Advertisement

Space Science Reviews

, 215:50 | Cite as

Lunar Seismology: An Update on Interior Structure Models

  • Raphael F. GarciaEmail author
  • Amir Khan
  • Mélanie Drilleau
  • Ludovic Margerin
  • Taichi Kawamura
  • Daoyuan Sun
  • Mark A. Wieczorek
  • Attilio Rivoldini
  • Ceri Nunn
  • Renee C. Weber
  • Angela G. Marusiak
  • Philippe Lognonné
  • Yosio Nakamura
  • Peimin Zhu
Article
  • 15 Downloads

Abstract

An international team of researchers gathered, with the support of the International Space Science Institute (ISSI), (1) to review seismological investigations of the lunar interior from the Apollo-era and up until the present and (2) to re-assess our level of knowledge and uncertainty on the interior structure of the Moon. A companion paper (Nunn et al. in Space Sci. Rev., submitted) reviews and discusses the Apollo lunar seismic data with the aim of creating a new reference seismic data set for future use by the community. In this study, we first review information pertinent to the interior of the Moon that has become available since the Apollo lunar landings, particularly in the past ten years, from orbiting spacecraft, continuing measurements, modeling studies, and laboratory experiments. Following this, we discuss and compare a set of recent published models of the lunar interior, including a detailed review of attenuation and scattering properties of the Moon. Common features and discrepancies between models and moonquake locations provide a first estimate of the error bars on the various seismic parameters. Eventually, to assess the influence of model parameterisation and error propagation on inverted seismic velocity models, an inversion test is presented where three different parameterisations are considered. For this purpose, we employ the travel time data set gathered in our companion paper (Nunn et al. in Space Sci. Rev., submitted). The error bars of the inverted seismic velocity models demonstrate that the Apollo lunar seismic data mainly constrain the upper- and mid-mantle structure to a depth of ∼1200 km. While variable, there is some indication for an upper mantle low-velocity zone (depth range 100–250 km), which is compatible with a temperature gradient around 1.7 C/km. This upper mantle thermal gradient could be related to the presence of the thermally anomalous region known as the Procellarum Kreep Terrane, which contains a large amount of heat producing elements.

Keywords

Moon Seismology Internal structure of planets 

Notes

Acknowledgements

We acknowledge ISSI Bern and ISSI Beijing for providing support to our international research team. This work was granted access to the HPC resources of CINES under the allocation A0050407341 made by GENCI. Internal structure models and quake locations presented in this study are available in electronic form at the following  https://doi.org/10.5281/zenodo.3372489.

Supplementary material

11214_2019_613_MOESM1_ESM.zip (3.7 mb)
(ZIP 3.7 MB)

