Advertisement

Space Science Reviews

, 215:53 | Cite as

Airglow Patches in the Polar Cap Region: A Review

  • Keisuke HosokawaEmail author
  • Ying Zou
  • Yukitoshi Nishimura
Article
Part of the following topical collections:
  1. Auroral Physics

Abstract

Polar cap airglow patches have been known as regions of enhanced 630.0 nm airglow detected by ground-based all-sky imagers at the polar cap latitudes well inside the main auroral oval. Although they were already recognized almost four decades ago as counterparts of polar cap (plasma density) patches, such airglow observations had not been utilized extensively for the studies of ionospheric structures and/or magnetosphere-ionosphere coupling processes in the polar cap. In the last two decades, following the development of highly-sensitive airglow imagers equipped with cooled CCD (Charge Coupled Device) cameras, it has become possible to visualize the dynamical temporal evolution and complicated spatial structure of airglow patches with improved signal-to-noise ratio. Such a progress has enabled us not only to use airglow patches as tracers for plasma convection in the polar cap but also to understand the generation of small-scale plasma irregularities in the ionospheric F region. In addition, recent observations demonstrated a case in which an airglow patch was accompanied by an intense flow channel and corresponding field-aligned current structure along its edges. This implies that airglow patches can signify magnetosphere-ionosphere coupling process in the region of open field lines at the polar cap latitudes, serving as a remote sensing tool just like auroras do. Further studies showed an association of airglow patches with the intensification of aurora on the nightside (Poleward Boundary Intensification: PBI and/or streamer) leading to the expansion phase onset of substorms. This paper reviews such recent progresses in the researches of airglow patches obtained by combining data from all-sky airglow imagers, radars and low-altitude satellite observations in the polar cap.

Keywords

Airglow Polar cap Ionospheric convection Substorm Field-aligned currents 

Notes

Acknowledgements

K.H. is supported by JSPS Kakenhi (26302006). Y.Z. is supported by UCAR’s Cooperative Programs for the Advancement of Earth System Science (Jack Eddy Postdoctoral Fellowship), and by National Science Foundation (AGS-1664885). Y.N. is supported by NASA grant NNX17AL22G and 80NSSC18K0657, NSF grants PLR-1341359, AGS-1737823, and AFOSR FA9559-16-1-0364.

