org/10.1007/s00585-000-0416-0 ADSCrossRefGoogle Scholar
  108. D.A. Neudegg et al., The UV aurora and ionospheric flows during flux transfer events. Ann. Geophys. 19, 179–188 (2001).  https://doi.org/10.5194/angeo-19-179-2001 ADSCrossRefGoogle Scholar
  109. P.T. Newell, C.-I. Meng, Ion acceleration at the equatorward edge of the cusp: low altitude observations of patchy merging. Geophys. Res. Lett. 18, 1829–1832 (1991) ADSCrossRefGoogle Scholar
  110. P.T. Newell, J.M. Ruohoniemi, C.-I. Meng, Maps of precipitation by source region, binned by IMF, with inertial convection streamlines. J. Geophys. Res. 109, A10206 (2004).  https://doi.org/10.1029/2004JA010499 ADSCrossRefGoogle Scholar
  111. P.T. Newell, S. Wing, C.I. Meng, Spectral properties and source regions of dayside electron acceleration events. J. Geophys. Res. 110, A11205 (2005).  https://doi.org/10.1029/2005JA011264 ADSCrossRefGoogle Scholar
  112. P.T. Newell, T. Sotirelis, K. Liou, C.-I. Meng, F.J. Rich, Cusp latitude and the optimal solar wind coupling function. J. Geophys. Res. 111, A09207 (2006).  https://doi.org/10.1029/2006JA011731 ADSCrossRefGoogle Scholar
  113. P.T. Newell, T. Sotirelis, S. Wing, Diffuse, monoenergetic, and broadband aurora: the global precipitation budget. J. Geophys. Res. 114, A09207 (2009).  https://doi.org/10.1029/2009JA014326 ADSCrossRefGoogle Scholar
  114. B. Ni, J. Bortnik, Y. Nishimura, R.M. Thorne, W. Li, V. Angelopoulos, Chorus wave scattering responsible for the Earth’s dayside diffuse auroral precipitation: a detailed case study. J. Geophys. Res. 119, 897 (2014).  https://doi.org/10.1002/2013JA019507 CrossRefGoogle Scholar
  115. B. Ni, R.M. Thorne, X. Zhang, J. Bortnik, Z. Pu, L. Xie, Origins of the Earth’s diffuse auroral precipitation. Space Sci. Rev. 200, 205 (2016).  https://doi.org/10.1007/s11214-016-0234-7 ADSCrossRefGoogle Scholar
  116. Y. Nishimura, J. Bortnik, W. Li, R.M. Thorne, B. Ni, L.R. Lyons, Structures of dayside whistler-mode waves deduced from conjugate diffuse aurora. J. Geophys. Res. 118, 664 (2013).  https://doi.org/10.1029/2012JA018242 CrossRefGoogle Scholar
  117. Y. Nishimura, T. Kikuchi, Y. Ebihara, A. Yoshikawa, S. Imajo, W. Li, H. Utada, Evolution of the current system during solar wind pressure pulses based on aurora and magnetometer observations. Earth Planets Space 68(1), 144 (2016) ADSCrossRefGoogle Scholar
  118. K. Oksavik, J. Moen, H.C. Carlson, High-resolution observations of the small-scale flow pattern associated with a poleward moving auroral form in the cusp. Geophys. Res. Lett. 31, L11807 (2004).  https://doi.org/10.1029/2005GL019838 ADSCrossRefGoogle Scholar
  119. K. Oksavik, J. Moen, H.C. Carlson, R.A. Greenwald, S.E. Milan, M. Lester, R.J. Barnes, Multi-instrument mapping of the small-scale flow dynamics related to a cusp auroral transient. Ann. Geophys. 23, 2657 (2005) ADSCrossRefGoogle Scholar
  120. N. Østgaard, J. Stadsnes, J. Bjordal, R.R. Vondrak, S.A. Cummer, D.L. Chenette, G.K. Parks, M.J. Brittnacher, D.L. McKenzie, Global-scale electron precipitation features seen in UV and X rays during substorms. J. Geophys. Res. 104, 10191–10204 (1999).  https://doi.org/10.1029/1999JA900004 ADSCrossRefGoogle Scholar