References

  1. K. Aki, B. Chouet, Origin of coda waves: source, attenuation, and scattering effects. J. Geophys. Res. 80(23), 3322–3342 (1975) ADSCrossRefGoogle Scholar
  2. D. Antonangeli, G. Morard, N.C. Schmerr, T. Komabayashi, M. Krisch, G. Fiquet, Y. Fei, Toward a mineral physics reference model for the Moon’s core, in Proceedings of the National Academy of Sciences (2015) Google Scholar
  3. J. Besserer, F. Nimmo, M.A. Wieczorek, R.C. Weber, W.S. Kiefer, P.J. McGovern, J.C. Andrews-Hanna, D.E. Smith, M.T. Zuber, GRAIL gravity constraints on the vertical and lateral density structure of the lunar crust. Geophys. Res. Lett. 41, 5771–5777 (2014).  https://doi.org/10.1002/2014GL060240 ADSCrossRefGoogle Scholar
  4. J.-F. Blanchette-Guertin, C.L. Johnson, J.F. Lawrence, Investigation of scattering in lunar seismic coda. J. Geophys. Res., Planets 117, 06003 (2012).  https://doi.org/10.1029/2011JE004042 ADSCrossRefGoogle Scholar
  5. J.-F. Blanchette-Guertin, C. Johnson, J. Lawrence, Modeling seismic energy propagation in highly scattering environments. J. Geophys. Res., Planets 120(3), 515–537 (2015) ADSCrossRefGoogle Scholar
  6. A.S. Buono, D. Walker, The Fe-rich liquidus in the Fe–FeS system from 1 bar to 10 GPa. Geochim. Cosmochim. Acta 75(8), 2072–2087 (2011) ADSCrossRefGoogle Scholar
  7. H. Chi, R. Dasgupta, M.S. Duncan, N. Shimizu, Partitioning of carbon between Fe-rich alloy melt and silicate melt in a magma ocean—implications for the abundance and origin of volatiles in Earth, Mars, and the Moon. Geochim. Cosmochim. Acta 139(Supplement C), 447–471 (2014) ADSCrossRefGoogle Scholar
  8. J.A.D. Connolly, The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10(10) (2009). Q10014.  https://doi.org/10.1029/2009GC002540 CrossRefGoogle Scholar
  9. M.R. Cooper, R.L. Kovach, J.S. Watkins, Lunar near-surface structure. Rev. Geophys. Space Phys. 12, 291–308 (1974).  https://doi.org/10.1029/RG012i003p00291 ADSCrossRefGoogle Scholar
  10. A.M. Dainty, M.N. Toksöz, K.R. Anderson, P.J. Pines, Y. Nakamura, G. Latham, Seismic scattering and shallow structure of the Moon in oceanus procellarum. Moon 9, 11–29 (1974).  https://doi.org/10.1007/BF00565388 ADSCrossRefGoogle Scholar
  11. A.M. Dainty, N.R. Goins, M.N. Toksöz, Seismic Investigation of the Lunar Interior, vol. 7 (1976a), p. 181 Google Scholar
  12. A.M. Dainty, M.N. Toköz, S. Stein, Seismic Investigation of the Lunar Interior, vol. 3 (1976b), pp. 3057–3075 Google Scholar
  13. M. Drilleau, E. Beucler, A. Mocquet, O. Verhoeven, G. Moebs, G. Burgos, J.-P. Montagner, P. Vacher, A bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves. Geophys. J. Int. 195(2), 1165–1183 (2013).  https://doi.org/10.1093/gji/ggt284 ADSCrossRefGoogle Scholar
  14. A. Duba, H.C. Heard, R.N. Schock, Electrical conductivity of orthopyroxene to 1400 C and the resulting selenotherm, in Lunar and Planetary Science Conference Proceedings, ed. by D.C. Kinsler Lunar and Planetary Science Conference Proceedings, vol. 7 (1976), pp. 3173–3181 Google Scholar
  15. F. Duennebier, G.H. Sutton, Thermal moonquakes. J. Geophys. Res. 79, 4351–4363 (1974).  https://doi.org/10.1029/JB079i029p04351 ADSCrossRefGoogle Scholar
  16. P. Dyal, C.W. Parkin, W.D. Daily, Structure of the lunar interior from magnetic field measurements, in Lunar and Planetary Science Conference Proceedings, ed. by D.C. Kinsler Lunar and Planetary Science Conference Proceedings, vol. 7 (1976), pp. 3077–3095 Google Scholar
  17. M. Efroimsky, Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron. 112, 283–330 (2012a).  https://doi.org/10.1007/s10569-011-9397-4 ADSMathSciNetCrossRefGoogle Scholar
  18. M. Efroimsky, Tidal dissipation compared to seismic dissipation: in small bodies, earths, and super-earths. Astrophys. J. 746, 150 (2012b).  https://doi.org/10.1088/0004-637X/746/2/150 ADSCrossRefGoogle Scholar
  19. Y. Fei, E. Brosh, Experimental study and thermodynamic calculations of phase relations in the Fe–C system at high pressure. Earth Planet. Sci. Lett. 408(0), 155–162 (2014) ADSCrossRefGoogle Scholar
  20. C. Frohlich, Y. Nakamura, Possible extra-Solar-System cause for certain lunar seismic events. Icarus 185, 21–28 (2006).  https://doi.org/10.1016/j.icarus.2006.07.002 ADSCrossRefGoogle Scholar
  21. J. Gagnepain-Beyneix, P. Lognonné, H. Chenet, D. Lombardi, T. Spohn, A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys. Earth Planet. Inter. 159, 140–166 (2006).  https://doi.org/10.1016/j.pepi.2006.05.009 ADSCrossRefGoogle Scholar
  22. R. Garcia, H. Tkalčić, S. Chevrot, A new global PKP data set to study Earth’s core and deep mantle. Phys. Earth Planet. Inter. 159, 15–31 (2006) ADSCrossRefGoogle Scholar
  23. R.F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné, Very preliminary reference Moon model. Phys. Earth Planet. Inter. 188, 96–113 (2011).  https://doi.org/10.1016/j.pepi.2011.06.015 ADSCrossRefGoogle Scholar
  24. M.S. Ghiorso, M.M. Hirschmann, P.W. Reiners, V.C. Kress III, The pMELTS: a revision of melts for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. 3(5), 1–35 (2002).  https://doi.org/10.1029/2001GC000217 CrossRefGoogle Scholar
  25. K. Gillet, L. Margerin, M. Calvet, M. Monnereau, Scattering attenuation profile of the Moon: implications for shallow moonquakes and the structure of the megaregolith. Phys. Earth Planet. Inter. 262, 28–40 (2017).  https://doi.org/10.1016/j.pepi.2016.11.001 ADSCrossRefGoogle Scholar