References

  1. D.N. Anderson, J. Buchau, R.A. Heelis, Origin of density enhancements in the winter polar cap ionosphere. Radio Sci. 23, 513–519 (1988).  https://doi.org/10.1029/RS023i004p00513 ADSCrossRefGoogle Scholar
  2. D. Barbier, F.E. Roach, W.R. Steiger, The summer intensity variations of [OI] 6300 Å in the tropics. J. Res. Natl. Bur. Stand. D, Radio Propag. 66D(1), 145–152 (1962) CrossRefGoogle Scholar
  3. H.C. Carlson, A voyage of discovery into the polar cap and Svalbard, in Proceedings of the Egeland Symposium on Auroral and Atmospheric Research, Dep. of Phys., Univ. of Oslo, Norway, ed. by J. Moen, J.A. Holtet (2003), pp. 33–54. ISBN 82-91853-09-6 Google Scholar
  4. H.C. Carlson, K. Oksavik, J. Moen, T. Pedersen, Ionospheric patch formation: direct measurements of the origin of a polar cap patch. Geophys. Res. Lett. 31, L08806 (2004).  https://doi.org/10.1029/2003GL018166 ADSCrossRefGoogle Scholar
  5. H.C. Carlson, J. Moen, K. Oksavik, C.P. Nielsen, I.W. McCrea, T.R. Pedersen, P. Gallop, Direct observations of injection events of subauroral plasma into the polar cap. Geophys. Res. Lett. 33, L05103 (2006).  https://doi.org/10.1029/2005GL025230 ADSCrossRefGoogle Scholar
  6. H.C. Carlson, K. Oksavik, J.I. Moen, Thermally excited 630.0 nm \(\mbox{O}({}^{1}\mbox{D})\) emission in the cusp: a frequent high-altitude transient signature. J. Geophys. Res. Space Phys. 118, 5842–5852 (2013).  https://doi.org/10.1002/jgra.50516 ADSCrossRefGoogle Scholar
  7. G. Chisham et al., A decade of the Super Dual Auroral Radar Network (SuperDARN): scientific achievements, new techniques and future directions. Surv. Geophys. 28, 33–109 (2007).  https://doi.org/10.1007/s10712-007-9017-8 ADSCrossRefGoogle Scholar
  8. W.R. Coley, R.A. Heelis, Seasonal and universal time distribution of patches in the northern and southern polar caps. J. Geophys. Res. 103(A12), 29,229–29,237 (1998).  https://doi.org/10.1029/1998JA900005 ADSCrossRefGoogle Scholar
  9. G. Crowley, Critical review of ionospheric patches and blobs, in The Review of Radio Science 1992–1996, ed. by W. Ross Stone (Oxford University Press, Oxford, 1996) Google Scholar
  10. H. Dahlgren, J.L. Semeter, K. Hosokawa, M.J. Nicolls, T.W. Butler, M.G. Johnsen, K. Shiokawa, C. Heinselman, Direct three-dimensional imaging of polar ionospheric structures with the Resolute Bay Incoherent Scatter Radar. Geophys. Res. Lett. 39, L05104 (2012a).  https://doi.org/10.1029/2012GL050895 ADSCrossRefGoogle Scholar
  11. H. Dahlgren, G.W. Perry, J.L. Semeter, J.-P. St-Maurice, K. Hosokawa, M.J. Nicolls, M. Greffen, K. Shiokawa, C. Heinselman, Space-time variability of polar cap patches: direct evidence for internal plasma structuring. J. Geophys. Res. 117, A09312 (2012b).  https://doi.org/10.1029/2012JA017961 ADSCrossRefGoogle Scholar
  12. B.S. Dandekar, T.W. Bullett, Morphology of polar cap patch activity. Radio Sci. 34(5), 1187–1205 (1999).  https://doi.org/10.1029/1999RS900056 ADSCrossRefGoogle Scholar
  13. G.J. Fasel, Dayside poleward moving auroral forms: a statistical study. J. Geophys. Res. 100(A7), 11891–11905 (1995).  https://doi.org/10.1029/95JA00854 ADSCrossRefGoogle Scholar
  14. J.C. Foster et al., Multiradar observations of the polar tongue of ionization. J. Geophys. Res. 110, A09S31 (2005).  https://doi.org/10.1029/2004JA010928 CrossRefGoogle Scholar