  121. N. Østgaard, J. Stadsnes, J. Bjordal, G.A. Germany, R.R. Vondrak, G.K. Parks, S.A. Cummer, D.L. Chenette, J.G. Pronko, Auroral electron distributions derived from combined UV and X-ray emissions. J. Geophys. Res. 106, 26081–26090 (2000a).  https://doi.org/10.1029/2001JA000031 CrossRefGoogle Scholar
  122. N. Østgaard, J. Stadsnes, J. Bjordal, R.R. Vondrak, S.A. Cummer, D.L. Chenette, M. Schulz, J.G. Pronko, Cause of the localized maximum of X-ray emission in the morning sector: a comparison with electron measurements. J. Geophys. Res. 105, 20869–20884 (2000b).  https://doi.org/10.1029/1999JA000354 ADSCrossRefGoogle Scholar
  123. N. Østgaard, S.B. Mende, H.U. Frey, J.B. Sigwarth, Simultaneous imaging of the reconnection spot in the opposite hemispheres during northward IMF. Geophys. Res. Lett. 32, L21104 (2005).  https://doi.org/10.1029/2005GL024491 ADSCrossRefGoogle Scholar
  124. N. Østgaard et al., The asymmetric geospace as displayed during the geomagnetic storm on 17 August 2001. Ann. Geophys. 36, 1577 (2018).  https://doi.org/10.5194/angeo-36-1577-2018 CrossRefGoogle Scholar
  125. G. Paschmann, G. Haerendel, I. Papamastorakis, N. Sckopke, S.J. Bame, J.T. Gosling, C.T. Russell, Plasma and magnetic field characteristics of magnetic flux transfer events. J. Geophys. Res. 87, 2159 (1982).  https://doi.org/10.1029/JA087iA04p02159 ADSCrossRefGoogle Scholar
  126. T.D. Phan et al., Simultaneous Cluster and IMAGE observations of cusp reconnection and auroral proton spot for northward IMF. Geophys. Res. Lett. 30(10), 1509 (2003).  https://doi.org/10.1029/2003GL016885 ADSCrossRefGoogle Scholar
  127. F. Plaschke, H. Hietala, M. Archer, X. Blanco-Cano, P. Kajdic, T. Karlsson, H.L. Sun, N. Omidi, M. Palmroth, V. Roytershteyn, Jets downstream of collisionless shocks. Space Sci. Rev. 214(5), 81 (2018) ADSCrossRefGoogle Scholar
  128. J.L. Posch, M.J. Engebretson, A.J. Witte, D.L. Murr, M.R. Lessard, M.G. Johnsen, H.J. Singer, M.D. Hartinger, Simultaneous traveling convection vortex events and Pc1 wave bursts at cusp latitudes observed in Arctic Canada and Svalbard. J. Geophys. Res. Space Phys. 118, 6352 (2013).  https://doi.org/10.1002/jgra.50604 ADSCrossRefGoogle Scholar
  129. P. Prikryl, G. Provan, K.A. McWilliams, T.K. Yeoman, Ionospheric cusp flows pulsed by solar wind Alfvén waves. Ann. Geophys. 20, 161–174 (2002).  https://doi.org/10.5194/angeo-20-161-2002 ADSCrossRefGoogle Scholar
  130. G. Provan, T.K. Yeoman, Statistical observations of the MLT, latitude and size of pulsed ionospheric flows with the CUTLASS Finland radar. Ann. Geophys. 17, 855–867 (1999).  https://doi.org/10.1007/s00585-999-0855-1 ADSCrossRefGoogle Scholar
  131. G. Provan, T.K. Yeoman, S.W.H. Cowley, The influence of the IMF \(B_{y}\) component on the locations of pulsed flows in the dayside ionosphere as observed by HF radar. Geophys. Res. Lett. 26, 521 (1999) ADSCrossRefGoogle Scholar
  132. G. Provan, M. Lester, A. Grocott, S.W.H. Cowley, Pulsed flows observed during an interval of prolonged northward IMF. Ann. Geophys. 23, 1207–1225 (2005).  https://doi.org/10.5194/angeo-23-1207-2005 ADSCrossRefGoogle Scholar