  26. N.R. Goins, Lunar seismology: the internal structure of the Moon. Ph.D. thesis, Mass. Inst. of Technol., Cambridge (1978) Google Scholar
  27. N.R. Goins, A.M. Dainty, M.N. Toksoz, Lunar seismology—the internal structure of the Moon. J. Geophys. Res. 86, 5061–5074 (1981).  https://doi.org/10.1029/JB086iB06p05061 ADSCrossRefGoogle Scholar
  28. D.H. Green, N.G. Ware, W.O. Hibberson, A. Major, Experimental petrology of Apollo 12 basalts: part 1, sample 12009. Earth Planet. Sci. Lett. 13(1), 85–96 (1971) ADSCrossRefGoogle Scholar
  29. Y. Harada, S. Goossens, K. Matsumoto, J. Yan, J. Ping, H. Noda, J. Haruyama, Strong tidal heating in an ultralow-viscosity zone at the core-mantle boundary of the Moon. Nat. Geosci. 7, 569–572 (2014).  https://doi.org/10.1038/ngeo2211 ADSCrossRefGoogle Scholar
  30. E.H. Hauri, A.E. Saal, M.J. Rutherford, J.A. Van Orman, Water in the Moon’s interior: truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015).  https://doi.org/10.1016/j.epsl.2014.10.053 ADSCrossRefGoogle Scholar
  31. S. Hempel, M. Knapmeyer, A.R.T. Jonkers, J. Oberst, Uncertainty of Apollo deep moonquake locations and implications for future network designs. Icarus 220, 971–980 (2012) ADSCrossRefGoogle Scholar
  32. B.A. Hobbs, L.L. Hood, F. Herbert, C.P. Sonett, An upper bound on the radius of a highly electrically conducting lunar core. J. Geophys. Res. 88, 97–102 (1983).  https://doi.org/10.1029/JB088iS01p00B97 CrossRefGoogle Scholar
  33. L.L. Hood, Geophysical constraints on the lunar interior, in Origin of the Moon, ed. by W.K. Hartmann, R.J. Phillips, G.J. Taylor, 1986, pp. 361–410 Google Scholar
  34. L.L. Hood, F. Herbert, C.P. Sonett, The deep lunar electrical conductivity profile—structural and thermal inferences. J. Geophys. Res. 87, 5311–5326 (1982).  https://doi.org/10.1029/JB087iB07p05311 ADSCrossRefGoogle Scholar
  35. L.L. Hood, D.L. Mitchell, R.P. Lin, M.H. Acuna, A.B. Binder, Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data. Geophys. Res. Lett. 26, 2327–2330 (1999).  https://doi.org/10.1029/1999GL900487 ADSCrossRefGoogle Scholar
  36. L.L. Hood, M.T. Zuber, in Recent Refinements in Geophysical Constraints on Lunar Origin and Evolution, ed. by R.M. Canup, K. Righter, et al. (2000), pp. 397–409 Google Scholar
  37. P. Horvath, Analysis of lunar seismic signals—determination of instrumental parameters and seismic velocity distributio. Ph.D. thesis, Univ. of Tex. at Dallas, Richardson (1979) Google Scholar
  38. J.S. Huebner, A. Duba, L.B. Wiggins, Electrical conductivity of pyroxene which contains trivalent cations—laboratory measurements and the lunar temperature profile. J. Geophys. Res. 84, 4652–4656 (1979).  https://doi.org/10.1029/JB084iB09p04652 ADSCrossRefGoogle Scholar
  39. Z. Jing, Y. Wang, Y. Kono, T. Yu, T. Sakamaki, C. Park, M.L. Rivers, S.R. Sutton, G. Shen, Sound velocity of Fe–S liquids at high pressure: implications for the Moon’s molten outer core. Earth Planet. Sci. Lett. 396, 78–87 (2014) ADSCrossRefGoogle Scholar
  40. H. Kanamori, A. Nur, D. Chung, D. Wones, G. Simmons, Elastic wave velocities of lunar samples at high pressures and their geophysical implications. Science 167, 726–728 (1970) ADSCrossRefGoogle Scholar
  41. S.-i. Karato, Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet. Sci. Lett. 301, 413–423 (2011).  https://doi.org/10.1016/j.epsl.2010.11.038 ADSCrossRefGoogle Scholar
  42. S.-i. Karato, Geophysical constraints on the water content of the lunar mantle and its implications for the origin of the Moon. Earth Planet. Sci. Lett. 384 (2013).  https://doi.org/10.1016/j.epsl.2013.10.001 ADSCrossRefGoogle Scholar
  43. T. Kawamura, N. Kobayashi, S. Tanaka, P. Lognonné, Lunar Surface Gravimeter as a lunar seismometer: investigation of a new source of seismic information on the Moon. J. Geophys. Res., Planets 120, 343–358 (2015).  https://doi.org/10.1002/2014JE004724 ADSCrossRefGoogle Scholar
  44. A. Khan, K. Mosegaard, An inquiry into the lunar interior: a nonlinear inversion of the Apollo lunar seismic data. J. Geophys. Res., Planets 107, 3-1–3-23 (2002).  https://doi.org/10.1029/2001JE001658 CrossRefGoogle Scholar
  45. A. Khan, K. Mosegaard, Further constraints on the deep lunar interior. Geophys. Res. Lett. 32, 22203 (2005).  https://doi.org/10.1029/2005GL023985 ADSCrossRefGoogle Scholar
  46. A. Khan, T.J. Shankland, A geophysical perspective on mantle water content and melting: inverting electromagnetic sounding data using laboratory-based electrical conductivity profiles. Earth Planet. Sci. Lett. 317, 27–43 (2012).  https://doi.org/10.1016/j.epsl.2011.11.031 ADSCrossRefGoogle Scholar
  47. A. Khan, K. Mosegaard, K.L. Rasmussen, A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data. Geophys. Res. Lett. 27, 1591–1594 (2000).  https://doi.org/10.1029/1999GL008452 ADSCrossRefGoogle Scholar
  48. A. Khan, K. Mosegaard, J.G. Williams, P. Lognonné, Does the Moon possess a molten core? Probing the deep lunar interior using results from LLR and Lunar Prospector. J. Geophys. Res., Planets 109, 09007 (2004).  https://doi.org/10.1029/2004JE002294 ADSCrossRefGoogle Scholar
  49. A. Khan, J.A.D. Connolly, N. Olsen, K. Mosegaard, Constraining the composition and thermal state of the Moon from an inversion of electromagnetic lunar day-side transfer functions. Earth Planet. Sci. Lett. 248(3), 579–598 (2006b).  https://doi.org/10.1016/j.epsl.2006.04.008 ADSCrossRefGoogle Scholar