  15. K. Fukui, J. Buchau, C.E. Valladares, Convection of polar cap patches observed at Qaanaaq, Greenland during the winter of 1989–1990. Radio Sci. 29(1), 231–248 (1994).  https://doi.org/10.1029/93RS01510 ADSCrossRefGoogle Scholar
  16. L.V. Goodwin, B. Iserhienrhien, D.M. Miles, S. Patra, C. van der Meeren, S.C. Buchert, J.K. Burchill, L.B.N. Clausen, D.J. Knudsen, K.A. McWilliams, J. Moen, Swarm in situ observations of F region polar cap patches created by cusp precipitation. Geophys. Res. Lett. 42, 996–1003 (2015).  https://doi.org/10.1002/2014GL062610 ADSCrossRefGoogle Scholar
  17. P.B. Hays, D.W. Rusch, R.G. Roble, J.C.G. Walker, The OI (6300 Å) airglow. Rev. Geophys. 16(2), 225–232 (1978).  https://doi.org/10.1029/RG016i002p00225 ADSCrossRefGoogle Scholar
  18. K. Hosokawa, K. Shiokawa, Y. Otsuka, A. Nakajima, T. Ogawa, J.D. Kelly, Estimating drift velocity of polar cap patches with all-sky airglow imager at Resolute Bay, Canada. Geophys. Res. Lett. 33, L15111 (2006).  https://doi.org/10.1029/2006GL026916 ADSCrossRefGoogle Scholar
  19. K. Hosokawa, K. Shiokawa, Y. Otsuka, T. Ogawa, J.-P. St-Maurice, G.J. Sofko, D.A. Andre, Relationship between polar cap patches and field-aligned irregularities as observed with an all-sky airglow imager at Resolute Bay and the PolarDARN radar at Rankin Inlet. J. Geophys. Res. 114, A03306 (2009a).  https://doi.org/10.1029/2008JA013707 ADSCrossRefGoogle Scholar
  20. K. Hosokawa, T. Kashimoto, S. Suzuki, K. Shiokawa, Y. Otsuka, T. Ogawa, Motion of polar cap patches: a statistical study with all-sky airglow imager at Resolute Bay, Canada. J. Geophys. Res. 114, A04318 (2009b).  https://doi.org/10.1029/2008JA014020 ADSCrossRefGoogle Scholar
  21. K. Hosokawa, J.-P. St-Maurice, G.J. Sofko, K. Shiokawa, Y. Otsuka, T. Ogawa, Reorganization of polar cap patches through shears in the background plasma convection. J. Geophys. Res. 115, A01303 (2010a).  https://doi.org/10.1029/2009JA014599 ADSCrossRefGoogle Scholar
  22. K. Hosokawa, T. Tsugawa, K. Shiokawa, Y. Otsuka, N. Nishitani, T. Ogawa, M.R. Hairston, Dynamic temporal evolution of polar cap tongue of ionization during magnetic storm. J. Geophys. Res. 115, A12333 (2010b).  https://doi.org/10.1029/2010JA015848 ADSCrossRefGoogle Scholar
  23. K. Hosokawa, J.I. Moen, K. Shiokawa, Y. Otsuka, Decay of polar cap patch. J. Geophys. Res. 116, A05306 (2011).  https://doi.org/10.1029/2010JA016297 ADSCrossRefGoogle Scholar
  24. K. Hosokawa, S. Taguchi, Y. Ogawa, T. Aoki, Periodicities of polar cap patches. J. Geophys. Res. Space Phys. 118, 447–453 (2013).  https://doi.org/10.1029/2012JA018165 ADSCrossRefGoogle Scholar
  25. K. Hosokawa, S. Taguchi, K. Shiokawa, Y. Otsuka, Y. Ogawa, M. Nicolls, Global imaging of polar cap patches with dual airglow imagers. Geophys. Res. Lett. 41, 1–6 (2014).  https://doi.org/10.1002/2013GL058748 ADSCrossRefGoogle Scholar
  26. K. Hosokawa, S. Taguchi, Y. Ogawa, Edge of polar cap patches. J. Geophys. Res. Space Phys. 121, 3410–3420 (2016a).  https://doi.org/10.1002/2015JA021960 ADSCrossRefGoogle Scholar
  27. K. Hosokawa, S. Taguchi, Y. Ogawa, Periodic creation of polar cap patches from auroral transients in the cusp. J. Geophys. Res. Space Phys. 121, 5639–5652 (2016b).  https://doi.org/10.1002/2015JA022221 ADSCrossRefGoogle Scholar
  28. Y. Jin, J.I. Moen, W.J. Miloch, GPS scintillation effects associated with polar cap patches and substorm auroral activity: direct comparison. J. Space Weather Space Clim. 4, A23 (2014).  https://doi.org/10.1051/swsc/2014019 ADSCrossRefGoogle Scholar
