Advertisement

Space Science Reviews

, 215:49 | Cite as

Revolutionizing Our Understanding of the Solar System via Sample Return from Mercury

  • Kathleen E. Vander KaadenEmail author
  • Francis M. McCubbin
  • Paul K. Byrne
  • Nancy L. Chabot
  • Carolyn M. Ernst
  • Catherine L. Johnson
  • Michelle S. Thompson
Article
Part of the following topical collections:
  1. Role of Sample Return in Addressing Major Questions in Planetary Sciences

Abstract

Data from Mariner 10, MESSENGER, and ground-based telescopic observations have facilitated great advancements towards understanding the geochemistry, geology, internal structure, exosphere, and magnetosphere of Mercury. However, there are critical science questions that can be only addressed via examination of a sample in Earth-based laboratories, where numerous highly sensitive analytical measurements are possible. Collecting a sample from the surface of Mercury and bringing it to Earth for in-depth analysis would allow for transformative Solar System science to be conducted, examining aspects of our Solar System such as the evolution of the protoplanetary disk, space weathering on airless bodies, the geochemical behavior of elements at extreme conditions, and the origin and distribution of volatiles across the terrestrial planets. Furthermore, our knowledge of Mercury’s differentiation and geochemical processes, chronology and geologic evolution, tectonism and geomechanical properties, and past and ongoing magnetism would be greatly advanced via analysis of a sample from Mercury. Although there are ample challenges and knowledge gaps associated with sample return from Mercury in terms of both spacecraft requirements and material requirements for curatorial facilities, a sample from the planet would be an invaluable scientific resource for generations to come, enabling the most sophisticated measurements to be brought to bear for decades and helping to truly unlock the mysteries of our Solar System.

Keywords

Mercury Sample return Geochemistry Oxygen fugacity Space weathering Exploration 

Notes

Acknowledgements

The authors thank Dave Blewett, Steve Hauck, and Erwan Mazarico for fruitful discussions about the future exploration of Mercury and all members of the MESSENGER team for providing us with the necessary data to start thinking about Mercury sample return in detail. KVK and FMM acknowledge support from NASA’s Planetary Science Research Program. PKB acknowledges support from North Carolina State University. NLC acknowledges support from DDAP grant #NNX15AK89G. CLJ acknowledges support from the Natural Sciences and Engineering Research Council of Canada. MST acknowledges support from Purdue University. We thank three anonymous reviewers for their helpful and thorough reviews of this manuscript as well as the editors for the handling of this manuscript.

References

  1. R.E. Arvidson, J.L. Gooding, H.J. Moore, The martian surface as imaged, sampled, and analyzed by the Viking landers. Rev. Geophys. 27, 39–60 (1989) ADSCrossRefGoogle Scholar
  2. E. Asphaug, A. Reufer, Mercury and other iron-rich planetary bodies as relics of inefficient accretion. Nat. Geosci. 7, 564–568 (2014) ADSCrossRefGoogle Scholar
  3. M.E. Banks, Z. Xiao, T.R. Watters, R.G. Strom, S.E. Braden, C.R. Chapman, S.C. Solomon, C. Klimczak, P.K. Byrne, Duration of activity on lobate-scarp thrust fauls on Mercury. J. Geophys. Res., Planets 120, 1751–1762 (2015) ADSCrossRefGoogle Scholar
  4. M.E. Banks, Z. Xiao, S.E. Braden, S. Marchi, C.R. Chapman, N.G. Barlow, C.I. Fassett, Revised age constraints for Mercury’s Kuiperian and Mansurian systems, in Lunar and Planetary Science Conference, The Woodlands, TX (2016), p. #2943 Google Scholar
  5. W. Baumjohann, A. Matsuoka, W. Magnes, K-H. Glassmeier, R. Nakamura, H. Biernat, M. Delva, K. Schwingenschuh, T. Zhang, H-U. Auster, K-H. Fornacon, I. Richter, A. Balogh, P. Cargill, C. Carr, M. Dougherty, T.S. Horbury, E.A. Lucek, F. Tohyama, T. Takahashi, M. Tanaka, T. Nagai, H. Tsunakawa, M. Matsushima, H. Kawano, A. Yoshikawa, H. Shibuya, T. Nakagawa, M. Hoshino, T. Tanaka, R. Kataoka, B.J. Anderson, C.T. Russell, U. Motschmann, M. Shinohara, Magnetic field investigation of Mercury’s magnetosphere and the inner heliosphere by MMO/MGF. Planet. Space Sci. 58, 279–286 (2010) ADSCrossRefGoogle Scholar
  6. J. Benkhoff, J. van Casteren, H. Hayakawa, M. Fujimoto, H. Laakso, M. Novara, P. Ferri, H.R. Middleton, R. Ziethe, BepiColombo—comprehensive exploration of Mercury: mission overview and science goals. Planet. Space Sci. 58, 2–20 (2010) ADSCrossRefGoogle Scholar
  7. W. Benz, A. Anic, J. Horner, J.A. Whitby, The origin of Mercury. Space Sci. Rev. 132, 189–202 (2007) ADSCrossRefGoogle Scholar
  8. S. Besse, A. Doressoundiram, J. Benkhoff, Spectroscopic properties of explosive volcanism within the Caloris basin with MESSENGER observations. J. Geophys. Res., Planets 120, 2102–2117 (2015) ADSCrossRefGoogle Scholar
  9. M. Beuthe, East-west faults due to planetary contraction. Icarus 209, 795–817 (2010) ADSCrossRefGoogle Scholar
  10. Z.T. Bieniawski, Engineering Rock Mass Classifications (Wiley, New York, 1989) Google Scholar
  11. B. Bitsch, M. Lambrechts, A. Johansen, The growth of planets by pebble accretion in evolving protoplanetary discs. Astron. Astrophys. 582, A112 (2015) ADSCrossRefGoogle Scholar
  12. D.T. Blewett, W.M. Vaughan, Z. Xiao, N.L. Chabot, B.W. Denevi, C.M. Ernst, J. Helbert, M. D’Amore, A. Maturilli, J.W. Head, S.C. Solomon, Mercury’s hollows: Constraints on formation and composition from analysis of geological setting and spectral reflectance. J. Geophys. Res., Planets 118, 1–20 (2013) CrossRefGoogle Scholar
  13. P. Borin, G. Cremonese, F. Marzari, M. Bruno, S. Marchi, Statistical analysis of micrometeoroids flux on Mercury. Astron. Astrophys. 503, 259–264 (2009) ADSCrossRefGoogle Scholar
  14. A. Bouvier, L.J. Spivak-Birndorf, G. Brennecka, M. Wadhwa, New constraints on early Solar System chronology from Al-Mg and U-Pb isotope systematics in the unique basaltic achondrite Northwest Africa 2976. Geochim. Cosmochim. Acta 75, 5310–5323 (2011) ADSCrossRefGoogle Scholar