  50. A. Khan, J. Maclennan, S.R. Taylor, J.A.D. Connolly, Are the Earth and the moon compositionally alike? Inferences on lunar composition and implications for lunar origin and evolution from geophysical modeling. J. Geophys. Res., Planets 111(E5), E05005 (2006a).  https://doi.org/10.1029/2005JE002608 ADSCrossRefGoogle Scholar
  51. A. Khan, J.A.D. Connolly, J. Maclennan, K. Mosegaard, Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys. J. Int. 168, 243–258 (2007).  https://doi.org/10.1111/j.1365-246X.2006.03200.x ADSCrossRefGoogle Scholar
  52. A. Khan, A. Pommier, G.A. Neumann, K. Mosegaard, The lunar moho and the internal structure of the Moon: a geophysical perspective. Tectonophysics 609, 331–352 (2013).  https://doi.org/10.1016/j.tecto.2013.02.024. Moho: 100 years after Andrija Mohorovicic ADSCrossRefGoogle Scholar
  53. A. Khan, J.A.D. Connolly, A. Pommier, J. Noir, Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. J. Geophys. Res., Planets 119(10), 2197–2221 (2014).  https://doi.org/10.1002/2014JE004661 ADSCrossRefGoogle Scholar
  54. M. Knapmeyer, TTBox: a Matlab toolbox for the computation of 1D teleseismic travel times. Seismol. Res. Lett. 75(6), 726–733 (2004).  https://doi.org/10.1785/gssrl.75.6.726 CrossRefGoogle Scholar
  55. T. Komabayashi, Thermodynamics of melting relations in the system Fe–FeO at high pressure: implications for oxygen in the Earth’s core. J. Geophys. Res., Solid Earth 2014, 010980 (2014) Google Scholar
  56. A.S. Konopliv, R.S. Park, D.-N. Yuan, S.W. Asmar, M.M. Watkins, J.G. Williams, E. Fahnestock, G. Kruizinga, M. Paik, D. Strekalov, N. Harvey, D.E. Smith, M.T. Zuber, The JPL lunar gravity field to spherical harmonic degree 660 from the GRAIL primary mission. J. Geophys. Res., Planets 118, 1415–1434 (2013).  https://doi.org/10.1002/jgre.20097 ADSCrossRefGoogle Scholar
  57. R.L. Kovach, J.S. Watkins, Apollo 17 seismic profiling: probing the lunar crust. Science 180, 1063–1064 (1973a).  https://doi.org/10.1126/science.180.4090.1063 ADSCrossRefGoogle Scholar
  58. R.L. Kovach, J.S. Watkins, The structure of the lunar crust at the Apollo 17 site, in Lunar and Planetary Science Conference Proceedings, vol. 4 (1973b), p. 2549 Google Scholar
  59. V.A. Kronrod, O.L. Kuskov, Inversion of seismic and gravity data for the composition and core sizes of the Moon. Izv. Phys. Solid Earth 47, 711–730 (2011).  https://doi.org/10.1134/S1069351311070044 ADSCrossRefGoogle Scholar
  60. O.L. Kuskov, D.K. Belashchenko, Thermodynamic properties of Fe–S alloys from molecular dynamics modeling: implications for the lunar fluid core. Phys. Earth Planet. Inter. 258, 43–50 (2016).  https://doi.org/10.1016/j.pepi.2016.07.006 ADSCrossRefGoogle Scholar
  61. O.L. Kuskov, V.A. Kronrod, Constitution of the Moon5. Constraints on composition, density, temperature, and radius of a core. Phys. Earth Planet. Inter. 107, 285–306 (1998).  https://doi.org/10.1016/S0031-9201(98)00082-X ADSCrossRefGoogle Scholar
  62. O.L. Kuskov, V.A. Kronrod, Geochemical constraints on the model of the composition and thermal conditions of the Moon according to seismic data. Izv. Phys. Solid Earth 45, 753–768 (2009).  https://doi.org/10.1134/S1069351309090043 ADSCrossRefGoogle Scholar
  63. D.R. Lammlein, Lunar seismicity and tectonics. Phys. Earth Planet. Inter. 14, 224–273 (1977).  https://doi.org/10.1016/0031-9201(77)90175-3 ADSCrossRefGoogle Scholar
  64. M. Laneuville, M.A. Wieczorek, D. Breuer, N. Tosi, Asymmetric thermal evolution of the Moon. J. Geophys. Res., Planets 118, 1435–1452 (2013).  https://doi.org/10.1002/jgre.20103 ADSCrossRefGoogle Scholar
  65. M. Laneuville, M.A. Wieczorek, D. Breuer, J. Aubert, G. Morard, T. Rückriemen, A long-lived lunar dynamo powered by core crystallization. Earth Planet. Sci. Lett. 401, 251–260 (2014) ADSCrossRefGoogle Scholar
  66. M. Laneuville, J. Taylor, M.A. Wieczorek, Distribution of radioactive heat sources and thermal history of the Moon. J. Geophys. Res., Planets 123(12), 3144–3166 (2018).  https://doi.org/10.1029/2018JE005742 ADSCrossRefGoogle Scholar
  67. E. Larose, A. Khan, Y. Nakamura, M. Campillo, Lunar subsurface investigated from correlation of seismic noise. Geophys. Res. Lett. 32, 16201 (2005).  https://doi.org/10.1029/2005GL023518 ADSCrossRefGoogle Scholar
  68. G.V. Latham, M. Ewing, F. Press, G. Sutton, J. Dorman, Y. Nakamura, N. Toksöz, R. Wiggins, J. Derr, F. Duennebier, Passive seismic experiment. Science 167(3918), 455–457 (1970a).  https://doi.org/10.1126/science.167.3918.455 ADSCrossRefGoogle Scholar
  69. G. Latham, M. Ewing, J. Dorman, F. Press, N. Toksöz, G. Sutton, R. Meissner, F. Duennebier, Y. Nakamura, R. Kovach, M. Yates, Seismic data from man-made impacts on the Moon. Science 170(3958), 620–626 (1970b).  https://doi.org/10.1126/science.170.3958.620 ADSCrossRefGoogle Scholar
  70. F.G. Lemoine, S. Goossens, T.J. Sabaka, J.B. Nicholas, E. Mazarico, D.D. Rowlands, B.D. Loomis, D.S. Chinn, D.S. Caprette, G.A. Neumann, D.E. Smith, M.T. Zuber, High-degree gravity models from GRAIL primary mission data. J. Geophys. Res., Planets 118, 1676–1698 (2013).  https://doi.org/10.1002/jgre.20118 ADSCrossRefGoogle Scholar