  29. M.J. Keskinen, S.L. Ossakow, Nonlinear evolution of plasma enhancements in the auroral ionosphere. 1. Long wavelength irregularities. J. Geophys. Res. 87, 144 (1982) ADSCrossRefGoogle Scholar
  30. N.K. Kwagala, K. Oksavik, D.A. Lorentzen, M.G. Johnsen, On the contribution of thermal excitation to the total 630.0 nm emissions in the northern cusp ionosphere. J. Geophys. Res. Space Phys. 122, 1234–1245 (2017).  https://doi.org/10.1002/2016JA023366 ADSCrossRefGoogle Scholar
  31. N.K. Kwagala, K. Oksavik, D.A. Lorentzen, M.G. Johnsen, How often do thermally excited 630.0 nm emissions occur in the polar ionosphere? J. Geophys. Res. Space Phys. 123, 698–710 (2018a).  https://doi.org/10.1002/2017JA024744 ADSCrossRefGoogle Scholar
  32. N.K. Kwagala, K. Oksavik, D.A. Lorentzen, M.G. Johnsen, K.M. Laundal, Seasonal and solar cycle variations of thermally excited 630.0 nm emissions in the polar ionosphere. J. Geophys. Res. Space Phys. 123, 7029–7039 (2018b).  https://doi.org/10.1029/2018JA025477 ADSCrossRefGoogle Scholar
  33. M. Lockwood, H.C. Carlson, Production of polar cap electron density patches by transient magnetopause reconnection. Geophys. Res. Lett. 19, 1731–1734 (1992).  https://doi.org/10.1029/92GL01993 ADSCrossRefGoogle Scholar
  34. D.A. Lorentzen, N. Shumilov, J. Moen, Drifting airglow patches in relation to tail reconnection. Geophys. Res. Lett. 31, L02806 (2004).  https://doi.org/10.1029/2003GL017785 ADSCrossRefGoogle Scholar
  35. D.A. Lorentzen, J. Moen, K. Oksavik, F. Sigernes, Y. Saito, M.G. Johnsen, In situ measurement of a newly created polar cap patch. J. Geophys. Res. 115, A12323 (2010).  https://doi.org/10.1029/2010JA015710 ADSCrossRefGoogle Scholar
  36. L.R. Lyons, Y. Nishimura, H.-J. Kim, E. Donovan, V. Angelopoulos, G. Sofko, M. Nicolls, C. Heinselman, J.M. Ruohoniemi, N. Nishitani, Possible connection of polar cap flows to pre- and post-substorm onset PBIs and streamers. J. Geophys. Res. 116, A12225 (2011).  https://doi.org/10.1029/2011JA016850 ADSCrossRefGoogle Scholar
  37. L.R. Lyons, Y. Nishimura, Y. Zou, Unsolved problems: mesoscale polar cap flow channels’ structure, propagation, and effects on space weather disturbances. J. Geophys. Res. Space Phys. 121, 3347–3352 (2016a).  https://doi.org/10.1002/2016JA022437 ADSCrossRefGoogle Scholar
  38. L.R. Lyons et al., The 17 March 2013 storm: synergy of observations related to electric field modes and their ionospheric and magnetospheric effects. J. Geophys. Res. Space Phys. 121, 10,880–10,897 (2016b).  https://doi.org/10.1002/2016JA023237 CrossRefGoogle Scholar
  39. L.R. Lyons, Y. Zou, Y. Nishimura, B. Gallardo-Lacourt, V. Angelopoulos, E.F. Donovan, Stormtime substorms: occurrence and flow channel triggering. Earth Planets Space 70, 81 (2018) ADSCrossRefGoogle Scholar
  40. J.J. Makela, M.C. Kelley, S.A. González, N. Aponte, R.P. McCoy, Ionospheric topography maps using multiple-wavelength all-sky images. J. Geophys. Res. 106(A12), 29161–29174 (2001).  https://doi.org/10.1029/2000JA000449 ADSCrossRefGoogle Scholar
  41. D.J. McEwen, D.P. Harris, Occurrence patterns of \(F\) layer patches over the north magnetic pole. Radio Sci. 31(3), 619–628 (1996).  https://doi.org/10.1029/96RS00312 ADSCrossRefGoogle Scholar