  15. L.C. Bouvier, M.M. Costa, J.N. Connelly, N.K. Jensen, D. Wielandt, M. Storey, A.A. Nemchin, M.J. Whitehouse, J.F. Snape, J.J. Bellucci, F. Moynier, A. Agranier, B. Gueguen, M. Schonbachler, M. Bizzarro, Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 558, 586–589 (2018) ADSCrossRefGoogle Scholar
  16. R. Brasser, S.J. Moizsis, S. Matsumura, S. Ida, The cool and distant formation of Mars. Earth Planet. Sci. Lett. 468, 85–93 (2017) ADSCrossRefGoogle Scholar
  17. G.A. Brennecka, M. Wadhwa, Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Natl. Acad. Sci. USA 109, 9299–9303 (2012) ADSCrossRefGoogle Scholar
  18. A.L. Broadfoot, S. Kumar, M.J.S. Blelton, M.B. McElroy, Mercury’s atmosphere from Mariner 10: preliminary results. Science 185, 166–169 (1974) ADSCrossRefGoogle Scholar
  19. A.L. Broadfoot, D.E. Shemansky, S. Kumar, Mariner 10: Mercury atmosphere. Geophys. Res. Lett. 3, 577–580 (1976) ADSCrossRefGoogle Scholar
  20. G. Budde, C. Burkhardt, G.A. Brennecka, M. Fischer-Godde, T.S. Kruijer, T. Kleine, Molybdenum isotopic evidence for the origin of chondrules and a distinct genetic heritage of carbonaceous and non-carbonaceous meteorites. Earth Planet. Sci. Lett. 454, 293–303 (2016) ADSCrossRefGoogle Scholar
  21. T.H. Burbine, T.J. McCoy, L.R. Nittler, G.K. Benedix, E.A. Cloutis, T.L. Dickinson, Spectra of extremely reduced assemblages: Implications for Mercury. Meteorit. Planet. Sci. 37, 1233–1244 (2002) ADSCrossRefGoogle Scholar
  22. K.D. Burgess, R.M. Stroud, Coordinated nanoscale compositional and oxidation state measurements of lunar space-weathered material. J. Geophys. Res., Planets 123, 2022–2037 (2018) ADSCrossRefGoogle Scholar
  23. P.K. Byrne, L.R. Ostrach, C.I. Fassett, C.R. Chapman, B.W. Denevi, A.J. Evans, C. Klimczak, M.E. Banks, J.W. Head, S.C. Solomon, Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys. Res. Lett. 43, 7408–7416 (2016) ADSCrossRefGoogle Scholar
  24. P.K. Byrne, D.T. Blewett, N.L. Chabot, S.A. Hauck II., E. Mazarico, K.E. Vander Kaaden, White paper on the case for Landed Mercury Exploration and the Timely Need fora Mission Concept Study (2018a). https://bit.ly/2GqsmC2
  25. P.K. Byrne, C. Klimczak, A.M.C. Şengör, The tectonic character of Mercury, in Mercury: The View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson (Cambridge University Press, Cambridge, 2018b) Google Scholar
  26. N.L. Chabot, E.A. Wollack, R.L. Klima, M.E. Minitti, Experimental constraints on Mercury’s core composition. Earth Planet. Sci. Lett. 390, 199–208 (2014) ADSCrossRefGoogle Scholar
  27. J.E. Chambers, Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004) ADSCrossRefGoogle Scholar
  28. J.E. Chambers, G.W. Wetherill, Making the terrestrial planets: N-body integrations of planetary embryos in three dimensions. Icarus 136, 304–327 (1998) ADSCrossRefGoogle Scholar
  29. S.C. Chase, E.D. Miner, D. Morrison, G. Munch, G. Neugebauer, M. Schroeder, Preliminary infrared radiometry of the night side of Mercury from Mariner 10. Science 185, 142–145 (1974) ADSCrossRefGoogle Scholar
  30. E. Chassefière, J.-L. Maria, J.-P. Goutail, E. Quemerais, F. Leblanc, S. Okano, I. Yoshikawa, O. Korablev, V. Gnedykh, G. Naletto, P. Nicolosi, M.-G. Pelizzo, J.-J. Correia, S. Gallet, C. Hourtoule, P.-O. Mine, C. Montaron, N. Rouanet, J.-B. Rigal, G. Muramaki, K. Yoshioka, O. Kozlov, V. Kottsov, P. Moisseev, N. Semena, J.-L. Bertauz, M.-Th. Capria, J. Clarke, G. Cremonese, D. Delcourt, A. Doressoundiram, S. Erard, R. Gladstone, M. Grande, D. Hunten, W. Ip, V. Izmodenov, A. Jambon, R. Johnson, E. Kallio, R. Killen, R. Lallement, J. Luhmann, M. Mendillo, A. Milillo, H. Palme, A. Potter, S. Sasaki, D. Slater, A. Sprague, A. Stern, N. Yan, PHEBUS: A double ultraviolet spectrometer to observe Mercury’s exosphere. Planet. Space Sci. 58, 201–223 (2010) ADSCrossRefGoogle Scholar
  31. M.J. Cintala, Impact-induced thermal effects in the lunar and mercurian regoliths. J. Geophys. Res., Planets 97, 947–973 (1992) ADSCrossRefGoogle Scholar
  32. J.N. Connelly, M. Bizzarro, A.N. Krot, A. Nordlund, D. Wielandt, M.A. Ivanova, The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 652–655 (2012) ADSCrossRefGoogle Scholar
  33. N. Dauphas, The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017) ADSCrossRefGoogle Scholar
  34. N. Dauphas, M. Chaussidon, A perspective from extinct radionuclides on a young stellar object: The Sun and its accretion disk. Annu. Rev. Earth Planet. Sci. 39, 351–386 (2011) ADSCrossRefGoogle Scholar
  35. N. Dauphas, A. Pourmand, Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011) ADSCrossRefGoogle Scholar
  36. B.W. Denevi, M.S. Robinson, S.C. Solomon, S.L. Murchie, D.T. Blewett, D.L. Domingue, T.J. McCoy, C.M. Ernst, J.W. Head, T.R. Watters, N.L. Chabot, The evolution of Mercury’s crust: A global perspective from MESSENGER. Science 324, 613–618 (2009) ADSGoogle Scholar
  37. B.W. Denevi, C.M. Ernst, H.M. Meyer, M.S. Robinson, S.L. Murchie, J.L. Whitten, J.W. Head, T.R. Watters, S.C. Solomon, L.R. Ostrach, C.R. Chapman, P.K. Byrne, C. Klimczak, P.N. Peplowski, The distribution and origin of smooth plains on Mercury. J. Geophys. Res., Planets 118, 891–907 (2013) ADSCrossRefGoogle Scholar
  38. B.W. Denevi, C.M. Ernst, L.M. Prockter, M.S. Robinson, The geologic history of Mercury, in Mercury: The View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson (Cambridge University Press, Cambridge, 2019) Google Scholar
  39. S. Dey, Q.Z. Yin, M.E. Sanborn, K. Ziegler, T.J. McCoy, Planetary genealogy of iron meteorites and pallasites using e54Cr-D17O isotope systematics, in 50th Lunar and Planetary Science Conference, The Woodlands, TX (2019), p. #2977 Google Scholar
  40. D.L. Domingue, C.R. Chapman, R.M. Killen, T.H. Zurbuchen, J.A. Gilbert, M. Sarantos, M. Benna, J.A. Slavin, D. Schriver, P.M. Trávníček, T.M. Orlando, A.L. Sprague, D.T. Blewett, J.J. Gillis-Davis, W.C. Feldman, D.J. Lawrence, G.C. Ho, D.S. Ebel, L.R. Nittler, F. Vilas, C.M. Pieters, S.C. Solomon, C.L. Johnson, R.M. Winslow, J. Helbert, P.N. Peplowski, S.Z. Weider, N. Mouawad, N.R. Izenberg, W.E. McClintock, Mercury’s weather-beaten surface: Understanding Mercury in the context of lunar and asteroidal space weathering studies. Space Sci. Rev. 181, 121–214 (2014) ADSCrossRefGoogle Scholar