  71. F.G. Lemoine, S. Goossens, T.J. Sabaka, J.B. Nicholas, E. Mazarico, D.D. Rowlands, B.D. Loomis, D.S. Chinn, G.A. Neumann, D.E. Smith, M.T. Zuber, GRGM900C: a degree 900 lunar gravity model from GRAIL primary and extended mission data. Geophys. Res. Lett. 41, 3382–3389 (2014).  https://doi.org/10.1002/2014GL060027 ADSCrossRefGoogle Scholar
  72. P. Lognonné, C.L. Johnson, Planetary seismology. Treatise Geophys. 10, 69–122 (2007) CrossRefGoogle Scholar
  73. P. Lognonné, J. Gagnepain-Beyneix, H. Chenet, A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon. Earth Planet. Sci. Lett. 211, 27–44 (2003).  https://doi.org/10.1016/S0012-821X(03)00172-9 ADSCrossRefGoogle Scholar
  74. J. Longhi, Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation. Geochim. Cosmochim. Acta 70(24), 5919–5934 (2006) ADSCrossRefGoogle Scholar
  75. L. Margerin, G. Nolet, Multiple scattering of high-frequency seismic waves in the deep earth: Modeling and numerical examples. J. Geophys. Res., Solid Earth 108(B5) (2003).  https://doi.org/10.1029/2002JB001974
  76. K. Matsumoto, R. Yamada, F. Kikuchi, S. Kamata, Y. Ishihara, T. Iwata, H. Hanada, S. Sasaki, Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geophys. Res. Lett. 42, 7351–7358 (2015).  https://doi.org/10.1002/2015GL065335 ADSCrossRefGoogle Scholar
  77. I. Matsuyama, F. Nimmo, J.T. Keane, N.H. Chan, G.J. Taylor, M.A. Wieczorek, W.S. Kiefer, J.G. Williams, GRAIL, LLR, and LOLA constraints on the interior structure of the Moon. Geophys. Res. Lett. 43, 8365–8375 (2016).  https://doi.org/10.1002/2016GL069952 ADSCrossRefGoogle Scholar
  78. E. Mazarico, M.K. Barker, G.A. Neumann, M.T. Zuber, D.E. Smith, Detection of the lunar body tide by the Lunar Orbiter Laser Altimeter. Geophys. Res. Lett. 41, 2282–2288 (2014).  https://doi.org/10.1002/2013GL059085 ADSCrossRefGoogle Scholar
  79. K. Miljković, M.A. Wieczorek, G.S. Collins, S.C. Solomon, D.E. Smith, M.T. Zuber, Excavation of the lunar mantle by basin-forming impact events on the Moon. Earth Planet. Sci. Lett. 409, 243–251 (2015).  https://doi.org/10.1016/j.epsl.2014.10.041 ADSCrossRefGoogle Scholar
  80. G. Morard, J. Bouchet, A. Rivoldini, D. Antonangeli, M. Roberge, E. Boulard, A. Denoeud, M. Mezouar, Liquid properties in the Fe–FeS system under moderate pressure: tool box to model small planetary cores. Am. Mineral. 103(11), 1770–1779 (2018).  https://doi.org/10.2138/am-2018-6405 CrossRefGoogle Scholar
  81. K. Mosegaard, A. Tarantola, Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res., Solid Earth 100(B7), 12431–12447 (1995).  https://doi.org/10.1029/94JB03097 CrossRefGoogle Scholar
  82. Y. Nakamura, Seismic energy transmission in the lunar surface zone determined from signals generated by movement of lunar rovers. Bull. Seismol. Soc. Am. 66, 593–606 (1976) ADSGoogle Scholar
  83. Y. Nakamura, Seismic velocity structure of the lunar mantle. J. Geophys. Res. 88, 677–686 (1983).  https://doi.org/10.1029/JB088iB01p00677 ADSCrossRefGoogle Scholar
  84. Y. Nakamura, Farside deep moonquakes and deep interior of the Moon. J. Geophys. Res. 110 (2005).  https://doi.org/10.1029/2004JE002332
  85. Y. Nakamura, in Planetary Seismology: Early Observational Results, ed. by V.C.H. Tong, R.A.E. García (Cambridge University Press, Cambridge, 2015), pp. 91–106.  https://doi.org/10.1017/CBO9781107300668.010 CrossRefGoogle Scholar
  86. Y. Nakamura, J. Koyama, Seismic Q of the lunar upper mantle. J. Geophys. Res. 87, 4855–4861 (1982).  https://doi.org/10.1029/JB087iB06p04855 ADSCrossRefGoogle Scholar
  87. Y. Nakamura, D. Lammlein, G. Latham, M. Ewing, J. Dorman, F. Press, N. Toksoz, New seismic data on the state of the deep lunar interior. Science 181, 49–51 (1973).  https://doi.org/10.1126/science.181.4094.49 ADSCrossRefGoogle Scholar
  88. Y. Nakamura, G. Latham, D. Lammlein, M. Ewing, F. Duennebier, J. Dorman, Deep lunar interior inferred from recent seismic data. Geophys. Res. Lett. 1, 137–140 (1974).  https://doi.org/10.1029/GL001i003p00137 ADSCrossRefGoogle Scholar
  89. Y. Nakamura, F.K. Duennebier, G.V. Latham, H.J. Dorman, Structure of the lunar mantle. J. Geophys. Res. 81, 4818–4824 (1976).  https://doi.org/10.1029/JB081i026p04818 ADSCrossRefGoogle Scholar
  90. Y. Nakamura, G.V. Latham, H.J. Dorman, A.-B.K. Ibrahim, J. Koyama, P. Horvath, Shallow moonquakes—depth, distribution and implications as to the present state of the lunar interior, in Lunar and Planetary Science Conference, 10th, Houston, Tex., March 19–23, 1979, Proceedings, vol. 3 (1979), pp. 2299–2309 Google Scholar
  91. Y. Nakamura, G.V. Latham, H.J. Dorman, Apollo lunar seismic experiment—final summary, in Lunar and Planetary Science Conference Proceedings, ed. by W.V. Boynton, T.J. Ahrens. Lunar and Planetary Science Conference Proceedings, vol. 13 (1982), p. 117 Google Scholar
  92. F. Nimmo, U.H. Faul, E.J. Garnero, Dissipation at tidal and seismic frequencies in a melt-free Moon. J. Geophys. Res. 117, 09005 (2012).  https://doi.org/10.1029/2012JE004160 CrossRefGoogle Scholar
  93. K. Nishida, A. Suzuki, H. Terasaki, Y. Shibazaki, Y. Higo, S. Kuwabara, Y. Shimoyama, M. Sakurai, M. Ushioda, E. Takahashi, T. Kikegawa, D. Wakabayashi, N. Funamori, Towards a consensus on the pressure and composition dependence of sound velocity in the liquid Fe–S system. Phys. Earth Planet. Inter. 257, 230–239 (2016) ADSCrossRefGoogle Scholar