  42. S.E. Milan, M. Lester, S.W.H. Cowley, J. Moen, P.E. Sandholt, C.J. Owen, Meridian-scanning photometer, coherent HF radar, and magnetometer observations of the cusp: a case study. Ann. Geophys. 17, 159–172 (1999) ADSCrossRefGoogle Scholar
  43. S.E. Milan, M. Lester, T.K. Yeoman, HF radar polar patch formation revisited: summer and winter variations in dayside plasma structuring. Ann. Geophys. 20, 487 (2002) ADSCrossRefGoogle Scholar
  44. G.H. Millward, R.J. Moffett, H.F. Balmforth, A.S. Rodger, Modeling the ionospheric effects of ion and electron precipitation in the cusp. J. Geophys. Res. 104(A11), 24603–24612 (1999).  https://doi.org/10.1029/1999JA900249 ADSCrossRefGoogle Scholar
  45. J. Moen, H.C. Carlson, K. Oksavik, C.P. Nielsen, S.E. Pryse, H.R. Middleton, I.W. McCrea, P. Gallop, EISCAT observations of plasma patches at sub-auroral cusp latitudes. Ann. Geophys. 24(9), 2363–2374 (2006) ADSCrossRefGoogle Scholar
  46. J. Moen, N. Gulbrandsen, D.A. Lorentzen, H.C. Carlson, On the MLT distribution of \(F\) region polar cap patches at night. Geophys. Res. Lett. 34, L14113 (2007).  https://doi.org/10.1029/2007GL029632 ADSCrossRefGoogle Scholar
  47. J. Moen, K. Oksavik, T. Abe, M. Lester, Y. Saito, T.A. Bekkeng, K.S. Jacobsen, First in-situ measurements of HF radar echoing targets. Geophys. Res. Lett. 39, L07104 (2012).  https://doi.org/10.1029/2012GL051407 ADSCrossRefGoogle Scholar
  48. J. Moen, K. Hosokawa, N. Gulbrandsen, L.B.N. Clausen, On the symmetry of ionospheric polar cap patch exits around magnetic midnight. J. Geophys. Res. Space Phys. 120, 7785–7797 (2015).  https://doi.org/10.1002/2014JA020914 ADSCrossRefGoogle Scholar
  49. Y. Nishimura, L.R. Lyons, Localized reconnection in the magnetotail driven by lobe flow channels: global MHD simulation. J. Geophys. Res. Space Phys. 121, 1327–1338 (2016).  https://doi.org/10.1002/2015JA022128 ADSCrossRefGoogle Scholar
  50. Y. Nishimura, Y. Zou, Studying the Auroras and What Makes Them Shine (Scientia, Bristol, 2017) Google Scholar
  51. Y. Nishimura et al., Preonset time sequence of auroral substorms: coordinated observations by all-sky imagers, satellites, and radars. J. Geophys. Res. 115, A00I08 (2010).  https://doi.org/10.1029/2010JA015832 CrossRefGoogle Scholar
  52. Y. Nishimura, L.R. Lyons, K. Shiokawa, V. Angelopoulos, E.F. Donovan, S.B. Mende, Substorm onset and expansion phase intensification precursors seen in polar cap patches and arcs. J. Geophys. Res. Space Phys. 118, 2034–2042 (2013).  https://doi.org/10.1002/jgra.50279 ADSCrossRefGoogle Scholar
  53. Y. Nishimura et al., Day-night coupling by a localized flow channel visualized by polar cap patch propagation. Geophys. Res. Lett. 41, 3701–3709 (2014).  https://doi.org/10.1002/2014GL060301 ADSCrossRefGoogle Scholar
  54. M. Noja, C. Stolle, J. Park, H. Lühr, Long-term analysis of ionospheric polar patches based on CHAMP TEC data. Radio Sci. 48, 289–301 (2013).  https://doi.org/10.1002/rds.20033 ADSCrossRefGoogle Scholar
  55. S. Ohtani, A. Yoshikawa, The initiation of the poleward boundary intensification of auroral emission by fast polar cap flows: a new interpretation based on ionospheric polarization. J. Geophys. Res. Space Phys. 121, 10,910–10,928 (2016).  https://doi.org/10.1002/2016JA023143 CrossRefGoogle Scholar
  56. S. Ohtani, T. Motoba, J.W. Gjerloev, J.M. Ruohoniemi, E.F. Donovan, A. Yoshikawa, Longitudinal development of poleward boundary intensifications (PBIs) of auroral emission. J. Geophys. Res. Space Phys. 123, 9005–9021 (2018).  https://doi.org/10.1029/2017JA024375 ADSCrossRefGoogle Scholar