  133. M.I. Pudovkin, S.A. Zaitseva, P.E. Sandholt, A. Egeland, Dynamics of aurorae in the cusp region and characteristics of magnetic reconnection at the magnetopause. Planet. Space Sci. 40, 879 (1992) ADSCrossRefGoogle Scholar
  134. I.J. Rae, F.R. Fenrich, M. Lester, K.A. McWilliams, J.D. Scudder, Solar wind modulation of cusp particle signatures and their associated ionospheric flows. J. Geophys. Res. 109, A03223, 10/1029/2003JA010188 (2004) ADSGoogle Scholar
  135. P.H. Reiff, T.W. Hill, J.L. Burch, Solar wind plasma injection at the dayside magnetospheric cusp. J. Geophys. Res. 82, 479–487 (1977) ADSCrossRefGoogle Scholar
  136. Y. Rinne, J. Moen, K. Oksavik, H.C. Carlson, Reversed flow events in the winter cusp ionosphere observed by the European Incoherent Scatter (EISCAT) Svalbard radar. J. Geophys. Res. 112, A10313 (2007).  https://doi.org/10.1029/2007JA012366 ADSCrossRefGoogle Scholar
  137. O. Royrvik, T.N. Davis, Pulsating aurora: local and global morphology. J. Geophys. Res. 82(29), 4720 (1977).  https://doi.org/10.1029/JA082i029p04720 ADSCrossRefGoogle Scholar
  138. C.T. Russell, R.C. Elphic, Initial ISEE magnetometer results—magnetopause observations. Space Sci. Rev. 22, 681 (1978).  https://doi.org/10.1007/BF00212619 ADSCrossRefGoogle Scholar
  139. C.T. Russell, R.C. Elphic, ISEE observations of flux transfer events at the dayside magnetopause. Geophys. Res. Lett. 6, 33 (1979).  https://doi.org/10.1029/GL006i001p00033 ADSCrossRefGoogle Scholar
  140. K. Sakaguchi, K. Shiokawa, A. Ieda, Y. Miyoshi, Y. Otsuka, T. Ogawa, M. Connors, E.F. Donovan, F.J. Rich, Simultaneous ground and satellite observations of an isolated proton arc at subauroral latitudes. J. Geophys. Res. 112, A04202 (2007).  https://doi.org/10.1029/2006JA012135 ADSCrossRefGoogle Scholar
  141. P.E. Sandholt, C.J. Farrugia, Monitoring magnetosheath-magnetosphere interconnection topography from the aurora. Ann. Geophys. 20, 629 (2002) ADSCrossRefGoogle Scholar
  142. P.E. Sandholt, P.T. Newell, Ground and satellite observations of an auroral event at the cusp/cleft equatorward boundary. J. Geophys. Res. 97(A6), 8685 (1992).  https://doi.org/10.1029/91JA02995 ADSCrossRefGoogle Scholar
  143. P.E. Sandholt, C.S. Deehr, A. Egeland, B. Lybekk, R. Viereck, G.J. Romick, Signatures in the dayside aurora of plasma transfer from the magnetosheath. J. Geophys. Res. 91(A9), 10063 (1986).  https://doi.org/10.1029/JA091iA09p10063 ADSCrossRefGoogle Scholar
  144. P.E. Sandholt, H.C. Carlson, A. Egeland, Dayside and Polar Cap Aurora. Astrophysics and Space Science Library, vol. 270 (Kluwer Academic Publishers, Dordrecht/Boston/London, 2002a) Google Scholar
  145. P.E. Sandholt, W.F. Denig, C.J. Farrugia, B. Lybekk, E. Trondsen, Auroral structure at the cusp equatorward boundary: relationship with the electron edge of low-latitude boundary layer precipitation. J. Geophys. Res. 107(A9), 1235 (2002b).  https://doi.org/10.1029/2001JA005081 CrossRefGoogle Scholar
  146. P.E. Sandholt, C.J. Farrugia, W.F. Denig, S.W.H. Cowley, M. Lester, Spontaneous and driven cusp dynamics: optical aurora, particle precipitation, and plasma convection. Planet. Space Sci. 51(12), 797 (2003a).  https://doi.org/10.1016/S0032-0633(03)00114-4 ADSCrossRefGoogle Scholar