  94. C. Nunn, R.F. Garcia, Y. Nakamura, A.G. Marusiak, T. Kawamura, D. Sun, L. Margerin, R. Weber, , M. Drilleau, M.A. Wieczorek, A. Khan, A. Rivoldini, P. Lognonne, P. Zhu, Lunar seismology: a data and instrumentation review. Space Sci. Rev. (submitted) Google Scholar
  95. J. Oberst, Meteoroids near the Earth–Moon System as Inferred from Temporal and Spatial Distribution of Impacts Detected by the Lunar Seismic Network. Ph.D. thesis, Univ. of Tex. at Austin (1989) Google Scholar
  96. J.-P. Poirier, Introduction to the Physics of the Earth’s Interior (2000), p. 326 CrossRefGoogle Scholar
  97. N. Rai, W. van Westrenen, Lunar core formation: new constraints from metal–silicate partitioning of siderophile elements. Earth Planet. Sci. Lett. 388(0), 343–352 (2014) ADSCrossRefGoogle Scholar
  98. A. Ricolleau, Y. Fei, A. Corgne, J. Siebert, J. Badro, Oxygen and silicon contents of Earth’s core from high pressure metal-silicate partitioning experiments. Earth Planet. Sci. Lett. 310(3–4), 409–421 (2011) ADSCrossRefGoogle Scholar
  99. K. Righter, M.J. Drake, Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996) ADSCrossRefGoogle Scholar
  100. K. Righter, B.M. Go, K.A. Pando, L. Danielson, D.K. Ross, Z. Rahman, L.P. Keller, Phase equilibria of a low s and C lunar core: implications for an early lunar dynamo and physical state of the current core. Earth Planet. Sci. Lett. 463, 323–332 (2017) ADSCrossRefGoogle Scholar
  101. M. Sambridge, Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophys. J. Int. 138, 479–494 (1999).  https://doi.org/10.1046/j.1365-246X.1999.00876.x ADSCrossRefGoogle Scholar
  102. H. Sato, M.C. Fehler, T. Maeda, Seismic Wave Propagation and Scattering in the Heterogeneous Earth (Springer, Berlin, 2012) zbMATHCrossRefGoogle Scholar
  103. A. Scheinberg, K.M. Soderlund, G. Schubert, Magnetic field generation in the lunar core: the role of inner core growth. Icarus 254, 62–71 (2015) ADSCrossRefGoogle Scholar
  104. P.C. Sellers, Seismic evidence for a low-velocity lunar core. J. Geophys. Res. 97, 11663–11672 (1992) ADSCrossRefGoogle Scholar
  105. C. Sens-Schönfelder, E. Larose, Temporal changes in the lunar soil from correlation of diffuse vibrations. Phys. Rev. E 78(4), 045601 (2008).  https://doi.org/10.1103/PhysRevE.78.045601 ADSCrossRefGoogle Scholar
  106. P.M. Shearer, Introduction to Seismology, 2nd edn. (Cambridge University Press, Cambridge, 2009).  https://doi.org/10.1017/CBO9780511841552 CrossRefGoogle Scholar
  107. H. Shimizu, M. Matsushima, F. Takahashi, H. Shibuya, H. Tsunakawa, Constraint on the lunar core size from electromagnetic sounding based on magnetic field observations by an orbiting satellite. Icarus 222, 32–43 (2013).  https://doi.org/10.1016/j.icarus.2012.10.029 ADSCrossRefGoogle Scholar
  108. Y. Shimoyama, H. Terasaki, S. Urakawa, Y. Takubo, S. Kuwabara, S. Kishimoto, T. Watanuki, A. Machida, Y. Katayama, T. Kondo, Thermoelastic properties of liquid Fe–C revealed by sound velocity and density measurements at high pressure. J. Geophys. Res., Solid Earth 121(11), 7984–7995 (2016) ADSCrossRefGoogle Scholar
  109. D.E. Smith, M.T. Zuber, G.B. Jackson, J.F. Cavanaugh, G.A. Neumann, H. Riris, X. Sun, R.S. Zellar, C. Coltharp, J. Connelly, R.B. Katz, I. Kleyner, P. Liiva, A. Matuszeski, E.M. Mazarico, J.F. McGarry, A.-M. Novo-Gradac, M.N. Ott, C. Peters, L.A. Ramos-Izquierdo, L. Ramsey, D.D. Rowlands, S. Schmidt, V.S. Scott, G.B. Shaw, J.C. Smith, J.-P. Swinski, M.H. Torrence, G. Unger, A.W. Yu, T.W. Zagwodzki, The Lunar Orbiter Laser Altimeter investigation on the Lunar Reconnaissance Orbiter mission. Space Sci. Rev. 150, 209–241 (2010).  https://doi.org/10.1007/s11214-009-9512-y ADSCrossRefGoogle Scholar
  110. D. Sollberger, C. Schmelzbach, J.O.A. Robertsson, S.A. Greenhalgh, Y. Nakamura, A. Khan, The shallow elastic structure of the lunar crust: new insights from seismic wavefield gradient analysis. Geophys. Res. Lett. 43(19), 10078–10087 (2016).  https://doi.org/10.1002/2016GL070883 ADSCrossRefGoogle Scholar
  111. C.P. Sonett, Electromagnetic induction in the Moon. Rev. Geophys. Space Phys. 20, 411–455 (1982).  https://doi.org/10.1029/RG020i003p00411 ADSCrossRefGoogle Scholar
  112. F.D. Stacey, P.M. Davis, Physics of the Earth (2008) zbMATHCrossRefGoogle Scholar
  113. E.S. Steenstra, Y. Lin, N. Rai, M. Jansen, W. van Westrenen, Carbon as the dominant light element in the lunar core. Am. Mineral. 102(1), 92 (2017) ADSCrossRefGoogle Scholar
  114. E.S. Steenstra, A.X. Seegers, J. Eising, B.G.J. Tomassen, F.P.F. Webers, J. Berndt, S. Klemme, S. Matveev, W. van Westrenen, Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate partitioning of siderophile elements. Geochim. Cosmochim. Acta 231, 130–156 (2018) ADSCrossRefGoogle Scholar
  115. L. Stixrude, C. Lithgow-Bertelloni, Thermodynamics of mantle minerals—I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).  https://doi.org/10.1111/j.1365-246X.2005.02642.x ADSCrossRefGoogle Scholar
  116. S.R. Taylor, G.J. Taylor, L.A. Taylor, The Moon: a Taylor perspective. Geochim. Cosmochim. Acta 70, 5904–5918 (2006).  https://doi.org/10.1016/j.gca.2006.06.262 ADSCrossRefzbMATHGoogle Scholar
  117. B. Tittmann, Lunar rock Q in 3000–5000 range achieved in laboratory. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 285(1327), 475–479 (1977) ADSCrossRefGoogle Scholar
  118. B. Tittmann, M. Abdel-Gawad, R. Housley, Elastic velocity and Q factor measurements on Apollo 12, 14, and 15 rocks, in Lunar and Planetary Science Conference Proceedings, vol. 3 (1972), pp. 2565–2575 Google Scholar
  119. B. Tittmann, J. Curnow, R. Housley, Internal friction quality factor Q greater than or equal to 3100 achieved in lunar rock 70215,85, in Lunar and Planetary Science Conference Proceedings, vol. 6 (1975), pp. 3217–3226 Google Scholar
  120. B. Tittmann, L. Ahlberg, J. Curnow, Internal friction and velocity measurements, in Lunar and Planetary Science Conference Proceedings, vol. 7 (1976), pp. 3123–3132 Google Scholar
  121. B. Tittmann, H. Nadler, J. Richardson, L. Ahlberg, Laboratory measurements of p-wave seismic Q on lunar and analog rocks, in Lunar and Planetary Science Conference Proceedings, vol. 9 (1978), pp. 3627–3635 Google Scholar
  122. M.N. Toksoz, A.M. Dainty, S.C. Solomon, K.R. Anderson, Structure of the Moon. Rev. Geophys. Space Phys. 12, 539–567 (1974) ADSCrossRefGoogle Scholar
  123. H. Urey, The Planets: Their Origin and Development (Yale University Press, New Haven, 1952), p. 245 Google Scholar
  124. M. van Kan Parker, C. Sanloup, N. Sator, B. Guillot, E.J. Tronche, J.-P. Perrillat, M. Mezouar, N. Rai, W. van Westrenen, Neutral buoyancy of titanium-rich melts in the deep lunar interior. Nat. Geosci. 5, 186–189 (2012).  https://doi.org/10.1038/ngeo1402 ADSCrossRefGoogle Scholar
  125. L. Vinnik, H. Chenet, J. Gagnepain-Beyneix, P. Lognonne, First seismic receiver functions on the Moon. Geophys. Res. Lett. 28, 3031–3034 (2001).  https://doi.org/10.1029/2001GL012859 ADSCrossRefGoogle Scholar
  126. H. Wang, T. Todd, D. Weidner, G. Simmons, Elastic properties of Apollo 12 rocks, in Lunar and Planetary Science Conference Proceedings, vol. 2 (1971), pp. 2327–2336 Google Scholar
  127. N. Warren, E. Schreiber, C. Scholz, J. Morrison, P. Norton, M. Kumazawa, O. Anderson, Elastic and thermal properties of Apollo 11 and Apollo 12 rocks, in Lunar and Planetary Science Conference Proceedings, vol. 2 (1971), p. 2345 Google Scholar
  128. R.C. Weber, P. Lin, E.J. Garnero, Q. Williams, P. Lognonné, Seismic detection of the lunar core. Science 331, 309 (2011).  https://doi.org/10.1126/science.1199375 ADSCrossRefGoogle Scholar
  129. M.A. Wieczorek, Gravity and topography of the terrestrial planets, in Treatise on Geophysics, 2nd edn., ed. by T. Spohn, G. Schubert, vol. 10 (Elsevier-Pergamon, Oxford, 2015), pp. 153–193.  https://doi.org/10.1016/B978-0-444-53802-4.00169-X CrossRefGoogle Scholar
  130. M.A. Wieczorek, B.L. Jolliff, A. Khan, M.E. Pritchard, B.O. Weiss, J.G. Williams, L.L. Hood, K. Righter, C.R. Neal, C.K. Shearer, I.S. McCallum, S. Tompkins, B.R. Hawke, C. Peterson, J.J. Gillis, B. Bussey, The constitution and structure of the lunar interior. Rev. Mineral. Geochem. 60, 221–364 (2006).  https://doi.org/10.2138/rmg.2006.60.3 CrossRefGoogle Scholar
  131. M.A. Wieczorek, G.A. Neumann, F. Nimmo, W.S. Kiefer, G.J. Taylor, H.J. Melosh, R.J. Phillips, S.C. Solomon, J.C. Andrews-Hanna, S.W. Asmar, A.S. Konopliv, F.G. Lemoine, D.E. Smith, M.M. Watkins, J.G. Williams, M.T. Zuber, The crust of the Moon as seen by GRAIL. Science 339(6120), 671–675 (2013).  https://doi.org/10.1126/science.1231530 ADSCrossRefGoogle Scholar
  132. J.G. Williams, D.H. Boggs, Tides on the Moon: theory and determination of dissipation. J. Geophys. Res., Planets 120, 689–724 (2015).  https://doi.org/10.1002/2014JE004755 ADSCrossRefGoogle Scholar
  133. J.G. Williams, D.H. Boggs, C.F. Yoder, J.T. Ratcliff, J.O. Dickey, Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001a).  https://doi.org/10.1029/2000JE001396 ADSCrossRefGoogle Scholar
  134. J.G. Williams, D.H. Boggs, C.F. Yoder, J.T. Ratcliff, J.O. Dickey, Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. 106, 27933–27968 (2001b) ADSCrossRefGoogle Scholar
  135. J.G. Williams, D.H. Boggs, W.M. Folkner, De430 lunar orbit, physical librations, and surface coordinates. IOM 335-JW,DB,WF-20130722-016, Jet Propul. Lab., Pasadena, Calif., 22 July 2013 Google Scholar
  136. J.G. Williams, A.S. Konopliv, D.H. Boggs, R.S. Park, D.-N. Yuan, F.G. Lemoine, S. Goossens, E. Mazarico, F. Nimmo, R.C. Weber, S.W. Asmar, H.J. Melosh, G.A. Neumann, R.J. Phillips, D.E. Smith, S.C. Solomon, M.M. Watkins, M.A. Wieczorek, J.C. Andrews-Hanna, J.W. Head, W.S. Kiefer, I. Matsuyama, P.J. McGovern, G.J. Taylor, M.T. Zuber, Lunar interior properties from the GRAIL mission. J. Geophys. Res., Planets 119, 1546–1578 (2014).  https://doi.org/10.1002/2013JE004559 ADSCrossRefGoogle Scholar
  137. B.A. Wyatt, The melting and crystallisation behaviour of a natural clinopyroxene-ilmenite intergrowth. Contrib. Mineral. Petrol. 61(1), 1–9 (1977) ADSMathSciNetCrossRefGoogle Scholar
  138. T. Yoshino, Laboratory electrical conductivity measurement of mantle minerals. Surv. Geophys. 31(2), 163–206 (2010).  https://doi.org/10.1007/s10712-009-9084-0 ADSCrossRefGoogle Scholar
  139. T. Yoshino, T. Katsura, Re-evaluation of electrical conductivity of anhydrous and hydrous wadsleyite. Earth Planet. Sci. Lett. 337, 56–67 (2012).  https://doi.org/10.1016/j.epsl.2012.05.023 ADSCrossRefGoogle Scholar
  140. N. Zhao, P. Zhu, B. Zhang, Y. Yuan, Moonquake relocation. Earth Sci., J. China Univ. Geosci. 40, 1276–1286 (2015) Google Scholar
  141. S. Zhong, C. Qin, G. A, J. Wahr, Can tidal tomography be used to unravel the long-wavelength structure of the lunar interior? Geophys. Res. Lett. 39(15) (2012).  https://doi.org/10.1029/2012GL052362