  41. J.P. Dworkin, L.A. Adelman, T. Ajluni, A.V. Andronikov, J.C. Aponte, A.E. Bartels, E. Beshore, E.B. Bierhaus, J.R. Brucato, B.H. Bryan, A.S. Burton, M.P. Callahan, S.L. Castro-Wallace, B.C. Clark, S.J. Clemett, H.C. Connolly Jr., W.E. Cutlip, S.M. Daly, V.E. Elliott, J.E. Elsila, H.L. Enos, D.F. Everett, I.A. Franchi, D.P. Glavin, H.V. Graham, J.E. Hendershot, J.W. Harris, S.L. Hill, A.R. Hildebrand, G.O. Jayne, R.W. Jenkens Jr., K.S. Johnson, J.S. Kirsch, D.S. Lauretta, A.S. Lewis, J.J. Loiacono, C.C. Lorentson, J.R. Marshall, M.G. Martin, L.L. Matthias, H.L. McLain, S.R. Messenger, R.G. Mink, J.L. Moore, K. Nakamura-Messenger, J.A. Nuth III., C.V. Owens, C.L. Parish, B.D. Perkins, M.S. Pryzby, C.A. Reigle, K. Righter, B. Rizk, J.F. Russell, S.A. Sandford, J.P. Schepis, J. Songer, M.F. Sovinski, S.E. Stahl, K. Thomas-Keprta, J.M. Vellinga, M.S. Walker, OSIRIS-REx contamination control strategy and implementation. Space Sci. Rev. 214, 19 (2018) ADSCrossRefGoogle Scholar
  42. M.-C. Eppes, A. Willis, J. Molaro, S. Abernathy, B. Zhou, Cracks in Martian boulders exhibit preferred orientations that point to solar-induced thermal stress. Nat. Commun. 6, 6712 (2015) ADSCrossRefGoogle Scholar
  43. C.M. Ernst, B.W. Denevi, O.S. Barnouin, C. Klimczak, N.L. Chabot, J.W. Head, S.L. Murchie, G.A. Neumann, L.M. Prockter, M.S. Robinson, S.C. Solomon, T.R. Watters, Stratigraphy of the Caloris basin, Mercury: Implications for volcanic history and basin impact melt. Icarus 250, 413–429 (2015) ADSCrossRefGoogle Scholar
  44. C.M. Ernst, B.W. Denevi, L.R. Ostrach, Updated absolute age estimates for the Tolstoj and Caloris basins, in Mercury, Lunar and Planetary Science Conference XLVIII, The Woodlands, TX (2017), p. #2934 Google Scholar
  45. L.G. Evans, P.N. Peplowski, E.A. Rhodes, D.J. Lawrence, T.J. McCoy, L.R. Nittler, S.C. Solomon, A.L. Sprague, K.R. Stockstill-Cahill, R.D. Starr, S.Z. Weider, W.V. Boynton, D.K. Hamara, J.O. Goldsten, Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., Planets 117, E00L07 (2012) CrossRefGoogle Scholar
  46. L.G. Evans, P.N. Peplowski, F.M. McCubbin, T.J. McCoy, L.R. Nittler, M.Y. Zolotov, D.S. Ebel, D.J. Lawrence, R.D. Starr, S.Z. Weider, S.C. Solomon, Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus 257, 417–427 (2015) ADSCrossRefGoogle Scholar
  47. J. Filiberto, Magmatic diversity on Venus: Constraints from terrestrial analog crystallization experiments. Icarus 231, 131–136 (2014) ADSCrossRefGoogle Scholar
  48. E. Flamini, F. Capaccioni, l. Colangeli, G. Cremonese, A. Doressoundiram, J.L. Josset, Y. Langevin, S. Debei, M.T. Capria, M.C. De Sanctis, L. Marinangeli, M. Massironi, E. Mazotta Epifani, G. Naletto, P. Palumbo, P. Eng, J.F. Roig, A. Caporali, V. Da Deppo, S. Erard, C. Federico, O. Forni, M. Sgavetti, G. Filacchione, L. Giacomini, G. Marra, E. Martellato, M. Zusi, M. Cosi, C. Bettanini, L. Calamai, M. Zaccariotto, L. Tommasi, M. Dami, J. Ficai Veltroni, F. Poulet, Y. Hello (The SIMBIO-SYS Team), SIMBIO-SYS: The spectrometer and imagers integrated observatory system for the BepiColombo planetary orbiter. Planet. Space Sci. 58, 125–143 (2010) ADSCrossRefGoogle Scholar
  49. R.A. Fogel, Aubrite basalt vitrophyres: The missing basaltic component and high-sulfur silicate melts. Geochim. Cosmochim. Acta 69, 1633–1648 (2005) ADSCrossRefGoogle Scholar
  50. C.N. Foley, M. Wadhwa, L.E. Borg, P.E. Janney, R. Hines, T.L. Grove, The early differentiation history of Mars from W-182-Nd-142 isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 69, 4557–4571 (2005) ADSCrossRefGoogle Scholar
  51. G.W. Fraser, J.D. Carpenter, D.A. Rothery, J.F. Pearson, A. Martindale, J. Huovelin, J. Treis, M. Anand, M. Anttila, M. Ashcroft, J. Benkoff, P. Bland, A. Bowyer, A. Bradley, J. Bridges, C. Brown, C. Bulloch, E.J. Bunce, U. Christensen, M. Evans, R. Fairbend, M. Feasey, F. Giannini, S. Hermann, M. Hesse, M. Hilchenbach, T. Jorden, K. Joy, M. Kaipiainen, I. Kitchingman, P. Lechner, G. Lutz, A. Malkki, K. Muinonen, J. Naranen, P. Portin, M. Prydderch, J. San Juan, E. Sclater, E. Schyns, T.J. Stevenson, L. Struder, M. Syrjasuo, D. Talboys, P. Thomas, C. Whiford, S. Whitehead, The Mercury Imaging X-ray Spectrometer (MIXS) on BepiColombo. Planet. Space Sci. 58, 79–95 (2010) ADSCrossRefGoogle Scholar
  52. B. Gladman, J. Coffey, Mercurian impact ejecta: Meteorites and mangle. Meteorit. Planet. Sci. 44(2), 285–291 (2009) ADSCrossRefGoogle Scholar
  53. K.-H. Glassmeier, H.-U. Auster, D. Heyner, K. Okrafka, C. Carr, G. Berghofer, B.J. Anderson, A. Balogh, W. Baumjohann, P. Cargill, U. Christensen, M. Delva, M. Doughtery, K.-H. Fornacon, T.S. Horbury, E.A. Lucek, W. Magnes, M. Mandea, A. Matsuoka, M. Matsushima, U. Motschmann, R. Nakamura, Y. Narita, H. O’Brien, I. Richter, K. Schwingenschuh, H. Shibuya, J.A. Slavin, C. Sotin, B. Stoll, H. Tsunakawa, S. Vennerstrom, J. Vogt, T. Zhang, The fluxgate magnetometer of the BepiColombo Mercury Planetary Orbiter. Planet. Space Sci. 58, 287–299 (2010) ADSCrossRefGoogle Scholar
  54. J.F. Gonzalez, G. Laibe, S.T. Maddison, Self-induced dust traps: overcoming planet formation barriers. Mon. Not. R. Astron. Soc. 467, 1984–1996 (2017) ADSGoogle Scholar
  55. T.A. Goudge, J.W. Head, L. Kerber, D.T. Blewett, B.W. Denevi, D.L. Domingue, J.J. Gillis-Davis, K. Gwinner, J. Helbert, G.M. Holsclaw, N.R. Izenberg, R.L. Klima, W.E. McClintock, S.L. Murchie, G.A. Neumann, D.E. Smith, R.G. Strom, Z. Xiao, M.T. Zuber, S.C. Solomon, Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res., Planets 119, 635–658 (2014) ADSCrossRefGoogle Scholar
  56. K. Gunderson, N. Thomas, BELA receiver performance modeling over the BepiColombo mission lifetime. Planet. Space Sci. 58, 309–318 (2010) ADSCrossRefGoogle Scholar