  147. P.E. Sandholt, J. Moen, C.J. Farrugia, S.W.H. Cowley, M. Lester, S.E. Milan, C. Valladares, W.F. Denig, S. Eriksson, Multi-site observations of the association between aurora and plasma convection in the cusp/polar cap during a southeastward \((B_{y} \sim \| B_{z} \|)\) IMF orientation. Ann. Geophys. 21, 539 (2003b).  https://doi.org/10.5194/angeo-21-539-2003 ADSCrossRefGoogle Scholar
  148. P.E. Sandholt, C.J. Farrugia, W.F. Denig, Dayside aurora and the role of IMF \(|B_{y}/B_{z}|\): detailed morphology and response to magnetopause reconnection. Ann. Geophys. 22, 613 (2004).  https://doi.org/10.5194/angeo-22-613-2004 ADSCrossRefGoogle Scholar
  149. D.G. Sibeck et al., Comprehensive study of the magnetospheric response to a hot flow anomaly. J. Geophys. Res. 104(A3), 4577 (1999).  https://doi.org/10.1029/1998JA900021 ADSCrossRefGoogle Scholar
  150. R.J. Sitar, J.B. Baker, C.R. Clauer, A.J. Ridley, J.A. Cumnock, V.O. Papitashvili, J. Spann, M.J. Brittnacher, G.K. Parks, Multi-instrument analysis of the ionospheric signatures of a hot flow anomaly occurring on July 24, 1996. J. Geophys. Res. 103(A10), 23357 (1998).  https://doi.org/10.1029/98JA01916 ADSCrossRefGoogle Scholar
  151. A. Skjaveland, J. Moen, H.C. Carlson, On the relationship between flux transfer events, temperature enhancements, and ion upflow events in the cusp ionosphere. J. Geophys. Res. 116, A10305 (2011).  https://doi.org/10.1029/2011JA016480 ADSCrossRefGoogle Scholar
  152. D.J. Southwood, The ionospheric signature of flux transfer events. J. Geophys. Res. 92(A4), 3207 (1987).  https://doi.org/10.1029/JA092iA04p03207 ADSCrossRefGoogle Scholar
  153. A. Thorolfsson, J.C. Cerisier, M. Lockwood, P.E. Sandholt, C. Senior, M. Lester, Simultaneous optical and radar signatures of poleward moving auroral forms. Ann. Geophys. 18, 1054 (2000).  https://doi.org/10.1007/s00585-000-1054-2 ADSCrossRefGoogle Scholar
  154. M.R. Torr, D.G. Torr, M. Zukic, R.B. Johnson, J. Ajello, P. Banks, K. Clark, K. Cole, C. Keffer, G. Parks, B. Tsurutani, J. Spann, A far ultraviolet imager for the International Solar-Terrestrial Physics Mission. Space Sci. Rev. 71, 329 (1995).  https://doi.org/10.1007/BF00751335 ADSCrossRefGoogle Scholar
  155. K.J. Trattner, S.A. Fuselier, W.K. Peterson, M. Boehm, D. Klumpar, C.W. Carlson, T.K. Yeoman, Temporal versus spatial interpretation of cusp ion structures observed by two spacecraft. J. Geophys. Res. 107(A10), 1287 (2002).  https://doi.org/10.1029/2001JA000181 CrossRefGoogle Scholar
  156. E.A. Tremsina, S.B. Mende, H.U. Frey, Identifying the evolution of Southern Hemisphere poleward moving auroral forms (PMAFs) in the context of plasma convection and magnetic reconnection. J. Geophys. Res. Space Phys. 122, 4037–4050 (2017).  https://doi.org/10.1002/2016JA023426 ADSCrossRefGoogle Scholar
  157. V.G. Vorobjev, G. Gustafsson, G.V. Starkov, Y.I. Feldstein, N.F. Shevnina, Dynamics of day and night aurora during substorms. Planet. Space Sci. 23, 269 (1975).  https://doi.org/10.1016/0032-0633(75)90132-4 ADSCrossRefGoogle Scholar