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Raphael F. Garcia
    • 1
    • 2
    Email author
  • Amir Khan
    • 3
  • Mélanie Drilleau
    • 4
  • Ludovic Margerin
    • 2
  • Taichi Kawamura
    • 4
  • Daoyuan Sun
    • 5
    • 6
  • Mark A. Wieczorek
    • 7
  • Attilio Rivoldini
    • 8
  • Ceri Nunn
    • 9
    • 10
  • Renee C. Weber
    • 11
  • Angela G. Marusiak
    • 12
  • Philippe Lognonné
    • 4
  • Yosio Nakamura
    • 13
  • Peimin Zhu
    • 14
  1. 1.Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)Université de ToulouseToulouseFrance
  2. 2.Institut de Recherche en Astrophysique et Planétologie, C.N.R.S.Université de ToulouseToulouseFrance
  3. 3.Institute of GeophysicsETH ZürichZürichSwitzerland
  4. 4.Institut de Physique du Globe de ParisUniversité de Paris, CNRSParisFrance
  5. 5.Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space SciencesUniversity of Science and Technology of ChinaHefeiChina
  6. 6.CAS Center for Excellence in Comparative PlanetologyHefeiChina
  7. 7.Laboratoire Lagrange, Observatoire de la Côte d’Azur, CNRSUniversité Côte d’AzurNiceFrance
  8. 8.Observatoire Royal de BelgiqueBruxellesBelgium
  9. 9.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  10. 10.Ludwig Maximilian UniversityMunichGermany
  11. 11.NASA Marshall Space Flight CenterHuntsvilleUSA
  12. 12.University of MarylandCollege ParkUSA
  13. 13.Institute for Geophysics, John A. and Katherine G. Jackson School of GeosciencesUniversity of Texas at AustinAustinUSA
  14. 14.China University of GeosciencesWuhanChina

Personalised recommendations