  57. B. Hapke, Space weathering from Mercury to the asteroid belt. J. Geophys. Res., Planets 106, 10039–10073 (2001) ADSCrossRefGoogle Scholar
  58. J.K. Harmon, M.A. Slade, Radar mapping of Mercury: full-disk images and polar anomalies. Science 258, 640–642 (1992) ADSCrossRefGoogle Scholar
  59. S.A. Hauck II., C.L. Johnson, Mercury: Inside the iron planet. Elements 15, 21–26 (2019) CrossRefGoogle Scholar
  60. S.A. Hauck II., D.A. Eng, G.J. Tahu, Mercury Lander Mission Concept Study. NASA Science Solar System Exploration (2010). https://solarsystem.nasa.gov/studies/199/mercury-lander-mission-concept-study/
  61. S.A. Hauck II., J.L. Margot, S.C. Solomon, R.J. Phillips, C.L. Johnson, F.G. Lemoine, E. Mazarico, T.J. McCoy, S. Padovan, S.J. Peale, M.E. Perry, D.E. Smith, M.T. Zuber, The curious case of Mercury’s internal structure. J. Geophys. Res., Planets 118, 1204–1220 (2013) ADSCrossRefGoogle Scholar
  62. J.W. Head, C.R. Chapman, R.G. Strom, C.I. Fassett, B.W. Denevi, D.T. Blewett, C.M. Ernst, T.R. Watters, S.C. Solomon, S.L. Murchie, L.M. Prockter, N.L. Chabot, J.J. Gillis-Davis, J.L. Whitten, T.A. Goudge, D.M.H. Baker, D.M. Hurwitz, L.R. Ostrach, Z. Xiao, W.J. Merline, L. Kerber, J.L. Dickson, J. Oberst, P.K. Byrne, C. Klimczak, L.R. Nittler, Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science 333, 1853–1856 (2011) ADSCrossRefGoogle Scholar
  63. H. Hiesinger, J. Helbert (MERTIS Co-I Team), The Mercury Radiometer and Thermal Infrared Spectrometer (MERTIS) for the BepiColombo mission. Planet. Space Sci. 58, 144–165 (2010) ADSCrossRefGoogle Scholar
  64. M.M. Hirschmann, A.C. Withers, P. Ardia, N.T. Foley, Solubility of molecular hydrogen in silicate melts and consequences for volatile evolution of terrestrial planets. Earth Planet. Sci. Lett. 345, 38–48 (2012) ADSCrossRefGoogle Scholar
  65. L.L. Hood, Magnetic anomalies concentrated near and within Mercury’s impact basins: Early mapping and interpretation. J. Geophys. Res., Planets 121, 1016–1025 (2016) ADSCrossRefGoogle Scholar
  66. L.L. Hood, J.S. Oliveira, V. Galluzzi, D.A. Rothery, Investigating sources of Mercury’s crustal magnetic field: Further mapping of MESSENGER magnetometer data. J. Geophys. Res., Planets 123(10), 2647–2666 (2018) ADSCrossRefGoogle Scholar
  67. J. Huovelin, R. Vainio, H. Andersson, E. Valtonen, L. Alha, A. Malkki, M. Grande, G.W. Fraser, M. Kato, H. Koskinen, K. Muinonen, J. Naranen, W. Schmidt, M. Syrjasuo, M. Anttila, T. Vihavainen, E. Kiuru, M. Roos, J. Peltonen, J. Lehti, M. Talvoija, P. Portin, M. Prydderch, Solar Intensity X-ray and particle Spectrometer (SIXS). Planet. Space Sci. 58, 96–107 (2010) ADSCrossRefGoogle Scholar
  68. M.H. Huyskens, M.E. Sanborn, Q.Z. Yin, Y. Amelin, P. Koefoed, Chronology of carbonaceous achondrites from the outer solar system, in 50th Lunar and Planetary Science Conference, The Woodlands, TX (2019), p. #2736 Google Scholar
  69. V. Iafolla, E. Fiorenza, C. Lefevre, A. Morbidini, S. Nozzoli, R. Peron, M. Persichini, A. Reale, F. Santoli, Italian Spring Accelerometer (ISA): A fundamental support to BepiColombo Radio Science Experiments. Planet. Space Sci. 58, 300–308 (2010) ADSCrossRefGoogle Scholar
  70. A. Johansen, M. Lambrechts, Forming planets via pebble accretion. Annu. Rev. Earth Planet. Sci. 45, 359–387 (2017) ADSCrossRefGoogle Scholar
  71. A. Johansen, A. Youdin, Protoplanetary disk turbulence driven by the streaming instability: Nonlinear saturation and particle concentration. Astrophys. J. 662, 627–641 (2007) ADSCrossRefGoogle Scholar
  72. C.L. Johnson, R.J. Phillips, M.E. Purucker, B.J. Anderson, P.K. Byrne, B.W. Denevi, J.M. Feinber, S.A. Hauck II., J.W. Head, H. Korth, P.B. James, E. Mazarico, G.A. Neumann, L.C. Philpott, M.A. Siegler, N.A. Tsyganenko, S.C. Solomon, Low-altitude magnetic field measurements by MESSENGER reveal Mercury’s ancient crustal field. Science 348, 892–895 (2015) ADSCrossRefGoogle Scholar
  73. C.L. Johnson, L.C. Philpott, B.J. Anderson, H. Korth, S.A. Hauck II, D. Heyner, R.J. Phillips, R.M. Winslow, S.C. Solomon, MESSENGER observations of induced magnetic fields in Mercury’s core. Geophys. Res. Lett. 43, 2436–2444 (2016) ADSCrossRefGoogle Scholar
  74. C.L. Johnson, B.J. Anderson, H. Korth, R.J. Phillips, L.C. Philpott, Mercury’s internal magnetic field, in Mercury: The View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson (Cambridge University Press, Cambridge, 2019) Google Scholar
  75. L.M. Jozwiak, J.W. Head, L. Wilson, Explosive volcanism on Mercury: Analysis of vent and deposit morphology and modes of eruption. Icarus 302, 191–212 (2018) ADSCrossRefGoogle Scholar
  76. Y. Kasaba, J.-L. Bougeret, L.G. Blomberg, H. Kojima, S. Yagitani, M. Moncuquet, J.-G. Trotignon, G. Chanteur, A. Kumamoto, Y. Kasahara, J. Lichtenberger, Y. Omura, K. Ishisaka, H. Matsumoto, The Plasma Wave Investigation (PWI) onboard the BepiColombo/MMO: First measurement of electric fields, electromagnetic waves, and radio waves around Mercury. Planet. Space Sci. 58, 238–278 (2010) ADSCrossRefGoogle Scholar
  77. K. Keil, Enstatite achondrite meteorites (aubrites) and the histories of their asteroidal parent bodies. Chem. Erde 70, 295–317 (2010) CrossRefGoogle Scholar
  78. L.P. Keller, D.S. McKay, Discovery of vapor deposits in the lunar regolith. Science 261, 1305–1307 (1993) ADSCrossRefGoogle Scholar
  79. L.P. Keller, D.S. McKay, The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta 61, 2331–2341 (1997) ADSCrossRefGoogle Scholar
  80. L. Kerber, J.W. Head, S.C. Solomon, S.L. Murchie, D.T. Blewett, L. Wilson, Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett. 285, 263–271 (2009) ADSCrossRefGoogle Scholar
  81. L. Kerber, J.W. Head, D.T. Blewett, S.C. Solomon, L. Wilson, S.L. Murchie, M.S. Robinson, B.W. Denevi, D.L. Domingue, The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3. Planet. Space Sci. 59, 1895–1909 (2011) ADSCrossRefGoogle Scholar
  82. R.M. Killen, Pathways for energization of Ca and Mg in Mercury’s exosphere. Icarus 268, 32–36 (2016) ADSCrossRefGoogle Scholar
  83. T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q.-Z. Yin, A.N. Halliday, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009) ADSCrossRefGoogle Scholar
  84. R.L. Klima, B.W. Denevi, C.M. Ernst, S.L. Murchie, P.N. Peplowski, Global distribution and spectral properties of low-reflectance material on Mercury. Geophys. Res. Lett. 45, 2945–2953 (2018) ADSCrossRefGoogle Scholar
  85. C. Klimczak, P.K. Byrne, S.C. Solomon, A rock-mechanical assessment of Mercury’s global tectonic fabric. Earth Planet. Sci. Lett. 416, 82–90 (2015) ADSCrossRefGoogle Scholar
  86. H. Korth, B.J. Anderson, C.L. Johnson, J.A. Slavin, J.M. Raines, T.H. Zurbuchen, Structure and configuration of Mercury’s magnetosphere, in Mercury: The View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson (Cambridge University Press, Cambridge, 2019) Google Scholar
  87. T.S. Kruijer, M. Touboul, M. Fischer-Godde, K.R. Bermingham, R.J. Walker, T. Kleine, Protracted core formation and rapid accretion of protoplanets. Science 344, 1150–1154 (2014) ADSCrossRefGoogle Scholar
  88. T.S. Kruijer, C. Burkhardt, G. Budde, T. Kleine, Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl. Acad. Sci. USA 114, 6712–6716 (2017) ADSGoogle Scholar
  89. M. Le Feuvre, M.A. Wieczorek, Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus 214, 1–20 (2011) ADSCrossRefGoogle Scholar
  90. S.G. Love, K. Keil, Recognizing mercurian meteorites. Meteoritics 30, 269–278 (1995) ADSCrossRefGoogle Scholar
  91. V. Malavergne, J. Siebert, F. Guyot, L. Gautron, R. Combes, T. Hammouda, S. Borensztajn, D. Frost, I. Martinez, Si in the core? New high-pressure and high-temperature experimental data. Geochim. Cosmochim. Acta 68, 4201–4211 (2004) ADSCrossRefGoogle Scholar
  92. V. Malavergne, S. Berthet, K. Righter, Formation of CaS-MgS in enstatite chondrites and achondrites as a function of redox conditions and temperature: constraints on their evolution in a planetesimal and in a proto-planet, in 38th Lunar and Planetary Science Conference, Lunar and Planetary Institute, Houston (2007), p. #1737 Google Scholar
  93. V. Malavergne, P. Cordier, K. Righter, F. Brunet, B. Zanda, A. Addad, T. Smith, H. Bureau, S. Surblé, C. Raepsaet, E. Charon, R.H. Hewins, How Mercury can be the most reduced terrestrial planet and still store iron in its mantle. Earth Planet. Sci. Lett. 394, 186–197 (2014) ADSCrossRefGoogle Scholar
  94. S. Marchi, S. Mottola, G. Cremonese, M. Massironi, E. Martellato, A new chronology for the Moon and Mercury. Astron. J. 137, 4936–4948 (2009) ADSCrossRefGoogle Scholar
  95. S. Marchi, C.R. Chapman, C.I. Fassett, J.W. Head, W.F. Bottke, R.G. Strom, Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013) ADSCrossRefGoogle Scholar
  96. J.-L. Margot, S.A. Hauck II., E. Mazarico, S. Padovan, S.J. Peale, Mercury’s internal structure, in Mercury: The View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson (Cambridge University Press, Cambridge, 2019), pp. 85–113 Google Scholar
  97. M. Matsuoka, T. Nakamura, Y. Kimura, T. Hiroi, R. Nakamura, S. Okumura, S. Sasaki, Pulse-laser irradiation experiments of Murchison CM2 chondrite for reproducing space weathering on C-type asteroids. Icarus 254, 135–143 (2015) ADSCrossRefGoogle Scholar
  98. T.J. McCoy, T.L. Dickinson, G.E. Lofgren, Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci. 34, 735–746 (1999) ADSCrossRefGoogle Scholar
  99. F.M. McCubbin, J.J. Barnes, Origin and abundances of H2O in the terrestrial planets, Moon, and asteroids. Earth Planet. Sci. Lett. 526, 115771 (2019) CrossRefGoogle Scholar
  100. F.M. McCubbin, T.J. McCoy, Expected geochemical and mineralogical properties of meteorites from Mercury: Inferences from MESSENGER data, in 79th Annual Meeting of the Meteoritical Society (2016), p. #6242 Google Scholar
  101. F.M. McCubbin, M.A. Riner, K.E. Vander Kaaden, L.K. Burkemper, Is Mercury a volatile-rich planet? Geophys. Res. Lett. 39, L09202 (2012) ADSCrossRefGoogle Scholar
  102. F.M. McCubbin, K.E.V. Kaaden, P.N. Peplowski, A.S. Bell, L.R. Nittler, J.W. Boyce, L.G. Evans, L.P. Keller, S.M. Elardo, T.J. McCoy, A low O/Si ratio on the surface of Mercury: Evidence for silicon smelting? J. Geophys. Res., Planets 122, 2053–2076 (2017) ADSCrossRefGoogle Scholar
  103. F.M. McCubbin, C.D.K. Herd, T. Yada, A. Hutzler, M.J. Calaway, J.H. Allton, C.M. Corrigan, M.D. Fries, A.D. Harrington, T.J. McCoy, J.L. Mitchell, A.B. Regberg, K. Righter, C.J. Snead, K.T. Tait, M. Zolensky, R.A. Zeigler, Advanced curation of astromaterials for planetary science. Space Sci. Rev. (2019).  https://doi.org/10.1007/s11214-019-0615-9 CrossRefGoogle Scholar
  104. H.Y. McSween, What we have learned about Mars from SNC meteorites. Meteoritics 29, 757–779 (1994) ADSCrossRefGoogle Scholar
  105. A. Milillo, M. Fujimoto, E. Kallio, S. Kameda, F. Leblanc, Y. Narita, G. Cremonese, H. Laakso, M. Laurenza, S. Massetti, S. McKenna-Lawlor, A. Mura, R. Nakamura, Y. Omura, D.A. Rothery, K. Seki, M. Storini, P. Wurz, W. Baumjohann, E.J. Bunce, Y. Kasaba, J. Helbert, A. Sprague, et al. (Hermean Environment WG), The BepiColombo mission: An outstanding tool for investigating the Hermean environment. Planet. Space Sci. 58, 40–60 (2010) ADSCrossRefGoogle Scholar
  106. D.W. Ming, R. Gellert, R.V. Morris, R.E. Arvidson, J. Brueckner, B.C. Clark, G. Klingelhöfer, Geochemical properties of rocks and soils in Gusev crater, Mars: Results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. J. Geophys. Res., Planets 113, E12 (2008) Google Scholar
  107. I.G. Mitrofanov, A.S. Kozyrev, A. Konovalov, M.L. Litvak, A.A. Malakhov, M.I. Mokrousov, A.B. Sanin, V.I. Tret’ykov, A.V. Vostrukhin, Y.I. Bobrovnitskjj, T.M. Tomilina, I. Gurvits, A. Owens, The Mercury Gamm and Neutron Spectrometer (MGNS) on board the Planetary Orbiter of the BepiColombo mission. Planet. Space Sci. 58, 116–124 (2010) ADSCrossRefGoogle Scholar
  108. L. Moroz, G. Baratta, G. Strazzulla, L. Starukhina, E. Dotto, M.A. Barucci, G. Arnold, E. Distefano, Optical alteration of complex organics induced by ion irradiation: 1. Laboratory experiments suggest unusual space weathering trend. Icarus 170, 214–228 (2004) ADSCrossRefGoogle Scholar
  109. K. Mueller, M. Golombek, Compressional structures on Mars. Annu. Rev. Earth Planet. Sci. 32, 435–464 (2004) ADSCrossRefGoogle Scholar
  110. S.L. Murchie, R.L. Klima, B.W. Denevi, C.M. Ernst, M.R. Keller, D.L. Domingue, D.T. Blewett, N.L. Chabot, C. Hash, E. Malaret, N.R. Izenberg, F. Vilas, L.R. Nittler, J.W. Head, Orbital multispectral mapping of Mercury using the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus 254, 287–305 (2015) ADSCrossRefGoogle Scholar
  111. B.C. Murray, The Mariner 10 pictures of Mercury: an overview. J. Geophys. Res. 80, 2342–2344 (1975) ADSCrossRefGoogle Scholar
  112. O. Namur, B. Charlier, Silicate mineralogy at the surface of Mercury. Nat. Geosci. 10, 9–13 (2017) ADSCrossRefGoogle Scholar
  113. O. Namur, B. Charlier, F. Holtz, C. Cartier, C. McCammon, Sulfur solubility in reduced mafic silicate melts: Implications for the speciation and distribution of sulfur on Mercury. Earth Planet. Sci. Lett. 448, 102–114 (2016a) ADSCrossRefGoogle Scholar
  114. O. Namur, M. Collinet, B. Charlier, T.L. Grove, F. Holtz, C. McCammon, Melting processes and mantle sources of lavas on Mercury. Earth Planet. Sci. Lett. 439, 117–128 (2016b) ADSCrossRefGoogle Scholar
  115. J.A.M. Nanne, F. Nimmo, J.N. Cuzzi, T. Kleine, Origin of the non-carbonaceous-carbonaceous meteorite dichotomy. Earth Planet. Sci. Lett. 511, 44–54 (2019) ADSCrossRefGoogle Scholar
  116. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Magnetic field observations near Mercury: preliminary results from Mariner 10. Science 185, 151–160 (1974) ADSCrossRefGoogle Scholar
  117. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, The magnetic field of Mercury. J. Geophys. Res. 80, 2708–2716 (1975) ADSCrossRefGoogle Scholar
  118. T. Niihara, S.P. Beard, T.D. Swindle, L.A. Schaffer, H. Miyamoto, D.A. Kring, Evidence for multiple 4.0–3.7 Ga impact events within the Apollo 16 collection. Meteorit. Planet. Sci. 54, 675–698 (2019) ADSCrossRefGoogle Scholar
  119. L.R. Nittler, R.D. Starr, S.Z. Weider, T.J. McCoy, W.V. Boynton, D.S. Ebel, C.M. Ernst, L.G. Evans, J.O. Goldsten, D.K. Hamara, D.J. Lawrence, R.L. McNutt, C.E. Schlemm, S.C. Solomon, A.L. Sprague, The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science 333, 1847–1850 (2011) ADSCrossRefGoogle Scholar
  120. L.R. Nittler, N.L. Chabot, T.L. Grove, P.N. Peplowski, The chemical composition of Mercury, in Mercury: The View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson (Cambridge University Press, Cambridge, 2019), pp. 30–51 Google Scholar
  121. K. Nogami, M. Fujii, h. Ohashi, T. Miyachi, S. Sasaki, S. Hasegawa, H. Yano, H. Shibata, T. Iwai, S. Minami, S. Takechi, E. Grun, R. Srama, Development of the Mercury dust monitor (MDM) onboard the BepiColombo mission. Planet. Space Sci. 58, 108–115 (2010) ADSCrossRefGoogle Scholar
  122. T. Noguchi, T. Nakamura, M. Kimura, M.E. Zolensky, M. Tanaka, T. Hashimoto, M. Konno, A. Nakato, T. Ogami, A. Fujimura, M. Abe, Incipient space weathering observed on the surface of Itokawa dust particles. Science 333, 1121–1125 (2011) ADSCrossRefGoogle Scholar
  123. T. Noguchi, M. Kimura, T. Hasimoto, M. Konno, T. Nakamura, M.E. Zolensky, R. Okazaki, M. Tanaka, A. Tsuchiyama, A. Nakato, T. Ogami, Space weathered rims found on the surfaces of the Itokawa dust particles. Meteorit. Planet. Sci. 492, 188–214 (2014) ADSCrossRefGoogle Scholar
  124. K.W. Ogilvie, J.D. Scudder, R.E. Hartle, G.L. Siscoe, H.S. Bridge, A.J. Lazarus, J.R. Asbridge, S.J. Bame, C.M. Yeates, Observations at Mercury encountered by the plasma science experiment on Mariner 10. Science 185, 145–151 (1974) ADSCrossRefGoogle Scholar
  125. S. Orsini, S. Livi, K. Torkar, S. Barabash, A. Milillo, P. Wurz, A.M. Di Lellis, E. Kallio (SERENA Team), SERENA: A suite of four instruments (ELENA, STROFIO, PICAM, and MIPA) on board BepiColombo-MPO for particle detection in the Hermean environment. Planet. Space Sci. 58, 166–181 (2010) ADSCrossRefGoogle Scholar
  126. L.R. Ostrach, M.S. Robinson, J.L. Whitten, C.I. Fassett, R.G. Strom, J.W. Head, S.C. Solomon, Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations. Icarus 250, 602–622 (2015) ADSCrossRefGoogle Scholar
  127. P.N. Peplowski, L.G. Evans, S.A. Hauck, T.J. McCoy, W.V. Boynton, J.J. Gillis-Davis, D.S. Ebel, J.O. Goldsten, D.K. Hamara, D.J. Lawrence, R.L. McNutt, L.R. Nittler, S.C. Solomon, E.A. Rhodes, A.L. Sprague, R.D. Starr, K.R. Stockstill-Cahill, Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science 333, 1850–1852 (2011) ADSCrossRefGoogle Scholar
  128. P.N. Peplowski, L.G. Evans, K.R. Stockstill-Cahill, D.J. Lawrence, J.O. Goldsten, T.J. McCoy, L.R. Nittler, S.C. Solomon, A.L. Sprague, R.D. Starr, S.Z. Weider, Enhanced sodium abundance in Mercury’s north polar region revealed by the MESSENGER Gamma-Ray Spectrometer. Icarus 228, 86–95 (2014) ADSCrossRefGoogle Scholar
  129. P.N. Peplowski, D.J. Lawrence, L.G. Evans, R.L. Klima, D.T. Blewett, J.O. Goldsten, S.L. Murchie, T.J. McCoy, L.R. Nittler, S.C. Solomon, R.D. Starr, S.Z. Weider, Constraints on the abundance of carbon in near-surface materials on Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. Planet. Space Sci. 108, 98–107 (2015a) ADSCrossRefGoogle Scholar
  130. P.N. Peplowski, D.J. Lawrence, W.C. Feldman, J.O. Goldsten, D. Bazell, L.G. Evans, J.W. Head, L.R. Nittler, S.C. Solomon, S.Z. Weider, Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus 253, 346–363 (2015b) ADSCrossRefGoogle Scholar
  131. P.N. Peplowski, R.L. Klima, D.J. Lawrence, C.M. Ernst, B.W. Denevi, E.A. Frank, J.O. Goldsten, S.L. Murchie, L.R. Nittler, S.C. Solomon, Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nat. Geosci. 9, 273–276 (2016) ADSCrossRefGoogle Scholar
  132. C.M. Pieters, S.K. Noble, Space weathering on airless bodies. J. Geophys. Res., Planets 121, 1865–1884 (2016) ADSCrossRefGoogle Scholar
  133. A.E. Potter, T.H. Morgan, Discovery of sodium in the atmosphere of Mercury. Science 229, 651–653 (1985) ADSCrossRefGoogle Scholar
  134. A.E. Potter, T.H. Morgan, Potassium in the atmosphere of Mercury. Icarus 67, 336–340 (1986) ADSCrossRefGoogle Scholar
  135. S.N. Raymond, D.P. O’Brien, A. Morbidelli, N.A. Kaib, Building the terrestrial planets: Constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009) ADSCrossRefGoogle Scholar
  136. A. Ricolleau, Y. Fei, A. Corgne, J. Siebert, J. Badro, Oxygen and silicon contents of Earth’s core from high pressure metal-silicate partitioning experiments. Earth Planet. Sci. Lett. 310, 409–421 (2011) ADSCrossRefGoogle Scholar
  137. A.E. Ringwood, Silicon in the metal phase of enstatite chondrites and some geochemical implications. Geochim. Cosmochim. Acta 25, 1–13 (1961) ADSCrossRefGoogle Scholar
  138. P. Rochette, J. Gattacceca, L. Bonal, M. Bourot-Denise, V. Chevrier, J.-P. Clerc, G. Consolmagno, L. Folco, M. Gournelle, T. Kohout, L. Pesonen, E. Quirico, L. Sagnotti, A. Skripnik, Magnetic classification of stony meteorites: 2. Non-ordinary chondrites. Meteorit. Planet. Sci. 43, 959–980 (2008) ADSCrossRefGoogle Scholar
  139. A.D. Rogers, V.E. Hamilton, Compositional provinces of Mars from statistical analyses of TES, GRS, OMEGA, and CRISM data. J. Geophys. Res., Planets 120, 62–91 (2015) ADSCrossRefGoogle Scholar
  140. L. Rose-Weston, J.M. Brenan, Y.W. Fei, R.A. Secco, D.J. Frost, Effect of pressure, temperature, and oxygen fugacity on the metal-silicate partitioning of Te, Se, and S: Implications for Earth differentiation. Geochim. Cosmochim. Acta 73, 4598–4615 (2009) ADSCrossRefGoogle Scholar
  141. D. Rothery, L. Marinangeli, m. Anand, J. Carpenter, U. Christensen, I.A. Crawford, M.C. De Sanctis, E.M. Epifani, S. Erard, A. Frigeri, G. Fraser, E. Hauber, J. Helbert, H. Hiesinger, K. Joy, Y. Langevin, M. Marrironi, A. Milillo, I. Mitrofanov, K. Muinonen, J. Naranen, C. Pauselli, p. Potts, J. Warell, P. Wurz, Mercury’s surface and composition to be studied by BepiColombo. Planet. Space Sci. 58, 21–39 (2010) ADSCrossRefGoogle Scholar
  142. Y. Saito, J.A. Sauvaud, M. Hirahara, S. Barabash, D. Delcourt, T. Takashima, K. Asamura (BepiColombo MMO/MPPE Team), Scientific objectives and instrumentation of Mercury Plasma Particle Experiment (MPPE) onboard MMO. Planet. Space Sci. 58, 182–200 (2010) ADSCrossRefGoogle Scholar
  143. M.E. Sanborn, J. Wimpenny, C.D. Williams, A. Yamakawa, Y. Amelin, A.J. Irving, Q.Z. Yin, Carbonaceous achondrites Northwest Africa 6704/6693: Milestones for early Solar System chronology and genealogy. Geochim. Cosmochim. Acta 245, 577–596 (2019) ADSCrossRefGoogle Scholar
  144. A.R. Sarafian, E.H. Hauri, F.M. McCubbin, T.J. Lapen, E.L. Berger, S.G. Nielsen, H.R. Marschall, G.A. Gaetani, K. Righter, E. Sarafian, Early accretion of water and volatile elements to the inner Solar System: Evidence from angrites. Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 375(2094), 20160209 (2017) ADSCrossRefGoogle Scholar
  145. O.A. Schaeffer, L. Husain, Chronology of lunar basin formation, in Proceedings of the Fifth Lunar Conference (1974), pp. 1541–1555 Google Scholar
  146. M. Schiller, M. Bizzarro, V.A. Fernandes, Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon. Nature 555, 507 (2018) ADSCrossRefGoogle Scholar
  147. D.L. Schrader, K. Nagashima, A.N. Krot, R.C. Ogliore, Q.Z. Yin, Y. Amelin, C.H. Stirling, A. Kaltenbach, Distribution of Al-26 in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta 201, 275–302 (2017) ADSCrossRefGoogle Scholar
  148. R.A. Schultz, Brittle strength of basaltic rock masses with applications to Venus. J. Geophys. Res. 98, 10883–10895 (1993) ADSCrossRefGoogle Scholar
  149. Z.D. Sharp, F.M. McCubbin, C.K. Shearer, A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet. Sci. Lett. 380, 88–97 (2013) ADSCrossRefGoogle Scholar
  150. E.M. Shoemaker, R.J. Hackman, Stratigraphic basis for a lunar time scale, in The Moon (Academic Press, New York, 1962), pp. 289–300 Google Scholar
  151. J.A. Simpson, J.H. Eraker, J.E. Lamport, P.H. Walpole, Electrons and protons accelerated in Mercury’s magnetic field. Science 185, 160–166 (1974) ADSCrossRefGoogle Scholar
  152. M.A. Slade, B.J. Butler, D.O. Muhleman, Mercury radar imaging: evidence for polar ice. Science 258, 635–640 (1992) ADSCrossRefGoogle Scholar
  153. J.A. Slavin, D.N. Baker, D.J. Gershman, G.C. Ho, S.M. Imber, S.M. Krimigis, T. Sundberg, Mercury’s dynamic magnetosphere, in Mercury: The View After MESSENGER, ed. by S.C. Solomon, L.R. Nittler, B.J. Anderson (Cambridge University Press, Cambridge, 2019) Google Scholar
  154. S.C. Solomon, The relationship between crustal tectonics and internal evolution in the Moon and Mercury. Phys. Earth Planet. Inter. 15, 135–145 (1977) ADSCrossRefGoogle Scholar
  155. S.C. Solomon, R.L. McNutt Jr., R.E. Gold, M.H. Acuña, D.N. Baker, W.V. Boynton, C.R. Chapman, A.F. Cheng, G. Gloeckler, J.W. Head, S.M. Krimigis, W.E. McClintock, S.L. Murchie, S.J. Peale, R.J. Phillips, M.S. Robinson, J.A. Slavin, D.E. Smith, R.G. Strom, J.I. Trombka, M.T. Zuber, The MESSENGER mission to Mercury: scientific objectives and implementation. Planet. Space Sci. 49, 1445–1465 (2001) ADSCrossRefGoogle Scholar
  156. S.C. Solomon, L.R. Nittler, B.J. Anderson, Mercury: The View After MESSENGER (Cambridge University Press, Cambridge, 2019) Google Scholar
  157. P.D. Spudis, A Mercurian chronostratigraphic classification, in Reports of the Planetary Geology and Geophysics Program NASA Technical Memorandum (1985), pp. 595–597 Google Scholar
  158. P.D. Spudis, J.E. Guest, Stratigraphy and geologic history of Mercury, in Mercury (University of Arizona Press, Tucson, 1988), pp. 118–164 Google Scholar
  159. P. Srinivasan, D.R. Dunlap, C.B. Agee, M. Wadhwa, D. Coleff, K. Ziegler, R. Zeigler, F.M. McCubbin, Silica-rich volcanism in the early solar system dated at 4.565 Ga. Nat. Commun. 9, 3036 (2018) ADSCrossRefGoogle Scholar
  160. R.G. Strom, N.J. Trask, J.E. Guest, Tectonism and volcanism on Mercury. J. Geophys. Res. 80, 2478–2507 (1975) ADSCrossRefGoogle Scholar
  161. H. Tang, N. Dauphas, Fe-60-Ni-60 chronology of core formation in Mars. Earth Planet. Sci. Lett. 390, 264–274 (2014) ADSCrossRefGoogle Scholar
  162. G.J. Taylor, E.R.D. Scott, Mercury, in Treatise on Geochemistry: Meteorites, Comets and Planets, ed. by A.M. Davis (Elsevier, Amsterdam, 2004), pp. 477–485 Google Scholar
  163. R.J. Thomas, D.A. Rothery, S.J. Conway, M. Anand, Long-lived explosive volcanism on Mercury. Geophys. Res. Lett. 41, 6084–6092 (2014) ADSCrossRefGoogle Scholar
  164. R.J. Thomas, D.A. Rothery, S.J. Conway, M. Anand, Explosive volcanism in complex impact craters on Mercury and the Moon: Influence of tectonic regime on depth of magmatic intrusion. Earth Planet. Sci. Lett. 431, 164–172 (2015) ADSCrossRefGoogle Scholar
  165. M.S. Thompson, R. Christoffersen, T.J. Zega, L.P. Keller, Microchemical and structural evidence for space weathering in soils from asteroid Itokawa. Earth Planets Space 66, 89 (2014) ADSCrossRefGoogle Scholar
  166. M.S. Thompson, T.J. Zega, P. Becerra, J.T. Keane, S. Byrne, The oxidation state of nanophase Fe particles in lunar soil: Implications for space weathering. Meteorit. Planet. Sci. 51, 1082–1095 (2016) ADSCrossRefGoogle Scholar
  167. S.M. Tikoo, B.P. Weiss, D.L. Shuster, C. Suavet, H. Wang, T.L. Grove, A two-billion-year history for the lunar dynamo. Sci. Adv. 3, e1700207 (2017) ADSCrossRefGoogle Scholar
  168. A. Udry, Z.E. Wilbur, R.R. Rahib, F.M. McCubbin, K.E. Vander Kaaden, T.J. McCoy, K. Ziegler, J. Gross, C. DeFelice, L. Combs, B.D. Turrin, Reclassification of four aubrites as enstatite chondrite impact melts: Potential geochemical analogues for Mercury. Meteorit. Planet. Sci. 54, 785–810 (2019) ADSCrossRefGoogle Scholar
  169. K.E. Vander Kaaden, F.M. McCubbin, Exotic crust formation on Mercury: Consequences of a shallow, FeO-poor mantle. J. Geophys. Res., Planets 120, 195–209 (2015) ADSCrossRefGoogle Scholar
  170. K.E. Vander Kaaden, F.M. McCubbin, The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas. Geochim. Cosmochim. Acta 173, 246–263 (2016) ADSCrossRefGoogle Scholar
  171. K.E. Vander Kaaden, F.M. McCubbin, L.R. Nittler, P.N. Peplowski, S.Z. Weider, E.A. Frank, T.J. McCoy, Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle. Icarus 285, 155–168 (2017) ADSCrossRefGoogle Scholar
  172. A.K. Vogel, E.S. Jennings, V. Laurenz, D.C. Rubie, D.J. Frost, The dependence of metal-silicate partitioning of moderately volatile elements on oxygen fugacity and Si contents of Fe metal: Implications for their valence states in silicate liquids. Geochim. Cosmochim. Acta 237, 275–293 (2018) ADSCrossRefGoogle Scholar
  173. M. Wadhwa, Y. Amelin, O. Bogdanovski, A. Shukolyukov, G.W. Lugmair, P. Janney, Ancient relative and absolute ages for a basaltic meteorite: Implications for timescales of planetesimal accretion and differentiation. Geochim. Cosmochim. Acta 73, 5189–5201 (2009) ADSCrossRefGoogle Scholar
  174. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011) ADSCrossRefGoogle Scholar
  175. P.H. Warren, Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011) ADSCrossRefGoogle Scholar
  176. S.Z. Weider, L.R. Nittler, R.D. Starr, T.J. McCoy, S.C. Solomon, Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus 235, 170–186 (2014) ADSCrossRefGoogle Scholar
  177. S.Z. Weider, L.R. Nittler, R.D. Starr, E.J. Crapster-Pregont, P.N. Peplowski, B.W. Denevi, J.W. Head, P.K. Byrne, S.A. Hauck II., D.S. Ebel, S.C. Solomon, Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett. 416, 109–120 (2015) ADSCrossRefGoogle Scholar
  178. S.Z. Weider, L.R. Nittler, S.L. Murchie, P.N. Peplowski, T.J. McCoy, L. Kerber, C. Klimczak, C.M. Ernst, T.A. Goudge, R.D. Starr, N.R. Izenberg, R.L. Klima, S.C. Solomon, Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophys. Res. Lett. 43, 3653–3661 (2016) ADSCrossRefGoogle Scholar
  179. B.P. Weiss, S.M. Tikoo, The lunar dynamo. Science 346, 1198 (2014) ADSCrossRefGoogle Scholar
  180. J.L. Whitten, J.W. Head, B.W. Denevi, S.C. Solomon, Intercrater plains on Mercury: Insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus 241, 97–113 (2014) ADSCrossRefGoogle Scholar
  181. M.A. Wieczorek, B.P. Weiss, S.T. Stewart, An impactor origin for lunar magnetic anomalies. Science 335, 1212–1215 (2012) ADSCrossRefGoogle Scholar
  182. M.A. Wieczorek, G.A. Neumann, F. Nimmo, W.S. Kiefer, G.J. Taylor, H.J. Melosh, R.J. Phillips, S.C. Solomon, J.C. Andrews-Hanna, S.W. Asmar, A.S. Konopliv, F.G. Lemoine, D.E. Smith, M.M. Watkins, J.G. Williams, M.T. Zuber, The crust of the Moon as seen by GRAIL. Science 339, 671–675 (2013) ADSCrossRefGoogle Scholar
  183. D.E. Wilhelms, The geologic history of the Moon. USGS Professional Paper, #1348 (1987) Google Scholar
  184. T. Yada, A. Fujimura, M. Abe, T. Nakamura, T. Noguchi, R. Okazaki, K. Nagao, Y. Ishibashi, K. Shirai, M.E. Zolensky, S. Sandford, T. Okada, M. Uesugi, Y. Karouji, M. Ogawa, S. Yakame, M. Ueno, T. Mukai, M. Yoshikawa, J. Kawaguchi, Hayabusa-returned sample curation in the Planetary Material Sample Curation Facility of JAXA. Meteorit. Planet. Sci. 49, 135–153 (2014) ADSCrossRefGoogle Scholar
  185. I. Yoshikawa, O. Korablev, S. Kameda, D. Rees, H. Nozawa, S. Okano, V. Gnedykh, V. Kottsov, k. Yoshioka, G. Murakami, F. Ezawa, G. Cremonese, The Mercury sodium atmospheric spectral imager for the MMO spacecraft of Bepi-Colombo. Planet. Space Sci. 58, 224–237 (2010) ADSCrossRefGoogle Scholar
  186. A.N. Youdin, J. Goodman, Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005) ADSCrossRefGoogle Scholar
  187. M.Y. Zolotov, A.L. Sprague, S.A. Hauck, L.R. Nittler, S.C. Solomon, S.Z. Weider, The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res., Planets 118(1), 138–146 (2013) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Jacobs, NASA Johnson Space CenterHoustonUSA
  2. 2.NASA Johnson Space CenterHoustonUSA
  3. 3.Planetary Research Group, Department of Marine, Earth, and Atmospheric SciencesNorth Carolina State UniversityRaleighUSA
  4. 4.The Johns Hopkins University Applied Physics LaboratoryLaurelUSA
  5. 5.Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada
  6. 6.Planetary Science InstituteTucsonUSA
  7. 7.Department of Earth, Atmospheric, and Planetary SciencesPurdue UniversityWest LafayetteUSA

Personalised recommendations