  158. B. Wang, Y. Nishimura, L.R. Lyons, Y. Zou, H.C. Carlson, H.U. Frey, S.B. Mende, Analysis of close conjunctions between dayside polar cap airglow patches and flow channels by all-sky imager and DMSP. Earth Planets Space 68(1), 150 (2016a).  https://doi.org/10.1186/s40623-016-0524-z ADSCrossRefGoogle Scholar
  159. B. Wang, Y. Nishimura, Y. Zou, L.R. Lyons, V. Angelopoulos, H. Frey, S. Mende, Investigation of triggering of poleward moving auroral forms using satellite-imager coordinated observations. J. Geophys. Res. 121, 10,929 (2016b).  https://doi.org/10.1002/2016JA023128 CrossRefGoogle Scholar
  160. B. Wang, Y. Nishimura, H. Hietala, L. Lyons, V. Angelopoulos, F. Plaschke, Impacts of magnetosheath high-speed jets on the magnetosphere and ionosphere measured by optical imaging and satellite observations. J. Geophys. Res. 123, 4879 (2018a).  https://doi.org/10.1029/2017JA024954 CrossRefGoogle Scholar
  161. B. Wang, Y. Nishimura, H. Hietala, X.C. Shen, Q. Shi, H. Zhang, Dayside magnetospheric and ionospheric responses to a foreshock transient on June 25, 2008: 2.2-D evolution based on dayside auroral imaging. J. Geophys. Res. 123, 6347 (2018b).  https://doi.org/10.1029/2017JA024846 CrossRefGoogle Scholar
  162. A.T. Weatherwax, H.B. Vo, T.J. Rosenberg, S.B. Mende, H.U. Frey, L.J. Lanzerotti, C.G. Maclennan, A dayside ionospheric absorption perturbation in response to a large deformation of the magnetopause. Geophys. Res. Lett. 26, 517 (1999).  https://doi.org/10.1029/1999GL900017 ADSCrossRefGoogle Scholar
  163. J.A. Wild et al., First simultaneous observations of flux transfer events at the high-latitude magnetopause by the Cluster spacecraft and pulsed radar signatures in the conjugate ionosphere by the CUTLASS and EISCAT radars. Ann. Geophys. 19, 1491–1508 (2001).  https://doi.org/10.5194/angeo-19-1491-2001 ADSCrossRefGoogle Scholar
  164. J.A. Wild, S.E. Milan, S.W.H. Cowley, M.W. Dunlop, C.J. Owen, J.M. Bosqued, H. Reme, Coordinated interhemispheric SuperDARN radar observations of the ionospheric response to flux transfer events observed by the Cluster spacecraft at the high-latitude magnetopause. Ann. Geophys. 21, 1807 (2003).  https://doi.org/10.5194/angeo-21-1807-2003 ADSCrossRefGoogle Scholar
  165. S. Wing, P.T. Newell, C.-I. Meng, Cusp modeling and observations at low latitude. Surv. Geophys. 26, 341–367 (2005).  https://doi.org/10.1007/s10712-005-1886-0 ADSCrossRefGoogle Scholar
  166. J. Woch, R. Lundin, Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field. J. Geophys. Res. 97, 1421–1430 (1992) ADSCrossRefGoogle Scholar
  167. Z.Y. Xing et al., Poleward moving auroral forms (PMAFs) observed at the Yellow River Station: a statistical study of its dependence on the solar wind conditions. J. Atmos. Sol.-Terr. Phys. 86, 25 (2012).  https://doi.org/10.1016/j.astp.2012.06.004 ADSCrossRefGoogle Scholar
  168. A.G. Yahnin, T.A. Yahnina, H.U. Frey, Subauroral proton spots visualize the Pc1 source. J. Geophys. Res. 112, A10223 (2007).  https://doi.org/10.1029/2007JA012501 ADSCrossRefGoogle Scholar
  169. T.A. Yahnina, H.U. Frey, T. Bösinger, A.G. Yahnin, Evidence for subauroral proton flashes on the dayside as the result of the ion cyclotron interaction. J. Geophys. Res. 113, A07209 (2008).  https://doi.org/10.1029/2008JA013099 ADSCrossRefGoogle Scholar