  57. K. Oksavik, J. Moen, H.C. Carlson, High-resolution observations of the small-scale flow pattern associated with a poleward moving auroral form in the cusp. Geophys. Res. Lett. 31, L11807 (2004).  https://doi.org/10.1029/2004GL019838 ADSCrossRefGoogle Scholar
  58. K. Oksavik, V.L. Barth, J. Moen, M. Lester, On the entry and transit of high-density plasma across the polar cap. J. Geophys. Res. 115, A12308 (2010).  https://doi.org/10.1029/2010JA015817 ADSCrossRefGoogle Scholar
  59. K. Oksavik, J. Moen, M. Lester, T.A. Bekkeng, J.K. Bekkeng, In situ measurements of plasma irregularity growth in the cusp ionosphere. J. Geophys. Res. 117, A11301 (2012).  https://doi.org/10.1029/2012JA017835 ADSCrossRefGoogle Scholar
  60. K. Oksavik, C. Meeren, D.A. Lorentzen, L.J. Baddeley, J. Moen, Scintillation and loss of signal lock from poleward moving auroral forms in the cusp ionosphere. J. Geophys. Res. Space Phys. 120, 9161–9175 (2015).  https://doi.org/10.1002/2015JA021528 ADSCrossRefGoogle Scholar
  61. T.R. Pedersen, B.G. Fejer, R.A. Doe, E.J. Weber, An incoherent scatter radar technique for determining two-dimensional horizontal ionization structure in polar cap F region patches. J. Geophys. Res. 105(A5), 10637–10655 (2000).  https://doi.org/10.1029/1999JA000073 ADSCrossRefGoogle Scholar
  62. G.W. Perry, J.-P. St-Maurice, K. Hosokawa, The interconnection between cross-polar cap convection and the luminosity of polar cap patches. J. Geophys. Res. Space Phys. 118, 7306–7315 (2013).  https://doi.org/10.1002/2013JA019196 ADSCrossRefGoogle Scholar
  63. J. Sakai, K. Hosokawa, S. Taguchi, Y. Ogawa, Storm time enhancements of 630.0 nm airglow associated with polar cap patches. J. Geophys. Res. Space Phys. 119, 2214–2228 (2014).  https://doi.org/10.1002/2013JA019197 ADSCrossRefGoogle Scholar
  64. P.E. Sandholt, C.S. Deehr, A. Egeland, B. Lybekk, R. Viereck, G.J. Romick, Signatures in the dayside aurora of plasma transfer from the magnetosheath. J. Geophys. Res. 91(A9), 10063–10079 (1986).  https://doi.org/10.1029/JA091iA09p10063 ADSCrossRefGoogle Scholar
  65. T. Sato, Morphology of ionospheric F2 disturbances in the polar regions. Rep. Ionos. Space Res. Jpn. 131, 91 (1959) Google Scholar
  66. D.J. Southwood, The ionospheric signature of flux transfer events. J. Geophys. Res. 92(A4), 3207–3213 (1987).  https://doi.org/10.1029/JA092iA04p03207 ADSCrossRefGoogle Scholar
  67. A. Spicher, L.B.N. Clausen, W.J. Miloch, V. Lofstad, Y. Jin, J.I. Moen, Interhemispheric study of polar cap patch occurrence based on Swarm in situ data. J. Geophys. Res. Space Phys. 122, 3837–3851 (2017).  https://doi.org/10.1002/2016JA023750 ADSCrossRefGoogle Scholar
  68. E.G. Thomas et al., Multi-instrument, high-resolution imaging of polar cap patch transportation. Radio Sci. 50, 904–915 (2015).  https://doi.org/10.1002/2015RS005672 ADSCrossRefGoogle Scholar
  69. A. Thorolfsson, J.-C. Cerisier, M. Lockwood, P.E. Sandholt, C. Senior, M. Lester, Simultaneous optical and radar signatures of poleward-moving auroral forms. Ann. Geophys. 18, 1054 (2000) ADSCrossRefGoogle Scholar
  70. C.E. Valladares, D.T. Decker, R. Sheehan, D.N. Anderson, Modeling the formation of polar cap patches using large plasma flows. Radio Sci. 31(3), 573–593 (1996).  https://doi.org/10.1029/96RS00481 ADSCrossRefGoogle Scholar