  170. T.K. Yeoman, M. Lester, S.W.H. Cowley, S.E. Milan, J. Moen, P.E. Sandholt, Simultaneous observations of the cusp in optical, DMSP and HF radar data. Geophys. Res. Lett. 24, 2251–2254 (1997) ADSCrossRefGoogle Scholar
  171. Y. Zhang, L.J. Paxton, T.J. Immel, H.U. Frey, S.B. Mende, Sudden solar wind dynamic pressure enhancements and dayside detached auroras: IMAGE and DMSP observations. J. Geophys. Res. 108(A4), 8001 (2002).  https://doi.org/10.1029/2002JA009355 CrossRefGoogle Scholar
  172. Y. Zhang, C.-I. Meng, L.J. Paxton, D. Morrison, B. Wolven, H. Kil, P. Newell, S. Wing, A.B. Christensen, Far-ultraviolet signature of polar cusp during southward IMF Bz observed by TIMED/Global Ultraviolet Imager and DMSP. J. Geophys. Res. 110, A01218 (2005).  https://doi.org/10.1029/2004JA010707 ADSCrossRefGoogle Scholar
  173. Q.H. Zhang et al., Simultaneous observations of reconnection pulses at Cluster and their effects on the cusp aurora observed at the Chinese Yellow River Station. J. Geophys. Res. 115, A10237 (2010).  https://doi.org/10.1029/2010JA015526 ADSCrossRefGoogle Scholar
  174. X.-Y. Zhou, B.T. Tsurutani, Rapid intensification and propagation of the dayside aurora: large scale interplanetary pressure pulses (fast shocks). Geophys. Res. Lett. 26, 1097–1100 (1999) ADSCrossRefGoogle Scholar
  175. X.Y. Zhou, R.J. Strangeway, P.C. Anderson, D.G. Sibeck, B.T. Tsurutani, G. Haerendel, H.U. Frey, J.K. Arballo, Shock aurora: FAST and DMSP observations. J. Geophys. Res. 108(A4), 8019 (2003).  https://doi.org/10.1029/2002JA009701 CrossRefGoogle Scholar
  176. X.-Y. Zhou, K. Fukui, H.C. Carlson, J.I. Moen, R.J. Strangeway, Shock aurora: ground-based imager observations. J. Geophys. Res. 114, A12216 (2009).  https://doi.org/10.1029/2009JA014186 ADSCrossRefGoogle Scholar
  177. X.-Y. Zhou, D.G. Sibeck, O. Amm, J.M. Ruohoniemi, Interplanetary shock generated ionospheric traveling convection vortex near local noon. Adv. Geosci. 21, 367–378 (2010) Google Scholar
  178. X.-Y. Zhou, G. Haerendel, J.I. Moen, E. Trondsen, L. Clausen, R.J. Strangeway, B. Lybekk, D.A. Lorentzen, Shock aurora: field-aligned discrete structures moving along the dawnside oval. J. Geophys. Res. 122, 3145–3162 (2017).  https://doi.org/10.1002/2016JA022666 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA
  2. 2.State Key Laboratory of Marine Geology, School of Ocean and Earth ScienceTongji UniversityShanghaiChina
  3. 3.National Institute of Polar ResearchTachikawa, TokyoJapan
  4. 4.Department of Polar ScienceSOKENDAITachikawa, TokyoJapan
  5. 5.Space Science CenterUniversity of New HampshireDurhamUSA
  6. 6.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK
  7. 7.Birkeland Centre for Space SciencesUniversity of BergenBergenNorway
  8. 8.Department of Electrical and Computer Engineering and Center for Space PhysicsBoston UniversityBostonUSA
  9. 9.Department of Earth, Planetary, and Space SciencesUCLALos AngelesUSA
  10. 10.Department of Astronomy and Center for Space PhysicsBoston UniversityBostonUSA
  11. 11.Cooperative Programs for the Advancement of Earth System ScienceUniversity Corporation for Atmospheric ResearchBoulderUSA

Personalised recommendations