  71. C.E. Valladares, T. Pedersen, R. Sheehan, Polar cap patches observed during the magnetic storm of November 2003: observations and modeling. Ann. Geophys. 33, 1117–1133 (2015).  https://doi.org/10.5194/angeo-33-1117-2015 ADSCrossRefGoogle Scholar
  72. C. Van der Meeren, K. Oksavik, D. Lorentzen, J.I. Moen, V. Romano, GPS scintillation and irregularities at the front of an ionization tongue in the nightside polar ionosphere. J. Geophys. Res. Space Phys. 119, 8624–8636 (2014).  https://doi.org/10.1002/2014JA020114 ADSCrossRefGoogle Scholar
  73. C. Van der Meeren, K. Oksavik, D.A. Lorentzen, M.T. Rietveld, L.B.N. Clausen, Severe and localized GNSS scintillation at the poleward edge of the nightside auroral oval during intense substorm aurora. J. Geophys. Res. Space Phys. 120, 10,607–10,621 (2015).  https://doi.org/10.1002/2015JA021819 CrossRefGoogle Scholar
  74. B. Wang, Y. Nishimura, L.R. Lyons, Y. Zou, H.C. Carlson, H.U. Frey, S.B. Mende, Analysis of close conjunctions between dayside polar cap airglow patches and flow channels by all-sky imager and DMSP. Earth Planets Space 68(1), 150 (2016).  https://doi.org/10.1186/s40623-016-0524-z ADSCrossRefGoogle Scholar
  75. E.J. Weber, J. Buchau, Polar cap F-layer auroras. Geophys. Res. Lett. 8(1), 125–128 (1981).  https://doi.org/10.1029/GL008i001p00125 ADSCrossRefGoogle Scholar
  76. E.J. Weber, J. Buchau, J.G. Moore, J.R. Sharber, R.C. Livingston, J.D. Winningham, B.W. Reinisch, F layer ionization patches in the polar cap. J. Geophys. Res. 89, 1683 (1984) ADSCrossRefGoogle Scholar
  77. E.J. Weber, J.A. Klobuchar, J. Buchau, H.C. Carlson Jr., R.C. Livingston, O. de la Beaujardiere, M. McCready, J.G. Moore, G.J. Bishop, Polar cap F layer patches: structure and dynamics. J. Geophys. Res. 91(A11), 12121–12129 (1986).  https://doi.org/10.1029/JA091iA11p12121 ADSCrossRefGoogle Scholar
  78. Y. Zhang, D.J. McEwen, L.L. Cogger, Interplanetary magnetic field control of polar patch velocity. J. Geophys. Res. 108, 1214 (2003).  https://doi.org/10.1029/2002JA009742 CrossRefGoogle Scholar
  79. Y. Zou, Y. Nishimura, L.R. Lyons, E.F. Donovan, J.M. Ruohoniemi, N. Nishitani, K.A. McWilliams, Statistical relationships between enhanced polar cap flows and PBIs. J. Geophys. Res. Space Phys. 119, 151–162 (2014).  https://doi.org/10.1002/2013JA019269 ADSCrossRefGoogle Scholar
  80. Y. Zou, Y. Nishimura, L.R. Lyons, K. Shiokawa, E.F. Donovan, J.M. Ruohoniemi, K.A. McWilliams, N. Nishitani, Localized polar cap flow enhancement tracing using airglow patches: statistical properties, IMF dependence, and contribution to polar cap convection. J. Geophys. Res. Space Phys. 120, 4064–4078 (2015).  https://doi.org/10.1002/2014JA020946 ADSCrossRefGoogle Scholar
  81. Y. Zou et al., Localized field-aligned currents in the polar cap associated with airglow patches. J. Geophys. Res. Space Phys. 121, 10,172–10,189 (2016).  https://doi.org/10.1002/2016JA022665 CrossRefGoogle Scholar
  82. Y. Zou, Y. Nishimura, L.R. Lyons, K. Shiokawa, Localized polar cap precipitation in association with nonstorm time airglow patches. Geophys. Res. Lett. 44, 609–617 (2017).  https://doi.org/10.1002/2016GL071168 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Communication Engineering and InformaticsUniversity of Electro-CommunicationsTokyoJapan
  2. 2.Center for Space PhysicsBoston UniversityBostonUSA
  3. 3.Department of Space ScienceUniversity of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations