Advertisement

Space Science Reviews

, 215:42 | Cite as

Geoscience for Understanding Habitability in the Solar System and Beyond

  • Veronique Dehant
  • Vinciane Debaille
  • Vera Dobos
  • Fabrice Gaillard
  • Cedric Gillmann
  • Steven Goderis
  • John Lee Grenfell
  • Dennis Höning
  • Emmanuelle J. Javaux
  • Özgür Karatekin
  • Alessandro Morbidelli
  • Lena Noack
  • Heike Rauer
  • Manuel Scherf
  • Tilman Spohn
  • Paul Tackley
  • Tim Van Hoolst
  • Kai Wünnemann
Article

Abstract

This paper reviews habitability conditions for a terrestrial planet from the point of view of geosciences. It addresses how interactions between the interior of a planet or a moon and its atmosphere and surface (including hydrosphere and biosphere) can affect habitability of the celestial body. It does not consider in detail the role of the central star but focusses more on surface conditions capable of sustaining life. We deal with fundamental issues of planetary habitability, i.e. the environmental conditions capable of sustaining life, and the above-mentioned interactions can affect the habitability of the celestial body.

We address some hotly debated questions including:
  • How do core and mantle affect the evolution and habitability of planets?

  • What are the consequences of mantle overturn on the evolution of the interior and atmosphere?

  • What is the role of the global carbon and water cycles?

  • What influence do comet and asteroid impacts exert on the evolution of the planet?

  • How does life interact with the evolution of the Earth’s geosphere and atmosphere?

  • How can knowledge of the solar system geophysics and habitability be applied to exoplanets?

In addition, we address the identification of preserved life tracers in the context of the interaction of life with planetary evolution.

Keywords

Habitability Early Earth Planet evolution Exoplanets 

Notes

Acknowledgements

This paper was triggered by presentations and discussions that were held during the conference “Geoscience for understanding habitability in the solar system and beyond” held in the Azores from the 25th–29th September 2017. The workshop (and the work behind the scientific presentations) was supported by: – European COST (Cooperation in Science and Technology) Action TD1308 “ORIGINS” (Origins and evolution of life on Earth and in the Universe),

– EGU (European Geophysical Union) Galileo conferences,

– EuroPlaNet (European Planetology Network) 2020 RI (Research Infrastructure) (EPN2020-RI),

– German TRR 170 (TransRegio collaborative research) network,

– GINOP-2.3.2-15-2016-00003,

– Hungarian National Research, Development and Innovation Office (NKFIH) grants K119993, K-115709,

– The Austrian Science Fund (FWF) NFN project S11601-N16 “Pathways to Habitability: From Disks to Active Stars, Planets and Life” (related sub-projects S11604-N16, S11606-N16 and S11607-N16),

– Planet TOPERS (Planets: Tracing the Transfer, Origin, Preservation, and Evolution of their ReservoirS) Belgian IAP (Inter-university Attraction Pole) PAI-IAP P7/15,

– EU FP7-ERC Starting Grant ELiTE 308074: Early life Traces, Evolution, and Implications for astrobiology,

– FNRS FRFC T.0029.13 ExtraOrDynHa,

– ET-HOME (Evolution and Tracers of the Habitability of Mars and Earth) Belgian Excellence of Science—EoS-program, EOS 30442502. They are very much acknowledged, as well as anonymous reviewers for their helpful reviews.

References

  1. O. Abramov, S.M. Wong, D.A. Kring, Differential melt scaling for oblique impacts on terrestrial planets. Icarus 218, 906–916 (2012) ADSCrossRefGoogle Scholar
  2. M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, D. Mitchell, K.A. Anderson, C.W. Carlson, J. McFadden, H. Reme, C. Mazelle, D. Vignes, S.J. Bauer, P. Cloutier, N.F. Ness, Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106, 23403 (2001) ADSCrossRefGoogle Scholar
  3. F. Albarède, Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009) ADSCrossRefGoogle Scholar
  4. A.C. Allwood, J.P. Grotzinger, A.H. Knoll, I.W. Burch, M.S. Anderson, M.L. Coleman, I. Kanik, Controls on development and diversity of Early Archean stromatolites. Proc. Natl. Acad. Sci. 106(24), 9548–9555 (2009) ADSCrossRefGoogle Scholar
  5. A.C. Allwood, I.W. Burch, J.M. Rouchy, M. Coleman, Morphological biosignatures in gypsum: diverse formation processes of Messinian (∼6.0 Ma) gypsum stromatolites. Astrobiology 13(9), 870–886 (2013) ADSCrossRefGoogle Scholar
  6. J.C. Alt, C.J. Garrido, W.C. Shanks, A. Turchyn, J.A. Padrón-Navarta, V. López Sánchez-Vizcaíno, M.T. Gómez Pugnaire, C. Marchesi, Recycling of water, carbon, and sulfur during subduction of serpentinites: a stable isotope study of Cerro del Almirez, Spain. Earth Planet. Sci. Lett. 327–328, 50–60 (2012).  https://doi.org/10.1016/j.epsl.2012.01.029 ADSCrossRefGoogle Scholar
  7. D. Andrault, M. Muñoz, G. Pesce, V. Cerantola, A. Chumakov, I. Kantor, S. Pascarelli, R. Rüffer, L. Hennet, Large oxygen excess in the primitive mantle could be the source of the Great Oxygenation Event. Geochem. Perspect. Lett. 6, 5–10 (2018).  https://doi.org/10.7185/geochemlet.1801 CrossRefGoogle Scholar
  8. L.S. Armstrong, M.M. Hirschmann, B.D. Stanley, E.G. Falksen, S.D. Jacobsen, Speciation and solubility of reduced C–O–H–N volatiles in mafic melt: implications for volcanism, atmospheric evolution, and deep volatile cycles in the terrestrial planets. Geochim. Cosmochim. Acta 171, 283–302 (2015) ADSCrossRefGoogle Scholar
  9. N.T. Arndt, E.G. Nisbet, Processes on young Earth and the habitats of early life. Annu. Rev. Earth Planet. Sci. 40, 521–549 (2012).  https://doi.org/10.1146/annurev-earth-042711-105316 ADSCrossRefGoogle Scholar
  10. N.A. Artemieva, V.A. Ivanov, Launch of martian meteorites in oblique impacts. Icarus 171, 84–101 (2004) ADSCrossRefGoogle Scholar
  11. S. Aulbach, V. Stagno, Evidence for a reducing Archean ambient mantle and its effects on the carbon cycle. Geology 44, 751–754 (2016).  https://doi.org/10.1130/G38070.1 ADSCrossRefGoogle Scholar
  12. G. Avice, B. Marty, R. Burgess, A. Hofmann, P. Philippot, K. Zahnle, D. Zakharov, Evolution of atmospheric xenon and other noble gases inferred from Archean to Paleoproterozoic rocks. Geochim. Cosmochim. Acta 232, 82–100 (2018).  https://doi.org/10.1016/j.gca.2018.04.018 ADSCrossRefGoogle Scholar
  13. J.L. Bada, A. Lazcano, Some like it hot, but not the first biomolecules. Science 296(5575), 1982–1983 (2002) CrossRefGoogle Scholar
  14. S. Barabash, A. Fedorov, J.J. Sauvaud, R. Lundin, C.T. Russell, Y. Futaana et al., The loss of ions from Venus through the plasma wake. Nature 450, 650–653 (2007) ADSCrossRefGoogle Scholar
  15. A.C. Barr, Formation of exomoons: a solar system perspective. Astron. Rev. 12, 24 (2016) ADSCrossRefGoogle Scholar
  16. A.C. Barr, V. Dobos, L.L. Kiss, Interior structures and tidal heating in the TRAPPIST-1 planets. Astron. Astrophys. 613, A37 (2018). arXiv:1712.05641 ADSCrossRefGoogle Scholar
  17. J.K. Barstow, S. Aigrain, P.G.J. Irwin, S. Kendrew, L.N. Fletcher, Telling twins apart: exo-Earths and Venuses with transit spectroscopy. Mon. Not. R. Astron. Soc. 458, 2657–2666 (2016) ADSCrossRefGoogle Scholar
  18. E.A. Bell, P. Boehnke, T.M. Harrison, W.L. Mao, Potentially biogenic carbon preserved in a 4.1 billion-year-old zircon. Proc. Natl. Acad. Sci. 112(47), 14518–14521 (2015) ADSCrossRefGoogle Scholar
  19. B. Benneke, S. Seager, Atmospheric retrieval for super-Earths: uniquely constraining the atmospheric composition with transit spectroscopy. Astrophys. J. 753, 2 (2012) CrossRefGoogle Scholar
  20. S.V. Berdyugina, J.R. Kuhn, D.M. Harrington, T. Šantl-Temkiv, E.J. Messersmith, Remote sensing of life: polarimetric signatures of photosynthetic pigments as sensitive biomarkers. Int. J. Astrobiol. 15, 45–56 (2016) CrossRefGoogle Scholar
  21. M. Bierhaus, K. Wünnemann, D. Elbeshausen, Numerical modeling of basin-forming impacts: implications for the heat budget of planetary interiors, in 43rd Lunar and Planetary Science Conference. LPI Contribution, vol. 1659 (2012) Google Scholar
  22. W.F. Bottke, D. Vokrouhlicky, D. Minton, D. Nesvorny, A. Morbidelli, R. Brasser, B. Simonson, H.F. Levison, An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012) ADSCrossRefGoogle Scholar
  23. M. Brasier, N. McLoughlin, O. Green, D. Wacey, A fresh look at the fossil evidence for early Archaean cellular life. Philos. Trans. R. Soc. Lond. B, Biol. Sci. 361(1470), 887–902 (2006) CrossRefGoogle Scholar
  24. D. Breuer, B. Moore, Dynamics and thermal history of the terrestrial planers, the Moon, and Io, in Treatise on Geophysics, 2nd edn, vol. 10, ed. by T. Spohn, G. Schubert. (2015), pp. 299–348 Google Scholar
  25. D. Breuer, A.-C. Plesa, N. Tosi, M. Grott, Water in the martian interior—the geodynamical perspective. Meteorit. Planet. Sci. 51(11), 1959–1992 (2016).  https://doi.org/10.1111/maps.12727 ADSCrossRefGoogle Scholar
  26. J.J. Brocks, G.D. Love, R.E. Summons, A.H. Knoll, G.A. Logan, S.A. Bowden, Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437(7060), 866 (2005) ADSCrossRefGoogle Scholar
  27. J.J. Brocks, A.J.M. Jarrett, E. Sirantoine, F. Kenig, M. Moczydłowska, S. Porter, Early sponges and toxic protists: possible sources of cryostane, an age diagnostic biomarker antedating Sturtian Snowball Earth. Geobiology 14, 129–149 (2016) CrossRefGoogle Scholar
  28. R.D. Cadle, A comparison of volcanic with other fluxes of atmospheric trace gas constituents. Rev. Geophys. 18, 746–752 (1980) ADSCrossRefGoogle Scholar
  29. A.G. Cameron, Origin of the atmospheres of the terrestrial planets. Icarus 56(2), 195–201 (1983) ADSCrossRefGoogle Scholar
  30. A.G.W. Cameron, W.R. Ward, The origin of the Moon. Lunar Planet. Sci. 7, 120–122 (1976) ADSGoogle Scholar
  31. L.H. Campbell, S.R. Taylor, No water, no granites—no oceans, no continents. Geophys. Res. Lett. 10(11), 1061–1064 (1983) ADSCrossRefGoogle Scholar
  32. D.E. Canfield, A.N. Glazer, P.G. Falkowski, The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010) ADSCrossRefGoogle Scholar
  33. D. Canil, Vanadium partitioning and the oxidation state of Archaean Komatiite magmas. Nature 389, 842–845 (1997) ADSCrossRefGoogle Scholar
  34. R.M. Canup, Simulations of a late lunar-forming impact. Icarus 168(2), 433–456 (2004).  https://doi.org/10.1016/j.icarus.2003.09.028 ADSCrossRefGoogle Scholar
  35. M.H. Carr, D/H on Mars: effects of floods, volcanism, impacts, and polar processes. Icarus 87(1), 210–227 (1990) ADSCrossRefGoogle Scholar
  36. D. Carrera, U. Gorti, A. Johansen, M.B. Davies, Planetesimal formation by the streaming instability in a photoevaporating disk. Astrophys. J. 839, 16 (2017) ADSCrossRefGoogle Scholar
  37. P. Cartigny, B. Marty, Nitrogen isotopes and mantle geodynamics: the emergence of life and the atmosphere-crust-mantle connection. Elements 9, 359–366 (2013) CrossRefGoogle Scholar
  38. D.C. Catling, M.W. Claire, How Earth’s atmosphere evolved to an oxic state. Earth Planet. Sci. Lett. 237, 1–20 (2005) ADSCrossRefGoogle Scholar
  39. D.C. Catling, J.F. Kasting, Atmospheric Evolution on Inhabited and Lifeless Worlds (Cambridge University Press, Cambridge, 2017) CrossRefGoogle Scholar
  40. D.C. Catling, K.J. Zahnle, C.P. McKay, Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293(5531), 839–843 (2001) ADSCrossRefGoogle Scholar
  41. D.C. Catling, C.R. Glein, K.J. Zahnle, C.P. McKay, Why O2 is required by complex life on habitable planets and the concept of planetary ‘Oxygenation Time’. Astrobiology 5(3), 415–438 (2005) ADSCrossRefGoogle Scholar
  42. D.C. Catling, J. Krissansen-Totton, N.Y. Kiang, D. Crisp, T.D. Robinson, S. DasSarma, A. Rushby, A.D. Del Genio, W. Bains, S. Domagal-Goldman, Exoplanet biosignatures: a framework for their assessment. Astrobioloy 18(6), 709–738 (2018).  https://doi.org/10.1089/ast.2017.1737 ADSCrossRefGoogle Scholar
  43. E. Chassefière, F. Leblanc, Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci. 52(11), 1039–1058 (2004) ADSCrossRefGoogle Scholar
  44. E. Chassefière, B. Langlais, Y. Quesnel, F. Leblanc, The fate of early Mars lost water: the role of serpentinization. J. Geophys. Res. 118, 1123–1134 (2013).  https://doi.org/10.1002/jgre.20089 CrossRefGoogle Scholar
  45. E.V. Chassefière, J. Lasue, B. Langlais, Y. Quesnel, Early Mars serpentinization-derived CH4 reservoirs, H2-induced warming and paleopressure evolution. Meteorit. Planet. Sci. 51(11), 2234–2245 (2016).  https://doi.org/10.1111/maps.12784 ADSCrossRefGoogle Scholar
  46. B.K. Chastain, V. Chevrier, Methane clathrate hydrates as a potential source for Martian atmospheric methane. Planet. Space Sci. 55(10), 1246–1256 (2007) ADSCrossRefGoogle Scholar
  47. J. Checlair, K. Menou, D.S. Abbot, No snowball on habitable tidally locked planets. Astrophys. J. 845(2), 132 (2017) ADSCrossRefGoogle Scholar
  48. R.N. Clayton, Oxygen isotopes in meteorites, in Meteorites, Comets and Planets. Treatise on Geochemistry, vol. 1, ed. by A.M. Davis (Elsevier/Pergamon, Oxford, 2005), pp. 129–142 Google Scholar
  49. C.S. Cockell, The origin and emergence of life under impact bombardment. Philos. Trans. R. Soc. B 361(1474), 1845–1856 (2006).  https://doi.org/10.1098/rstb.2006.1908. CrossRefGoogle Scholar
  50. C. Cockell, C.S. Cockell, The interplanetary exchange of photosynthesis. Orig. Life Evol. Biosph. 38, 87–104 (2008) ADSCrossRefGoogle Scholar
  51. C. Cockell, F. Westall, T. Spohn, Geology, life and habitability, in Treatise on Geophysics, vol. 10, 2nd edn. ed. by T. Spohn, G. Schubert. (2015), p. 473 Google Scholar
  52. C.S. Cockell, T. Bush, C. Bryce, S. Direito, M. Fox-Powell, J.P. Harrison, H. Lammer, H. Landenmark, J. Martin-Torres, N. Nicholson, L. Noack, J. O’Malley-James, S.J. Payler, A. Rushby, T. Samuels, P. Schwendner, M.P. Zorzano, Habitability: a review. Astrobiology 16(1), 89–117 (2016).  https://doi.org/10.1089/ast.2015.1295 ADSCrossRefGoogle Scholar
  53. G.S. Collins, K. Wünnemann, N. Artemieva, B. Pierazzo, Numerical modelling of impact processes, in Impact Cratering, Processes and Products, ed. by G.R. Osinski, E. Pierazzo (Wiley, New York, 2013), pp. 254–268 Google Scholar
  54. K.C. Condie, A planet in transition: the onset of plate tectonics on earth between 3 and 2 Ga?. Geosci. Front. 9(1), 5160 (2018) CrossRefGoogle Scholar
  55. J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, G. Kletetschka, N.F. Ness, H. Rème, R.P. Lin, D.L. Mitchell, The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28, 4015 (2001) ADSCrossRefGoogle Scholar
  56. L.A. Coogan, S.E. Dosso, Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater. Earth Planet. Sci. Lett. 415, 38–46 (2015) ADSCrossRefGoogle Scholar
  57. L.A. Coogan, K.M. Gillis, Evidence that low-temperature oceanic hydrothermal systems play an important role in the silicate-carbonate weathering cycle and long-term climate regulation. Geochem. Geophys. Geosyst. 14(6), 1771–1886 (2013) ADSCrossRefGoogle Scholar
  58. R. Dasgupta, K. Tsuno, Carbon contents in reduced basalts at graphite saturation: implications for the degassing of Mars, Mercury, and the Moon. J. Geophys. Res., Planets 122, 1300–1320 (2017).  https://doi.org/10.1002/2017JE005289 ADSCrossRefGoogle Scholar
  59. A. Davaille, S.E. Smrekar, S. Tomlinson, Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017) ADSCrossRefGoogle Scholar
  60. S.A. Davenport, T.J. Wdowiak, D.D. Jones, P. Wdowiak, Chondritic metal toxicity as a seed stock kill mechanism in impact-caused mass extinctions. Spec. Pap., Geol. Soc. Am. 247, 71–76 (1990) Google Scholar
  61. G.F. Davies, Episodic layering of the early mantle by the ‘basalt barrier’ mechanism. Earth Planet. Sci. Lett. 275, 382–392 (2008).  https://doi.org/10.1016/j.epsl.2008.08.036 ADSCrossRefGoogle Scholar
  62. V. Debaille, A.D. Brandon, C. O’Neill, Q.-Z. Yin, B. Jacobsen, Early martian mantle overturn inferred from isotopic composition of Nakhlite meteorites. Nat. Geosci. 2, 548–552 (2009).  https://doi.org/10.1038/ngeo579 ADSCrossRefGoogle Scholar
  63. V. Debaille, C. O’Neill, A.D. Brandon, P. Haenecour, Q.Z. Yin, N. Mattielli, A.H. Treiman, Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013) ADSCrossRefGoogle Scholar
  64. C. Demoulin, Y. Lara, L. Cornet, C. François, A. Wilmotte, D. Baurain, E.J. Javaux, Cyanobacteria evolution: insight from the fossil record. Free Radic. Biol. Med. Special issue ‘How did life come to tolerate and thrive in an oxygenated world?’, ed. by W. Fischer, J. Valentine. (2019).  https://doi.org/10.1016/j.freeradbiomed.2019.05.007
  65. D.J. Des Marais, M.O. Harwit, K.W. Jucks, J.F. Kasting, D.N.C. Lin, J.I. Lunine, J. Schneider, S. Seager, W.A. Traub, N.J. Wool, Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets. Astrobiology 2, 153–181 (2002) ADSCrossRefGoogle Scholar
  66. B. Dhuime, C.J. Hawkesworth, P.A. Cawood, C.D. Storey, A change in the geodynamics of continental growth 3 billion years ago. Science 355, 1334–1336 (2012) ADSCrossRefGoogle Scholar
  67. B. Dhuime, A. Wuestefeld, C.J. Hawkesworth, Emergence of modern continental crust about 3 billion years ago. Nat. Geosci. 8, 552–555 (2015) ADSCrossRefGoogle Scholar
  68. V. Dobos, E.L. Turner, Viscoelastic models of tidally heated exomoons. Astrophys. J. 804, 41 (2015) ADSCrossRefGoogle Scholar
  69. V. Dobos, R. Heller, E.L. Turner, The effect of multiple heat sources on exomoon habitable zones. Astron. Astrophys. 601, 91 (2017) ADSCrossRefGoogle Scholar
  70. M.S. Dodd, D. Papineau, T. Grenne, J.F. Slack, M. Rittner, F. Pirajno, J. O’Neil, C.T. Little, Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543(7643), 60 (2017) ADSCrossRefGoogle Scholar
  71. T.M. Donahue, New analysis of hydrogen and deuterium escape from Venus. Icarus 141(2), 226–235 (1999) ADSCrossRefGoogle Scholar
  72. C. Dorn, J. Venturini, A. Khan, K. Heng, Y. Alibert, R. Helled, A. Rivoldini, W. Benz, A generalized Bayesian inference method for constraining the interiors of super Earths and sub-Neptunes. Astron. Astrophys. 597, A37 (2017).  https://doi.org/10.1051/0004-6361/201628708 ADSCrossRefGoogle Scholar
  73. J. Drazkowska, Y. Alibert, B. Moore, Close-in planetesimal formation by pile-up of drifting pebbles. Astron. Astrophys. 594, A105 (2016) ADSCrossRefGoogle Scholar
  74. J.I. Drever, The effect of land plants on weathering rates of silicate minerals. Geochim. Cosmochim. Acta 58(10), 2325–2332 (1994) ADSCrossRefGoogle Scholar
  75. C. Dumoulin, G. Tobie, O. Verhoeven, P. Rosenblatt, N. Rambaux, Tidal constraints on the interior of Venus. J. Geophys. Res., Planets 122, 1338–1352 (2017) ADSCrossRefGoogle Scholar
  76. M. Edmonds, T.M. Gerlach, Vapor segregation and loss in basaltic melts. Geology 35, 751–754 (2007) ADSCrossRefGoogle Scholar
  77. J.L. Eigenbrode, R.E. Summons, A. Steele, C. Freissinet, M. Millan, R. Navarro-González et al., Organic matter preserved in 3-billion-year-old mudstones at Gale crater, Mars. Science 360(6393), 1096–1101 (2018) ADSCrossRefGoogle Scholar
  78. L.T. Elkins-Tanton, S. Seager, Ranges of atmospheric mass and composition of super-Earth exoplanets. Astron. J. 685, 1237–1246 (2008) ADSCrossRefGoogle Scholar
  79. L.T. Elkins-Tanton, E.M. Parmentier, P.C. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars. Meteorit. Planet. Sci. 38(12), 1753–1771 (2003).  https://doi.org/10.1111/j.1945-5100.2003.tb00013.x ADSCrossRefGoogle Scholar
  80. G. Etiope, B. Sherwood Lollar, Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013) ADSCrossRefGoogle Scholar
  81. P.J. Falkowski, L.V. Godfrey, Electrons, life and the evolution of Earth’s oxygen cycle. Philos. Trans. R. Soc. B 363, 2705–2716 (2008) CrossRefGoogle Scholar
  82. P.J. Falkowski, R.J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Högberg, S. Linder, F.T. Mackenzie, B. Moore III., T. Pedersen, Y. Rosenthal, S. Seitzinger, V. Smetacek, W. Steffen, The global carbon cycle: a test of our knowledge of Earth as a system. Science 290, 291–296 (2000) ADSCrossRefGoogle Scholar
  83. J. Farquhar, H. Bao, M. Thiemans, Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000) ADSCrossRefGoogle Scholar
  84. Y.R. Fernandez, J.-Y. Li, E.S. Howell, L.M. Woodney, Asteroids and comets, in In, ed. by T. Spohn, G. Schubert. Treatise on Geophysics, vol. 10, 2nd edn. (2015), pp. 487–527 Google Scholar
  85. G. Feulner, C. Hallmann, H. Kienert, Snowball cooling after algal rise. Nat. Geosci. 8(9), 659 (2015) ADSCrossRefGoogle Scholar
  86. B.J. Foley, D. Bercovici, Scaling laws for convection with temperature-dependent viscosity and grain-damage. Geophys. J. Int. 199, 580 (2014) ADSCrossRefGoogle Scholar
  87. D. Forgan, V. Dobos, Exomoon climate models with the carbonate-silicate cycle and viscoelastic tidal heating. Mon. Not. R. Astron. Soc. 457, 1233 (2016) ADSCrossRefGoogle Scholar
  88. K. France, The LUVOIR science and technology definition team (STDT): overview and status, in Space Telescopes and Instrumentation, vol. 9904 (2016) Google Scholar
  89. C. François, V. Debaille, J.L. Paquette, D. Baudet, E.J. Javaux, The onset of plate tectonics: HP-LT metamorphism in the Paleoproterozoic of the DRCongo. Sci. Rep. 8, 15452 (2018) ADSCrossRefGoogle Scholar
  90. J. Fritz, B. Bitsch, E. Kührt, A. Morbidelli, C. Tornow, K. Wünnemann, V.A. Fernandes, J.L. Grenfell, H. Rauer, R. Wagner, S.C. Werner, Earth-like habitats in planetary systems. Planet. Space Sci. 98, 254–267 (2014) ADSCrossRefGoogle Scholar
  91. D.J. Frost, C.A. McCammon, The redox state of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 36(1), 389–420 (2008) ADSCrossRefGoogle Scholar
  92. D.J. Frost, C. Liebske, F. Langenhorst, C.A. McCammon, R.G. Trønnes, D.C. Rubie, Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428, 409–412 (2004) ADSCrossRefGoogle Scholar
  93. D.J. Frost, U. Mann, Y. Asahara, D.C. Rubie, The redox state of the mantle during and just after core formation. Philos. Trans. R. Soc. A 366, 4315–4337 (2008).  https://doi.org/10.1098/rsta.2008.0147.Fujii ADSCrossRefGoogle Scholar
  94. Y. Fujii, H. Kawahara, Y. Suto, A. Taruya, S. Fukuda, T. Nakajima, E.L. Turner, Colors of a second Earth: estimating the fractional areas of ocean, land, and vegetation on Earth-like exoplanets. Astrophys. J. 715, 2 (2010) CrossRefGoogle Scholar
  95. Y. Fujii, D. Angerhausen, R. Deitrick, S. Domagal-Goldman, J.L. Grenfell, Y. Hori, S.R. Kane, E. Palle, H. Rauer, N. Siegler, K. Stapelfeldt, K.B. Stevenson, Exoplanet biosignatures: observational prospects. Astrobiology 18(6), 739–778 (2018).  https://doi.org/10.1089/ast.2017.1733 ADSCrossRefGoogle Scholar
  96. B.J. Fulton, E.A. Petigura, A.W. Howard, H. Isaacson, G.W. Marcy, P.A. Cargile, L. Hebb, L.M. Weiss, J.A. Johnson, T.D. Morton, E. Sinukoff, I.J.M. Crossfield, L.A. Hirsch, The California-Kepler survey. III. A gap in the radius distribution of small planets. Astron. J. 154, 109 (2017).  https://doi.org/10.3847/1538-3881/aa80eb ADSCrossRefGoogle Scholar
  97. H. Furnes, N.R. Banerjee, K. Muehlenbachs, H. Staudigel, M. de Wit, Early life recorded in Archean pillow lavas. Science 304(5670), 578–581 (2004) ADSCrossRefGoogle Scholar
  98. F. Gaillard, B. Scaillet, The sulfur content of volcanic gases on Mars. Earth Planet. Sci. Lett. 279(1–2), 34–43 (2009).  https://doi.org/10.1016/j.epsl.2008.12.028 ADSCrossRefGoogle Scholar
  99. F. Gaillard, B. Scaillet, A theoretical framework for volcanic degassing chemistry in a comparative planetology perspective and implications for planetary atmospheres. Earth Planet. Sci. Lett. 403, 307–316 (2014).  https://doi.org/10.1016/j.epsl.2014.07.00 ADSCrossRefGoogle Scholar
  100. F. Gaillard, B. Scaillet, N.T. Arndt, Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011) ADSCrossRefGoogle Scholar
  101. F. Gaillard, J. Michalski, G. Berger, S.M. McLenna, B. Scaillet, Geochemical reservoirs and timing of sulfur cycling on Mars. Space Sci. Rev. 174, 251–300 (2012).  https://doi.org/10.1007/s11214-012-9947-4 ADSCrossRefGoogle Scholar
  102. F. Gaillard, B. Scaillet, M. Pichavant, G. Iacono-Marziano, The redox geodynamics linking basalts and their mantle sources through space and time. Chem. Geol. 418, 217–233 (2015).  https://doi.org/10.1016/j.chemgeo.2015.07.030 ADSCrossRefGoogle Scholar
  103. J.M. García-Ruiz, E. Melero-García, S.T. Hyde, Morphogenesis of self-assembled nanocrystalline materials of barium carbonate and silica. Science 323(5912), 362–365 (2009) ADSCrossRefGoogle Scholar
  104. S. Gebauer, J.L. Grenfell, H. Lammer, J.-P. de Vera, L. Sproß, V. Airapetian, M. Sinnhuber, H. Rauer, Atmospheric nitrogen when life evolved on Earth. Nat. Sci. Rep. (2019, submitted) Google Scholar
  105. H. Genda, Y. Abe, Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164(1), 149–162 (2003) ADSCrossRefGoogle Scholar
  106. T.V. Gerya, R.J. Stern, M. Baes, S.V. Sobolev, S.A. Whattam, Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015) ADSCrossRefGoogle Scholar
  107. C. Gillmann, P.J. Tackley, Atmosphere/mantle coupling and feedbacks on Venus. J. Geophys. Res., Planets 119(6), 1189–1217 (2014) ADSCrossRefGoogle Scholar
  108. C. Gillmann, E. Chassefière, P. Lognonné, A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009).  https://doi.org/10.1016/j.epsl.2009.07.016 ADSCrossRefGoogle Scholar
  109. C. Gillmann, G.J. Golabek, P.J. Tackley, Effect of a single large impact on the coupled atmosphere-interior evolution of Venus. Icarus 268, 295–312 (2016) ADSCrossRefGoogle Scholar
  110. C. Gillmann, G. Golabek, P.J. Tackley, S. Raymond, The role of late Veneer impacts in the evolution of Venus, in European Planetary Science Congress, vol. 11 (2017) Google Scholar
  111. M. Gillon, E. Jehin, S.M. Lederer, L. Delrez, J. De Wit, A. Burdanov, V. Van Grootel, A.J. Burgasser, A.H.M.J. Triaud, C. Opitom, B.-O. Demory, D.K. Sahu, D. Bardalez Gagliuffi, P. Magain, D. Queloz, Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533(7602), 221–224 (2016).  https://doi.org/10.1038/nature17448 ADSCrossRefGoogle Scholar
  112. M. Gillon, A.H.M.J. Triaud, B.-O. Demory, E. Jehin, E. Agol, K.M. Deck, S.M. Lederer, J. de Wit, A. Burdanov, J.G. Ingalls, E. Bolmont, J. Leconte, S.N. Raymond, F. Selsis, M. Turbet, K. Barkaoui, A. Burgasser, M.R. Burleigh, S.J. Carey, A. Chaushev, C.M. Copperwheat, L. Delrez, C.S. Fernandes, D.L. Holdsworth, E.J. Kotze, V. Van Grootel, Y. Almleaky, Z. Benkhaldoun, P. Magain, D. Queloz, Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1. Nature 542(7642), 456–460 (2017).  https://doi.org/10.1038/nature21360 ADSCrossRefGoogle Scholar
  113. B.P. Glass, B.M. Simonson, Distal impact ejecta layers: spherules and more. Elements 8, 43–48 (2012) CrossRefGoogle Scholar
  114. S. Goderis, F. Paquay, P. Claeys, Projectile identification in terrestrial impact structures and ejecta material, in Impact Cratering: Processes and Products (2012), pp. 223–239 CrossRefGoogle Scholar
  115. S. Goderis, R. Chakrabarti, V. Debaille, J. Kodolányi, Isotopes in cosmochemistry: recipe for a Solar System. J. Anal. At. Spectrom. 31, 841–862 (2016) CrossRefGoogle Scholar
  116. G.J. Golabek, T. Keller, T.V. Gerya, G.Z. Zhu, P.J. Tackley, J.A.D. Connolly, Origin of the Martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus 215, 346–357 (2011).  https://doi.org/10.1016/j.icarus.2011.06.012 ADSCrossRefGoogle Scholar
  117. G.J. Golabek, A. Emsenhuber, M. Jutzi, E.I. Asphaug, T.V. Gerya, Coupling SPH and thermochemical models of planets: methodology and example of a Mars-sized body. Icarus 301, 235–246 (2018).  https://doi.org/10.1016/j.icarus.2017.10.003 ADSCrossRefGoogle Scholar
  118. M. Gounelle, The asteroid-comet continuum: in search of lost primitivity. Elements 7, 29–34 (2011) CrossRefGoogle Scholar
  119. D.H. Green, W.O. Hibberson, I. Kovács, A. Rosenthal, Water and its influence on the lithosphere-asthenosphere boundary. Nature 467, 448–497 (2010) ADSCrossRefGoogle Scholar
  120. J.L. Grenfell, A review of exoplanetary biosignatures. Phys. Rep. 713, 1–17 (2017) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  121. J.L. Grenfell, S. Gebauer, M. Godolt, K. Palczynski, H. Rauer, J. Stock, P. von Paris, R. Lehmann, F. Selsis, Potential biosignatures in super-Earth atmospheres II. Photochemical responses. Astrobiology 13, 415–436 (2013) ADSCrossRefGoogle Scholar
  122. D.S. Grewal, R. Dasgupta, C.U. Sun, K. Tsuno, G. Costin, Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Science Advances 5(3), eaau3669 (2019)  https://doi.org/10.1126/sciadv.aau3669 ADSCrossRefGoogle Scholar
  123. D.H. Grinspoon, Implications of the high D/H ratio for the sources of water in Venus’ atmosphere. Nature 363(6428), 428 (1993) ADSCrossRefGoogle Scholar
  124. D.H. Grinspoon, The surface and atmosphere of Venus: evolution and present state, in Towards Understanding the Climate of Venus (Springer, New York, 2013), pp. 17–22 CrossRefGoogle Scholar
  125. E.G. Grosch, M. Muñoz, O. Mathon, N. McLoughlin, Earliest microbial trace fossils in Archaean pillow lavas under scrutiny: new micro-X-ray absorption near-edge spectroscopy, metamorphic and morphological constraints. Geol. Soc. (Lond.) Spec. Publ. 448(1), 57–70 (2017) ADSCrossRefGoogle Scholar
  126. M. Grott, A. Morschhauser, D. Breuer, E. Hauber, Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011) ADSCrossRefGoogle Scholar
  127. N. Gueneli, A.M. McKenna, N. Ohkouchi, C.J. Boreham, J. Beghin, E.J. Javaux, J.J. Brocks, 1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers. Proc. Natl. Acad. Sci. 115(30), 201803866 (2018) CrossRefGoogle Scholar
  128. H. Gunell, R. Maggiolo, H. Nilsson, G.S. Wieser, R. Slapak, J. Lindkvist, M. Hamrin, J. De Keyser, Why an intrinsic magnetic field does not protect a planet against atmospheric escape. Astron. Astrophys. 614, L3 (2018) ADSCrossRefGoogle Scholar
  129. I. Halevy, D.T. Johnston, D.P. Schrag, Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204–207 (2010) ADSCrossRefGoogle Scholar
  130. K. Hamano, Y. Abe, Atmospheric loss and supply by an impact-induced vapor cloud: its dependence on atmospheric pressure on a planet. Earth Planets Space 62(7), 599–610 (2010) ADSCrossRefGoogle Scholar
  131. K. Hamano, H. Kawahara, Y. Abe, M. Onishi, G.L. Hashimoto, Lifetime and spectral evolution of a magma ocean with a steam atmosphere: its detectability by future direct imaging. Astrophys. J. 806, 216 (2015) ADSCrossRefGoogle Scholar
  132. T. Hammouda, S. Keshav, Melting in the mantle in the presence of carbon: review of experiments and discussion on the origin of carbonatites. Chem. Geol. 418, 171–188 (2015).  https://doi.org/10.1016/j.chemgeo.2015.05.018 ADSCrossRefGoogle Scholar
  133. B.M.S. Hansen, Formation of the terrestrial planets from a narrow annulus. Astrophys. J. 703, 1131–1140 (2009) ADSCrossRefGoogle Scholar
  134. J.D. Haqq-Misra, S.D. Domagal-Goldman, P.J. Kasting, J.F. Kasting, A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8(6), 1127–1137 (2008) ADSCrossRefGoogle Scholar
  135. C. Hayashi, K. Nakazawa, H. Mizuno, Earth’s melting due to the blanketing effect of the primordial dense atmosphere. Earth Planet. Sci. Lett. 43(1), 22–28 (1979) ADSCrossRefGoogle Scholar
  136. R.M. Hazen, Geochemical Origins of Life. Fundamentals of Geobiology (2012), pp. 315–332 Google Scholar
  137. J.N. Head, H.J. Melosh, B.A. Ivanov, Martian meteorites launch: highspeed ejecta from small craters. Science 298, 1752–1756 (2002) ADSCrossRefGoogle Scholar
  138. J.W. Head, C.I. Fassett, S.J. Kadish, D.E. Smith, M.T. Zuber, G.A. Neumann, E. Mazarico, Global distribution of large lunar craters: implications for resurfacing and impactor populations. Science 329, 1504–1507 (2010).  https://doi.org/10.1126/science.1195050 ADSCrossRefGoogle Scholar
  139. S. Hegde, I.G. Paulino-Lima, R. Kent, L. Kaltenegger, L. Rothschild, Surface biosignatures of exo-Earths: remote detection of extraterrestrial life. Proc. Natl. Acad. Sci. USA 112, 3886–3891 (2014) ADSCrossRefGoogle Scholar
  140. R. Heller, R. Barnes, Exomoon habitability constrained by illumination and tidal heating. Astrobiology 13, 18 (2013) ADSCrossRefGoogle Scholar
  141. R. Heller, D. Williams, D. Kipping, M.A. Limbach, E.L. Turner, R. Greenberg, T. Sasaki, É. Bolmont, O. Grasset, K. Lewis, R. Barnes, J.I. Zuluaga, Formation, habitability, and detection of extrasolar moons. Astrobiology 14, 798 (2014) ADSCrossRefGoogle Scholar
  142. P.C. Hess, E.M. Parmentier, A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134(3), 501–514 (1995).  https://doi.org/10.1016/0012-821X(95)00138-3 ADSCrossRefGoogle Scholar
  143. A.M. Hessler, D.R. Lowe, R.L. Jones, D. Bird, A lower limit for atmospheric carbon dioxide levels 3.2 billion years ago. Nature 428, 736–738 (2004) ADSCrossRefGoogle Scholar
  144. K. Hickman-Lewis, B. Cavalazzi, F. Foucher, F. Westall, Most ancient evidence for life in the Barberton greenstone belt: microbial mats and biofabrics of the ∼3.47 Ga Middle Marker horizon. Precambrian Res. 312, 45–67 (2018) ADSCrossRefGoogle Scholar
  145. N. Hirano, E. Takahashi, J. Yamamoto, W. Abe, S.P. Ingle, I. Kaneoka, T. Hirata, J. Ichi Kimura, T. Ishii, Y. Ogawa, S. Machida, K. Suyehiro, Volcanism in response to plate flexure. Science 313, 1426–1428 (2006) ADSCrossRefGoogle Scholar
  146. M.M. Hirschmann, Magma ocean influence on early atmosphere mass and composition. Earth Planet. Sci. Lett. 341–344, 48–57 (2012).  https://doi.org/10.1016/j.epsl.2012.06.015 ADSCrossRefGoogle Scholar
  147. M.M. Hirschmann, R. Dasgupta, The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009).  https://doi.org/10.1016/j.chemgeo.2009.1002.1008 ADSCrossRefGoogle Scholar
  148. E. Hoffland, T.W. Kuyper, H. Wallander, N. van Breemen, The role of fungi in weathering. Front. Ecol. Environ. 2(5), 258–264 (2004) CrossRefGoogle Scholar
  149. H.D. Holland, The Chemical Evolution of the Atmosphere and Oceans (Princeton University Press, Princeton, 1984) Google Scholar
  150. H.D. Holland, Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002) ADSCrossRefGoogle Scholar
  151. M. Homann, C. Heubeck, A. Airo, M.M. Tice, Morphological adaptations of 3.22 Ga-old tufted microbial mats to Archean coastal habitats (Moodies Group, Barberton Greenstone Belt, South Africa). Precambrian Res. 266, 47–64 (2015) ADSCrossRefGoogle Scholar
  152. D. Höning, T. Spohn, Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth. Phys. Earth Planet. Inter. 255, 27–49 (2016) ADSCrossRefGoogle Scholar
  153. D. Höning, H. Hansen-Goos, A. Airo, T. Spohn, Biotic vs. abiotic Earth: a model for mantle hydration and continental coverage. Planet. Space Sci. 98, 5–13 (2014) ADSCrossRefGoogle Scholar
  154. D. Höning, N. Tosi, H. Hansen-Goos, T. Spohn, Bifurcation in the growth of continental crust. Phys. Earth Planet. Inter. 287, 37 (2019).  https://doi.org/10.1016/j.pepi.2019.01.001 ADSCrossRefGoogle Scholar
  155. K.R. Housen, R.M. Schmidt, K.A. Holsapple, Crater ejecta scaling laws: fundamental forms based on dimensional analysis. J. Geophys. Res., Solid Earth 88(B3), 2485–2499 (1983) CrossRefGoogle Scholar
  156. R. Hu, B.L. Ehlmann, S. Seager, Theoretical spectra of terrestrial exoplanet surfaces. Astrophys. J. 752, 1 (2012) CrossRefGoogle Scholar
  157. H. Hussmann, F. Sohl, T. Spohn, Subsurface oceans and deep interiors of medium-sized outer planet satellites and trans-Neptunian objects. Icarus 185, 258 (2006) ADSCrossRefGoogle Scholar
  158. G. Iacono-Marziano, Y. Morizet, E. Le-Trong, F. Gaillard, New experimental data and semi-empirical parameterization of H2O-CO2 solubility in mafic melts. Geochim. Cosmochim. Acta (2012).  https://doi.org/10.1016/j.gca.2012.08.035 CrossRefGoogle Scholar
  159. A. Izidoro, S.N. Raymond, A. Pierens, A. Morbidelli, O.C. Winter, D. Nesvorny, The asteroid belt as a relic from a chaotic early solar system. Astrophys. J. 833, 40 (2016) ADSCrossRefGoogle Scholar
  160. S.A. Jacobson, A. Morbidelli, S.N. Raymond, D.P. O’Brien, K.J. Walsh, D.C. Rubie, Highly siderophile elements in Earth’s mantle as a clock for the moon-forming impact. Nature 508, 84–87 (2014) ADSCrossRefGoogle Scholar
  161. S.A. Jacobson, D.C. Rubie, J. Hernlund, A. Morbidelli, M. Nakajima, Formation, stratification, and mixing of the cores of Earth and Venus. Earth Planet. Sci. Lett. 474, 375–386 (2017) ADSCrossRefGoogle Scholar
  162. E.J. Javaux, Challenges in evidencing the earliest traces of life. Nature (2019, in press) Google Scholar
  163. E.J. Javaux, V. Dehant, Habitability: from stars to cells. Astron. Astrophys. Rev. 18, 383–416 (2010).  https://doi.org/10.1007/s00159-010-0030-4 ADSCrossRefGoogle Scholar
  164. E.J. Javaux, K. Lepot, The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth-Sci. Rev. 176, 68–86 (2017) CrossRefGoogle Scholar
  165. E.J. Javaux, C.P. Marshall, A. Bekker, Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463(7283), 934 (2010) ADSCrossRefGoogle Scholar
  166. M. Javoy, E. Kaminski, F. Guyot, D. Andrault, C. Sanloup, M. Moreira, S. Labrosse, A. Jambon, P. Agrinier, A. Davaille, C. Jaupart, The chemical composition of the Earth: enstatite chondrite models. Earth Planet. Sci. Lett. 293, 259–268 (2010).  https://doi.org/10.1016/j.epsl.2010.02.033 ADSCrossRefGoogle Scholar
  167. C.P. Johnstone, M. Güdel, I. Brott, T. Lüftinger, Stellar winds on the main-sequence. II. The evolution of rotation and winds. Astron. Astrophys. 577, A28 (2015a).  https://doi.org/10.1051/0004-6361/201425301 ADSCrossRefGoogle Scholar
  168. C.P. Johnstone, M. Güdel, A. Stökl, H. Lammer, L. Tu, K.G. Kislyakova, T. Lüftinger, P. Odert, N.V. Erkaev, E.A. Dorfi, The evolution of stellar rotation and the hydrogen atmospheres of habitable-zone terrestrial planets. Astrophys. J. Lett. 815(L12), 1 (2015b) Google Scholar
  169. A.P. Jones, A.T. Kearsley, C.R.L. Friend, E. Robin, A. Beard, A. Tamura, S. Trickett, P. Claeys, Are there signs of a large Palaeocene impact, preserved around disko bay, Greenland- Nuussuaq spherule beds origin by impact instead of volcanic eruption? in Large Meteorite Impacts III, ed. by K. Kenkman, F. Hörz, A. Deutsch. Geological Society of America Special Paper, vol. 384 (2005), pp. 281–298 Google Scholar
  170. J.-L. Josset, F. Westall, B.A. Hofmann, J. Spray, C. Cockell, S. Kempe, A.D. Griffiths, M. Cristina de Sanctis, L. Colangeli, D. Koschny, D. Pullan, K. Föllmi, E. Verrecchia, L. Diamond, M. Josset, E.J. Javaux, F. Esposito, M. Gunn, A.L. Souchon, T. Bontognali, O. Korablev, S. Erkman, G. Paar, S. Ulamec, F. Foucher, A. Verhaeghe, M. Tanevski, J. Vago, The Close-Up Imager (CLUPI) on board ESA ExoMars 2018 rover mission: science objectives, description, operations, and science validation activities. Astrobiology 17(6–7), 595–611 (2017) ADSCrossRefGoogle Scholar
  171. P.J. Jugo, Sulfur content at sulfide saturation in oxidized magmas. Geology 37, 415–418 (2009).  https://doi.org/10.1130/G25527A.1 ADSCrossRefGoogle Scholar
  172. M. Jutzi, K. Holsapple, K. Wünnemann, P. Michel, Modeling asteroid collisions and impact processes, in Asteroids IV, ed. by P. Michel, F.E. De Meo, W.F. Bottke (University of Arizona Press, Tucson, 2015), pp. 679–699 Google Scholar
  173. L. Kaltenegger, Characterizing habitable exomoons. Astrophys. J. Lett. 712, 125 (2010) ADSCrossRefGoogle Scholar
  174. L. Kaltenegger, F. Selsis, M. Fridlund, H. Lammer, C. Beichman, W. Danchi, C. Eiroa, T. Henning, T. Herbst, A. Léger, R. Liseau, J. Lunine, F. Paresce, A. Penny, A. Quirrenbach, H. Röttgering, J. Schneider, D. Stam, G. Tinetti, G.J. White, Deciphering spectral fingerprints of habitable exoplanets. Astrobiology 10, 89–102 (2010) ADSCrossRefGoogle Scholar
  175. Y. Kanzaki, T. Murakami, Estimates of atmospheric CO2 in the Neoarchean-Paleoproterozoic from paleosols. Geochim. Cosmochim. Acta 159, 190–219 (2015) ADSCrossRefGoogle Scholar
  176. S.-I. Karato, M.S. Paterson, J.D. FitzGerald, Rheology of synthetic olivine aggregates: influence of grain size and water. J. Geophys. Res. 91(B8), 8151–8176 (1986) ADSCrossRefGoogle Scholar
  177. S.-I. Karato, A. Forte, R. Liebermann, G. Masters, L. Stixrude, in Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale. Geophysical Monograph Series (2013, Am. Geophys. Union, Washington).  https://doi.org/10.1029/GM117. Print ISBN: 9781118668474. Online ISBN: 9780875909752 CrossRefGoogle Scholar
  178. J.F. Kasting, Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74, 472–494 (1988).  https://doi.org/10.1016/0019-1035(88)90116-9 ADSCrossRefGoogle Scholar
  179. J.F. Kasting, Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere. Orig. Life Evol. Biosph. 20(3–4), 199–231 (1990) ADSCrossRefGoogle Scholar
  180. J.F. Kasting, Atmospheric science. How was early Earth kept warm? Science 339, 44–45 (2013a) ADSCrossRefGoogle Scholar
  181. J.F. Kasting, What caused the rise of atmospheric O2? Chem. Geol. 362, 13–25 (2013b) ADSCrossRefGoogle Scholar
  182. J.F. Kasting, O.B. Toon, J.B. Pollack, How climate evolved on the terrestrial planets. Sci. Am. 258, 90–97 (1988).  https://doi.org/10.1038/scientificamerican0288-90 CrossRefGoogle Scholar
  183. J.F. Kasting, D.P. Whitmire, R.T. Reynolds, Habitable zones around main sequence stars. Icarus 101, 108 (1993a) ADSCrossRefGoogle Scholar
  184. J.F. Kasting, D.H. Eggler, S.P. Raeburn, Mantle redox evolution and the oxidation state of the Archean atmosphere. J. Geol. 101, 245–257 (1993b) ADSCrossRefGoogle Scholar
  185. J.F. Kasting, H. Chen, R.K. Kopparapu, Stratospheric temperatures and water loss from moist greenhouse atmospheres of Earth-like planets. Astrophys. J. Lett. 813(1), L3 (2015).  https://doi.org/10.1088/2041-8205/813/1/L3 ADSCrossRefGoogle Scholar
  186. P.B. Kelemen, C.E. Manning, Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl. Acad. Sci. USA 112(30), E3997–E4006 (2015).  https://doi.org/10.1073/pnas.1507889112 ADSCrossRefGoogle Scholar
  187. K.A. Kelley, E. Cottrell, Water and the oxidation state of subduction zone magmas. Science 325, 605–607 (2009) ADSCrossRefGoogle Scholar
  188. J.D. Kendall, H.J. Melosh, Differentiated planetesimal impacts into a terrestrial magma ocean: fate of the iron core. Earth Planet. Sci. Lett. 448, 24–33 (2016) ADSCrossRefGoogle Scholar
  189. T. Kenkmann, M.H. Poelchau, A. Deutsch, Bridging the gap III: impact cratering in nature, experiment, and modelling. Meteorit. Planet. Sci. 52(7), 1281–1284 (2017).  https://doi.org/10.1111/maps.12911 ADSCrossRefGoogle Scholar
  190. K. Kimura, R.S. Lewis, E. Anders, Distribution of gold and rhenium between nickel-iron and silicate melts: implications for the abundance of siderophile elements on the Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974) ADSCrossRefGoogle Scholar
  191. T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S.B. Jacobsen, Q.-Z. Yin, A.N. Halliday, Hf-W chronology of the accretion and early evolution of asteroids and terrestrial planets. Geochim. Cosmochim. Acta 73, 5150–5188 (2009) ADSCrossRefGoogle Scholar
  192. A.H. Knoll, K.D. Bergmann, J.V. Strauss, Life: the first two billion years. Phil. Trans. R. Soc. B 371(1707), 20150493 (2016) CrossRefGoogle Scholar
  193. C. Koeberl, Ph. Claeys, L. Hecht, I. McDonald, Geochemistry of impactites. Elements 8(1), 37–42 (2012) CrossRefGoogle Scholar
  194. O. Korablev, A. Trokhimovsky, A.V. Grigoriev, A. Shakun, Y.S. Ivanov, B. Moshkin, K. Anufreychik, D. Timonin, I. Dziuban, Y.K. Kalinnikov, F. Montmessin, Three infrared spectrometers, an atmospheric chemistry suite for the ExoMars 2016 trace gas orbiter. J. Appl. Remote Sens. 8, 1 (2014) CrossRefGoogle Scholar
  195. J. Korenaga, On the likelihood of plate tectonics on super-Earths: does size matter? Astrophys. J. Lett. 725(1), L43–L46 (2010).  https://doi.org/10.1088/2041-8205/725/1/L43 ADSCrossRefGoogle Scholar
  196. L. Kreidberg, J.L. Bean, J.-M. Désert, B. Benneke, D. Deming, K.B. Stevenson, S. Seager, Z. Berta-Thompson, A. Seifahrt, D. Homeier, Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014) ADSCrossRefGoogle Scholar
  197. J. Krissansen-Totton, D.C. Catling, Constraining climate sensitivity and continental versus seafloor weathering using an inverse geological carbon cycle model. Nat. Commun. (2017).  https://doi.org/10.1038/NCOMMS15423 CrossRefGoogle Scholar
  198. J. Krissansen-Totton, S. Olson, D.C. Catling, Disequilibrium biosignatures over Earth history and implications for detecting exoplanet life. Sci. Adv. 4(1), eaao5747 (2018).  https://doi.org/10.1126/sciadv.aao5747 CrossRefGoogle Scholar
  199. L.R. Kump, M.E. Barley, Increased subaerial volcanism and the rise of atmospheric oxygen 2.5 billion years ago. Nature 448, 1033–1036 (2007) ADSCrossRefGoogle Scholar
  200. L.R. Kump, S.L. Brantley, M.A. Arthur, Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 28, 611–667 (2000) ADSCrossRefGoogle Scholar
  201. M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, A32 (2012) ADSCrossRefGoogle Scholar
  202. H. Lammer, H.I.M. Lichtenegger, H.K. Biernat, N.V. Erkaev, I.L. Arshukova, C. Kolb, H. Gunell, A. Lukyanov, M. Holmstrom, S. Barabash, T.L. Zhang, W. Baumjohann, Loss of hydrogen and oxygen from the upper atmosphere of Venus. Planet. Space Sci. 54, 1445–1456 (2006) ADSCrossRefGoogle Scholar
  203. H. Lammer, J.H. Bredehöft, A. Coustenis, M.L. Khodachenko, L. Kaltenegger, O. Grasset, D. Prieur, F. Raulin, P. Ehrenfreund, M. Yamauchi, J.-E. Wahlund, J.-M. Griessmeier, G. Stangl, C.S. Cockell, Y.N. Kulikov, J.L. Grenfell, H. Rauer, What makes a planet habitable? Astron. Astrophys. Rev. 17(2), 181–249 (2009).  https://doi.org/10.1007/s00159-009-0019-z ADSCrossRefGoogle Scholar
  204. H. Lammer, K.G. Kislyakova, P. Odert, M. Leitzinger, R. Schwarz, R. Pilat-Lohinger, Y.N. Kulikov, M.L. Khodachenko, M. Güdel, A. Hanslmeier, Pathways to Earth-like atmospheres. Extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–511 (2011) ADSCrossRefGoogle Scholar
  205. H. Lammer, A. Stökl, N.V. Erkaev, E.A. Dorfi, P. Odert, M. Güdel, Yu.N. Kulikov, K.G. Kislyakova, M. Leitzinger, Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439(4), 3225–3238 (2014).  https://doi.org/10.1093/mnras/stu085 ADSCrossRefGoogle Scholar
  206. H. Lammer, A.L. Zerkle, S. Gebauer, N. Tosi, L. Noack, M. Scherf, E. Pilat-Lohinger, M. Güdel, J.L. Grenfell, M. Godolt, A. Nikolaou, Origin and evolution of the atmospheres of early Venus, Earth, and Mars. Astron. Astrophys. Rev. 76(1), 77 (2018) Google Scholar
  207. H. Lammer, L. Sproß, J.L. Grenfell, M. Scherf, L. Fossati, M. Lendl, P.E. Cubillos, The role of N2 as a geo-biosignature for the detection and characterization of Earth-like habitats. Astrobiology 19(7), 927–950 (2019).  https://doi.org/10.1089/ast.2018.1914 ADSCrossRefGoogle Scholar
  208. C.H. Langmuir, W. Broecker, How to Build a Habitable Planet (Princeton University Press, Princeton, 2012) CrossRefGoogle Scholar
  209. J. Lasue, Y. Quesnel, B. Langlais, E. Chassefière, Methane storage capacity of the early Martian cryosphere. Icarus 260, 205–214 (2015) ADSCrossRefGoogle Scholar
  210. C-T.A. Lee, P. Luffi, V. Le Roux, R. Dasgupta, F. Albarede, W.P. Leeman, The redox state of arc mantle using Zn/Fe systematics. Nature 468, 681–685 (2010) ADSCrossRefGoogle Scholar
  211. A.M. Lenardic, A. Jellinek, L.-N. Moresi, A climate induced transition in the tectonic style of a terrestrial planet. Earth Planet. Sci. Lett. 271(1–4), 34–42 (2008) ADSCrossRefGoogle Scholar
  212. T.M. Lenton, Testing Gaia: the effect of life on Earth’s habitability and regulation. Clim. Change 52, 409–422 (2002) CrossRefGoogle Scholar
  213. K. Lepot, P. Compère, E. Gérard, Z. Namsaraev, E. Verleyen, I. Tavernier, D.A. Hodgson, W. Vyverman, B. Gilbert, A. Wilmotte, E.J. Javaux, Organic and mineral imprints in fossil photosynthetic mats of an East Antarctic lake. Geobiology 12(5), 424–450 (2014).  https://doi.org/10.1111/gbi.12096 CrossRefGoogle Scholar
  214. Y. Li, R. Dasgupta, K. Tsuno, The effects of sulfur, silicon, water, and oxygen fugacity on carbon solubility and partitioning in Fe-rich alloy and silicate melt systems at 3 GPa and 1600 C: Implications for core-mantle differentiation and degassing of magma oceans and reduced planetary mantles. Earth Planet. Sci. Lett. 415, 54–66 (2015a).  https://doi.org/10.1016/j.epsl.2015.01.017 ADSCrossRefGoogle Scholar
  215. Y. Li, R. Huang, M. Wiedenbeck, H. Kepplera, Nitrogen distribution between aqueous fluids and silicate melts. Earth Planet. Sci. Lett. 411, 218–228 (2015b) ADSCrossRefGoogle Scholar
  216. Y. Li, R. Dasgupta, K. Tsuno, Carbon contents in reduced basalts at graphite saturation: implications for the degassing of Mars, Mercury, and the Moon. J. Geophys. Res., Planets 122, 1300–1320 (2017).  https://doi.org/10.1002/2017JE005289 ADSCrossRefGoogle Scholar
  217. G. Libourel, B. Marty, F. Humbert, Nitrogen solubility in basaltic melt; Part I, effect of oxygen fugacity. Geochim. Cosmochim. Acta 67, 4123–4135 (2003) ADSCrossRefGoogle Scholar
  218. H.I.M. Lichtenegger, H. Lammer, J.-M. Grießmeier, Y.N. Kulikov, P. von Paris, W. Hausleitner, S. Krauss, H. Rauer, Aeronomical evidence for higher CO2 levels during Earth’s Hadean epoch. Icarus 210(1), 1–7 (2010).  https://doi.org/10.1016/j.icarus.2010.06.042 ADSCrossRefGoogle Scholar
  219. R.J. Lillis, D.A. Brain, S.W. Bougher, F. Leblanc, J.G. Luhmann, M.B. Jakosky et al., Characterizing atmospheric escape from Mars today and through time, with MAVEN. Space Sci. Rev. 195(1–4), 357–422 (2015) ADSCrossRefGoogle Scholar
  220. D. Lourenço, A. Rozel, M. Ballmer, P.J. Tackley, Plutonic-squishy lid and beyond: implications of intrusive magmatism and characterization of a new global-tectonic regime on Earth-like planets, in Geophysical Research Abstracts, EGU General Assembly 2017. EGU2017-16304, vol. 19 (2017) Google Scholar
  221. G.D. Love, E. Grosjean, C. Stalvies, D.A. Fike, J.P. Grotzinger, A.S. Bradley, Fossil steroids record the appearance of demospongiae during the cryogenian period. Nature 457, 718–721 (2009) ADSCrossRefGoogle Scholar
  222. R. Luger, M. Sestovic, E. Kruse, S.L. Grimm, B.-O. Demory, E. Agol, E. Bolmont, D. Fabrycky, C.S. Fernandes, V. Van Grootel, A. Burgasser, M. Gillon, J.G. Ingalls, E. Jehin, S.N. Raymond, F. Selsis, A.H.M.J. Triaud, T. Barclay, G. Barentsen, S.B. Howell, L. Delrez, J. de Wit, D. Foreman-Mackey, D.L. Holdsworth, J. Leconte, S. Lederer, M. Turbet, Y. Almleaky, Z. Benkhaldoun, P. Magain, B.M. Morris, K. Heng, D. Queloz, A terrestrial-sized exoplanet at the snow line of TRAPPIST-1. Nat. Astron. 1(0129), 0129 (2017).  https://doi.org/10.1038/s41550-017-0129 ADSCrossRefGoogle Scholar
  223. R. Lundin, H. Lammer, I. Ribas, Planetary magnetic fields and solar forcing: implications for atmospheric evolution. Space Sci. Rev. 129(1–3), 245–278 (2007) ADSCrossRefGoogle Scholar
  224. J.I. Lunine, Astrobiology: A Multidisciplinary Approach (Addison-Wesley, Boston, 2005), 586 pp. Google Scholar
  225. T.W. Lyons, B.C. Gill, Ancient sulfur cycling and oxygenation of the early biosphere. Elements 6, 93–99 (2010) CrossRefGoogle Scholar
  226. T.W. Lyons, C.T. Reinhard, N.J. Planavsky, The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).  https://doi.org/10.1038/nature13068 ADSCrossRefGoogle Scholar
  227. N. Madhusudhan, K.K.M. Lee, O. Mousis, A possible carbon-rich interior in super-Earth 55 Cancri e. Astrophys. J. Lett. 759, L40 (2012).  https://doi.org/10.1088/2041-8205/759/2/L40 ADSCrossRefGoogle Scholar
  228. L. Manske, K. Wünnemann, M. Nakajima, Impact-induced melting by giant impact events, in 49th Lunar and Planetary Science Conference, LPI Contribution (2018) Google Scholar
  229. S. Marchi, R.M. Canup, R.J. Walker, Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11(1), 77 (2018) ADSCrossRefGoogle Scholar
  230. E. Marcq, F.P. Mills, C.D. Parkinson, A.C. Vandaele, Composition and chemistry of the neutral atmosphere of Venus. Space Sci. Rev. 214(1), 10 (2018) ADSCrossRefGoogle Scholar
  231. L. Margulis, J. Lovelock, Biological modification of the Earth’s atmosphere. Icarus 21, 471–489 (1974) ADSCrossRefGoogle Scholar
  232. N. Marounina, G. Tobie, S. Carpy, J. Monteux, B. Charnay, O. Grasset, Evolution of Titan’s atmosphere during the late heavy bombardment. Icarus 257, 324–335 (2015) ADSCrossRefGoogle Scholar
  233. H. Martin, F. Albarède, P. Claeys, M. Gargaud, B. Marty, A. Morbidelli, D.L. Pinti, Building of a habitable planet, in From Suns to Life: A Chronological Approach to the History of Life on Earth, ed. by M. Gargaud, P. Claeys, P. López-García, H. Martin, T. Montmerle, R. Pascal, J. Reisse (Springer, New York, 2006), 97–151, Chap. 4.  https://doi.org/10.1007/s11038-006-9088-4 CrossRefGoogle Scholar
  234. B. Marty, L. Zimmermann, M. Pujol, R. Burgess, P. Philippot, Nitrogen isotopic composition and density of the Archean atmosphere. Science 342(6154), 101–104 (2013).  https://doi.org/10.1126/science.1240971 ADSCrossRefGoogle Scholar
  235. B. Marty, G. Avice, Y. Sano, K. Altwegg, H. Balsiger, M. Hässig, A. Morbidelli, O. Mousis, M. Rubin, Origins of volatile elements (H, C, N, noble gases) on Earth and Mars in light of recent results from the ROSETTA cometary mission. Earth Planet. Sci. Lett. 441, 91–102 (2016).  https://doi.org/10.1016/j.epsl.2016.02.031 ADSCrossRefGoogle Scholar
  236. F. Masset, M. Snellgrove, Reversing type II migration: resonance trapping of a lighter giant protoplanet. Mon. Not. R. Astron. Soc. 320, L55–L59 (2001) ADSCrossRefGoogle Scholar
  237. T.M. McCollom, J.S. Seewald, A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65(21), 3769–3778 (2001) ADSCrossRefGoogle Scholar
  238. P.J. McGovern, G. Schubert, Thermal evolution of the Earth: effects of volatile exchange between atmosphere and interior. Earth Planet. Sci. Lett. 96, 27–37 (1989) ADSCrossRefGoogle Scholar
  239. S. McMahon, T. Bosak, J.P. Grotzinger, R.E. Milliken, R.E. Summons, M. Daye, S.A. Newman, A. Fraeman, K.H. Williford, D.E.G. Briggs, A field guide to finding fossils on Mars. J. Geophys. Res., Planets (2018).  https://doi.org/10.1029/2017JE005478 CrossRefGoogle Scholar
  240. V.S. Meadows, Reflections on O2 as a biosignature in exoplanetary atmospheres. Astrobiology 17, 1022–1052 (2017) ADSCrossRefGoogle Scholar
  241. V.S. Meadows, C.T. Reinhard, G.N. Arney, M.N. Parenteau, E.W. Schwieterman, S.D. Domagal-Goldman, A.P. Lincowski, K.R. Stapelfeldt, H. Rauer, S. DasSarma, S. Hegde, N. Narita, R. Deitrick, T.W. Lyons, N. Siegler, J. Lustig-Yaeger, Exoplanet biosignatures: understanding oxygen in the context of its environment. Astrobioloy 18(6), 630–662 (2018) ADSCrossRefGoogle Scholar
  242. H.J. Melosh, Impact Cratering: A Geologic Process. Oxford Monographs on Geology and Geophysics, vol. 11 (Oxford University Press, New York, 1989), p. 253 p., 11 Google Scholar
  243. H.J. Melosh, Vapor plumes: a neglected aspect of impact cratering. Meteoritics 25, 386 (1990) ADSGoogle Scholar
  244. H.J. Melosh, A.M. Vickery, Impact erosion of the primordial atmosphere of Mars. Nature 338(6215), 487 (1989) ADSCrossRefGoogle Scholar
  245. S. Mikhail, D.A. Sverjensky, Nitrogen speciation in upper mantle fluids and the origin of Earth’s nitrogen-rich atmosphere. Nat. Geosci. 7(11), 816–819 (2014) ADSCrossRefGoogle Scholar
  246. J. Monteux, N. Coltice, F. Dubuffet, Y. Ricard, Thermo-mechanical adjustment after impacts during planetary growth. Geophys. Res. Lett. 34(24) (2007) Google Scholar
  247. A. Morbidelli, A. Crida, The dynamics of Jupiter and Saturn in the gaseous protoplanetary disk. Icarus 191, 158–171 (2007) ADSCrossRefGoogle Scholar
  248. L. Moresi, V. Solomatov, Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int. 133, 669 (1998) ADSCrossRefGoogle Scholar
  249. L.M. Mukhin, M.V. Gerasimov, E.N. Safonova, Origin of precursors of organic molecules during evaporation of meteorites and mafic terrestrial rocks. Nature 340(6228), 46 (1989) ADSCrossRefGoogle Scholar
  250. M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, M.D. Smith, Strong release of methane on Mars in Northern Summer 2003. Science 323(5917), 1041 (2009).  https://doi.org/10.1126/science.1165243 ADSCrossRefGoogle Scholar
  251. T. Nakagawa, H. Iwamori, Long-term stability of plate-like behavior caused by hydrous mantle convection and water absorption in the deep mantle. J. Geophys. Res., Solid Earth 122, 8431–8445 (2017) ADSCrossRefGoogle Scholar
  252. M. Nakajima, D.J. Stevenson, Investigation of the initial state of the moon-forming disk: bridging SPH simulations and hydrostatic models. Icarus 233, 259–267 (2014) ADSCrossRefGoogle Scholar
  253. M. Nakajima, D.J. Stevenson, Melting and mixing states of the Earth’s mantle after the moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015) ADSCrossRefGoogle Scholar
  254. W.M. Napier, A mechanism for interstellar panspermia. Mon. Not. R. Astron. Soc. 348(1), 46–51 (2004) ADSCrossRefGoogle Scholar
  255. W.I. Newman, E.M. Symbalisty, T.J. Ahrens, E.M. Jones, Impact erosion of planetary atmospheres: some surprising results. Icarus 138(2), 224–240 (1999) ADSCrossRefGoogle Scholar
  256. R.W. Nicklas, I.S. Puchtel, R.D. Ash, Redox state of the Archean mantle: evidence from V partitioning in 3.5–2.4 Ga Komatiites. Geochim. Cosmochim. Acta 222, 447–466 (2018) ADSCrossRefGoogle Scholar
  257. F. Nimmo, D.J. Stevenson, Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res., Planets 105(E5), 11969–11979 (2000) ADSCrossRefGoogle Scholar
  258. F. Nimmo, S.D. Hart, D.G. Korycansky, C.B. Agnor, Implications of an impact origin for the martian hemispheric dichotomy. Nature 453(7199), 1220–1223 (2008).  https://doi.org/10.1038/nature07025 ADSCrossRefGoogle Scholar
  259. E. Nisbet, K. Zahnle, M.V. Gerasimov, J. Helbert, R. Jaumann, B.A. Hofmann, K. Benzerara, F. Westall, Creating habitable zones, at all scales, from planets to mud micro-habitats, on Earth and on Mars. Space Sci. Rev. 129(1–3), 79–121 (2007) ADSCrossRefGoogle Scholar
  260. L. Noack, D. Breuer, T. Spohn, Coupling the atmosphere with interior dynamics: Implications for the resurfacing of Venus. Icarus 217(2), 484–498 (2012) ADSCrossRefGoogle Scholar
  261. L. Noack, M. Godolt, P. von Paris, A.-C. Plesa, B. Stracke, D. Breuer, H. Rauer, Constraints on planetary habitability from interior modeling. PSS special issue. Planet. Evol. Life 98, 14–29 (2014).  https://doi.org/10.1016/j.pss.2014.01.003 ADSCrossRefGoogle Scholar
  262. L. Noack, A. Rivoldini, T. Van Hoolst, Volcanism and outgassing of stagnant-lid planets: implications for the habitable zone. Phys. Earth Planet. Inter. 269, 40–57 (2017) ADSCrossRefGoogle Scholar
  263. N. Noffke, K.A. Eriksson, R.M. Hazen, E.L. Simpson, A new window into early Archean life: microbial mats in Earth’s oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa). Geology 34(4), 253–256 (2006) ADSCrossRefGoogle Scholar
  264. A.P. Nutman, V.C. Bennett, C.R. Friend, M.J. Van Kranendonk, A.R. Chivas, Rapid emergence of life shown by discovery of 3,700-million-year-old microbial structures. Nature 537(7621), 535 (2016) ADSCrossRefGoogle Scholar
  265. D.P. O’Brien, A. Morbidelli, H.F. Levison, Terrestrial planet formation with strong dynamical friction. Icarus 184, 39–58 (2006) ADSCrossRefGoogle Scholar
  266. P. Odert et al., Escape and fractionation of volatiles and noble gases from Mars-sized planetary 175 embryos and growing protoplanets. Icarus 307, 327–346 (2018) ADSCrossRefGoogle Scholar
  267. J.D. O’Keefe, T.J. Ahrens, Meteorite impact ejecta: dependence of mass and energy lost on planetary escape velocity. Science 198(4323), 1249–1251 (1977) ADSCrossRefGoogle Scholar
  268. J.D. O’Keefe, T.J. Ahrens, The effect of gravity on impact crater excavation time and maximum depth; comparison with experiment, in Lunar and Planetary Science Conference, vol. 10 (1979), pp. 934–936 Google Scholar
  269. T. Okuchi, Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278(5344), 1781–1784 (1997).  https://doi.org/10.1126/science.278.5344.1781 ADSCrossRefGoogle Scholar
  270. C. O’Neill, A. Lenardic, Geological consequences of super-sized Earths. Geophys. Res. Lett. 34(19), L19204 (2007).  https://doi.org/10.1029/2007GL030598 ADSCrossRefGoogle Scholar
  271. C. O’Neill, A. Lenardic, A.M. Jellinek, W.S. Kiefer, Melt propagation and volcanism in mantle convection simulations, with applications for martian volcanic and atmospheric evolution. J. Geophys. Res., Planets 112, E07003 (2007) ADSGoogle Scholar
  272. C. O’Neill, S. Marchi, S. Zhang, W. Bottke, Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10(10), 793 (2017) ADSCrossRefGoogle Scholar
  273. C.W. Ormel, H.H. Klahr, The effect of gas drag on the growth of protoplanets. Analytical expressions for the accretion of small bodies in laminar disks. Astron. Astrophys. 520, A43 (2010).  https://doi.org/10.1051/0004-6361/201014903 ADSCrossRefGoogle Scholar
  274. J.G. O’Rourke, C. Gillmann, P. Tackley, Prospects for an ancient dynamo and modern crustal remanent magnetism on Venus. Earth Planet. Sci. Lett. 502, 46–56 (2018) ADSCrossRefGoogle Scholar
  275. J.E. Owen, Y. Wu, The evaporation valley in the Kepler planets. Astrophys. J. 847, 29 (2017) ADSCrossRefGoogle Scholar
  276. C. Oze, M. Sharma, Serpentinization and the inorganic synthesis of H2 in planetary surfaces. Icarus 186(2), 557–561 (2007) ADSCrossRefGoogle Scholar
  277. S. Padovan, N. Tosi, A.C. Plesa, T. Ruedas, Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures. Nat. Commun. 8, 1945 (2017).  https://doi.org/10.1038/s41467-017-01692-0 ADSCrossRefGoogle Scholar
  278. K. Pahlevan, D.J. Stevenson, Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262(3–4), 438–449 (2007).  https://doi.org/10.1016/j.epsl.2007.07.055 ADSCrossRefGoogle Scholar
  279. M.A. Pasek, J.P. Harnmeijer, R. Buick, M. Gull, Z. Atlas, Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl. Acad. Sci. USA 110, 10089–10094 (2013) ADSCrossRefGoogle Scholar
  280. A.A. Pavlov, J.F. Kasting, Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere. Astrobiology 2(1), 27–41 (2002) ADSCrossRefGoogle Scholar
  281. A.A. Pavlov, J.F. Kasting, L.L. Brown, K.A. Rages, R. Freedman, Greenhouse warming by CH4 in the atmosphere of early Earth. J. Geophys. Res. 105, 11981 (2000) ADSCrossRefGoogle Scholar
  282. E.A. Petigura, A.W. Howard, G.W. Marcy, Prevalence of Earth-size planets orbiting Sun-like stars. Proc. Natl. Acad. Sci. 110(19), 273–19278 (2013) Google Scholar
  283. L.B.S. Pham, Ö. Karatekin, Scenarios of atmospheric mass evolution on Mars influenced by asteroid and comet impacts since the late Noachian. Planet. Space Sci. 125, 1–11 (2016) ADSCrossRefGoogle Scholar
  284. L.B.S. Pham, Ö. Karatekin, V. Dehant, Effect of meteorite impacts on the atmospheric evolution of Mars. Astrobiology Early Mars 9(1), 45–54 (2009).  https://doi.org/10.1089/ast.2008.0242 (special issue) ADSCrossRefGoogle Scholar
  285. L.B.S. Pham, Ö. Karatekin, V. Dehant, Effects of impacts on the atmospheric evolution: comparison between Mars, Earth, and Venus. Planet. Space Sci. 59, 1087–1092 (2011) ADSCrossRefGoogle Scholar
  286. E. Pierazzo, N. Artemieva, Local and global environmental effects of impacts on Earth. Elements 8, 55–60 (2012).  https://doi.org/10.2113/gselements.8.1.55 CrossRefGoogle Scholar
  287. E. Pierazzo, H.J. Melosh, Hydrocode modeling of oblique impacts: the fate of the projectile. Meteorit. Planet. Sci. 35(1), 117–130 (2000) ADSCrossRefGoogle Scholar
  288. E. Pierazzo, A.M. Vickery, H.J. Melosh, A reevaluation of impact melt production. Icarus 127(2), 408–423 (1997) ADSCrossRefGoogle Scholar
  289. A. Pierens, S.N. Raymond, D. Nesvorny, A. Morbidelli, Outward migration of Jupiter and Saturn in 3:2 or 2:1 resonance in radiative disks: implications for the grand tack and nice models. Astrophys. J. Lett. 795(1), L11 (2014).  https://doi.org/10.1088/2041-8205/795/1/L11 ADSCrossRefGoogle Scholar
  290. S. Pizzarello, Y. Huang, L. Becker, R.J. Poreda, R.A. Nieman, G. Cooper, M. Williams, The organic content of the Tagish Lake meteorite. Science 293, 2236–2239 (2001) ADSCrossRefGoogle Scholar
  291. T. Plank, The chemical composition of subducting sediments, in Treatise on Geochemistry, vol. 4, ed. by R.L. Rudnick 2nd edn. (Elsevier/Pergamon, Oxford, 2014), pp. 607–629 CrossRefGoogle Scholar
  292. J.P. Poirier, Introduction to the Physics of the Earth’s Interior, 2nd edn. (Cambridge University Press, Cambridge, 2000). ISBN-13: 978-0521663922, ISBN-10: 052166392X CrossRefGoogle Scholar
  293. R.R. Rafikov, Atmospheres of protoplanetary cores: critical mass for nucleated instability. Astrophys. J. 682, 666–682 (2006) ADSCrossRefGoogle Scholar
  294. R. Ramstad, S. Barabash, Y. Futaana, M. Yamauchi, H. Nilsson, M. Holmström, Mars under primordial solar wind conditions: Mars express observations of the strongest CME detected at Mars under solar cycle# 24 and its impact on atmospheric ion escape. Geophys. Res. Lett. 44(21), 10805–10811 (2017) ADSCrossRefGoogle Scholar
  295. H. Rauer, S. Gebauer, P. von Paris, J. Cabrera, M. Godolt, J.L. Grenfell, A. Belu, F. Selsis, P. Hedelt, F. Schreier, Potential biosignatures in super-Earth atmospheres I. Spectral appearance of super-Earths around M dwarfs. Astron. Astrophys. 529, A8 (2011) ADSCrossRefGoogle Scholar
  296. H. Rauer, C. Catala, C. Aerts, T. Appourchaux, W. Benz, A. Brandeker, J. Christensen-Dalsgaard, M. Deleuil, L. Gizon, M.-J. Goupil, M. Güdel, E. Janot-Pacheco, M. Mas-Hesse, I. Pagano, G. Piotto, D. Pollacco, C. Santos, A. Smith, J.-C. Suárez, R. Szabó, S. Udry, V. Adibekyan, Y. Alibert, J.-M. Almenara, P. Amaro-Seoane, M. Ammer-von Eiff, M. Asplund, E. Antonello, S. Barnes, F. Baudin, K. Belkacem, M. Bergemann, G. Bihain, A.C. Birch, X. Bonfils, I. Boisse, A.S. Bonomo, F. Borsa, I.M. Brandão, E. Brocato, S. Brun, M. Burleigh, R. Burston, J. Cabrera, S. Cassisi, W. Chaplin, S. Charpinet, C. Chiappini, R.P. Church, S. Csizmadia, M. Cunha, M. Damasso, M.B. Davies, H.J. Deeg, R.F. Díaz, S. Dreizler, C. Dreyer, P. Eggenberger, D. Ehrenreich, P. Eigmüller, A. Erikson, R. Farmer, S. Feltzing, F. de Oliveira Fialho, P. Figueira, T. Forveille, M. Fridlund, R.A. García, P. Giommi, G. Giuffrida, M. Godolt, J. Gomes da Silva, T. Granzer, J.L. Grenfell, A. Grotsch-Noels, E. Günther, C.A. Haswell, A.P. Hatzes, G. Hébrard, S. Hekker, R. Helled, K. Heng, J.M. Jenkins, A. Johansen, M.L. Khodachenko, K.G. Kislyakova, W. Kley, U. Kolb, N. Krivova, F. Kupka, H. Lammer, A.F. Lanza, Y. Lebreton, D. Magrin, P. Marcos-Arenal, P.M. Marrese, J.P. Marques, J. Martins, S. Mathis, S. Mathur, S. Messina, A. Miglio, J. Montalban, M. Montalto, M.J. Monteiro, H. Moradi, E. Moravveji, C. Mordasini, T. Morel, A. Mortier, V. Nascimbeni, R.P. Nelson, M.B. Nielsen, L. Noack, A.J. Norton, A. Ofir, M. Oshagh, R.-M. Ouazzani, P. Pápics, V.C. Parro, P. Petit, B. Plez, E. Poretti, A. Quirrenbach, R. Ragazzoni, G. Raimondo, M. Rainer, D.R. Reese, R. Redmer, S. Reffert, B. Rojas-Ayala, I.W. Roxburgh, S. Salmon, A. Santerne, J. Schneider, J. Schou, S. Schuh, H. Schunker, A. Silva-Valio, R. Silvotti, I. Skillen, I. Snellen, F. Sohl, S.G. Sousa, A. Sozzetti, D. Stello, K.G. Strassmeier, M. Svanda, G.M. Szabó, A. Tkachenko, D. Valencia, V. Van Grootel, S.D. Vauclair, P. Ventura, F.W. Wagner, N.A. Walton, J. Weingrill, S.C. Werner, P.J. Wheatley, K. Zwintz, The PLATO 2.0 mission. Exp. Astron. 38, 249–330 (2014) ADSCrossRefGoogle Scholar
  297. S.N. Raymond, D.P. O’Brien, A. Morbidelli, N.A. Kaib, Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009) ADSCrossRefGoogle Scholar
  298. S.N. Raymond, H.E. Schlichting, F. Hersant, F. Selsis, Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226(1), 671–681 (2013) ADSCrossRefGoogle Scholar
  299. J. Reisse, La longue histoire de la matière. Une complexité croissante depuis des milliards d’années (Presses Universitaires de France, Paris, 2011), 320 p. Google Scholar
  300. K. Righter, K.E. Neff, Temperature and oxygen fugacity constraints on CK and R chondrites and implications for water and oxidation in the early solar system. Polar Sci. 1(1), 25–44 (2007).  https://doi.org/10.1016/j.polar.2007.04.002 ADSCrossRefGoogle Scholar
  301. J.H. Roberts, J. Arkani-Hamed, Impact heating and coupled core cooling and mantle dynamics on Mars. J. Geophys. Res., Planets 119(4), 729–744 (2014) ADSCrossRefGoogle Scholar
  302. T.D. Robinson, K. Ennico, V.S. Meadows, W. Sparks, D.B.J. Bussey, E.W. Schwieterman, J. Breiner, Detection of ocean glint and ozone absorption using LCROSS Earth observations. Astrophys. J. 787(2), 171 (2014).  https://doi.org/10.1088/0004-637X/787/2/171 ADSCrossRefGoogle Scholar
  303. F. Rodeler, M. López-Morales, Feasibility studies for the detection of O2 in an Earth-like exoplanet. Astrophys. J. 781, 1 (2014) ADSGoogle Scholar
  304. L.A. Rogers, Most 1.6 earth-radius planets are not rocky. Astrophys. J. 801(41) (2015).  https://doi.org/10.1088/0004-637X/801/1/41 ADSCrossRefGoogle Scholar
  305. T. Rolf, M.-H. Zhu, K. Wünnemann, S.C. Werner, The role of impact bombardment history in lunar evolution. Icarus 286, 138–152 (2016) ADSCrossRefGoogle Scholar
  306. M.T. Rosing, D.K. Bird, N.H. Sleep, W. Glassley, F. Albarede, The rise of continents—an essay on the geologic consequences of photosynthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 99–113 (2006) CrossRefGoogle Scholar
  307. M. Roskosz, M.A. Bouhifd, A.P. Jephcoat, B. Marty, B.O. Mysen, Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochim. Cosmochim. Acta 121, 15–28 (2013).  https://doi.org/10.1016/j.gca.2013.07.007 ADSCrossRefGoogle Scholar
  308. A.B. Rozel, G.J. Golabek, C. Jain, P.J. Tackley, T. Gerya, Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017) ADSCrossRefGoogle Scholar
  309. D.C. Rubie, S.A. Jacobson, A. Morbidelli, D.P. O’Brien, E.D. Young, J. de Vries, F. Nimmo, H. Palme, D.J. Frost, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015) ADSCrossRefGoogle Scholar
  310. T. Ruedas, Globally smooth approximations for shock pressure decay in impacts. Icarus 289, 22–33 (2017).  https://doi.org/10.1016/j.icarus.2017.02.008 ADSCrossRefGoogle Scholar
  311. T. Ruedas, D. Breuer, On the relative importance of thermal and chemical buoyancy in regular and impact-induced melting in a Mars-like planet. J. Geophys. Res., Planets 122(7), 1554–1579 (2017).  https://doi.org/10.1002/2016JE005221 ADSCrossRefGoogle Scholar
  312. A. Salvador, H. Massol, A. Davaille, E. Marcq, P. Sarda, E. Chassefière, The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res., Planets 122, 1458–1486 (2017) ADSCrossRefGoogle Scholar
  313. H.E. Schlichting, S. Mukhopadhyay, Atmosphere impact losses. Space Sci. Rev. 214(1), 34 (2018) ADSCrossRefGoogle Scholar
  314. H.E. Schlichting, R. Sari, A. Yalinewich, Atmospheric mass loss during planet formation: the importance of planetesimal impacts. Icarus 247, 81–94 (2015) ADSCrossRefGoogle Scholar
  315. P. Schulte, L. Alegret, I. Arenillas, J.A. Arz, P.J. Barton, P.R. Bown, T.J. Bralower, G.L. Christeson, P. Claeys, C.S. Cockell, G.S. Collins, A. Deutsch, T.J. Goldin, K. Goto, J.M. Grajales-Nishimura, R.A.F. Grieve, S.P.S. Gulick, K.R. Johnson, W. Kiessling, C. Koeberl, D.A. Kring, K.G. MacLeod, T. Matsui, J. Melosh, A. Montanari, J.V. Morgan, C.R. Neal, D.J. Nichols, R.D. Norris, E. Pierazzo, G. Ravizza, M. Rebolledo-Vieyra, W.U. Reimold, E. Robin, T. Salge, R.P. Speijer, A.R. Sweet, J. Urrutia-Fucugauchi, V. Vajda, M.T. Whalen, P.S. Willumsen, The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010) ADSCrossRefGoogle Scholar
  316. D.W. Schwartzman, T. Volk, Biotic enhancement of weathering and the habitability of Earth. Nature 340, 457–460 (1989) ADSCrossRefGoogle Scholar
  317. E.W. Schwieterman, C.S. Cockell, V.S. Meadows, Nonphotosynthetic pigments as biosignatures. Astrobioloy 15, 341–361 (2015) ADSCrossRefGoogle Scholar
  318. E.W. Schwieterman, V.S. Meadows, S.D. Domagal-Goldman, D. Deming, G.N. Arney, R. Luger, C.E. Harman, A. Misra, R. Barnes, Identifying planetary biosignature imposters: spectral signatures of CO an O4 resulting from abiotic O2/O3 production. Astrobioloy 819, 1 (2016) Google Scholar
  319. E.W. Schwieterman, N.Y. Kiang, M.N. Parenteau, C.E. Harman, S. DasSarma, T.M. Fisher, G.N. Arney, H.E. Hartnett, C.T. Reinhard, S.L. Olson, V.S. Meadows, C.S. Cockell, S.I. Walker, J.L. Grenfell, S. Hegde, S. Rugheimer, R. Hu, T.W. Lyons, Exoplanet biosignatures: a review of remotely detectable signs of life. Astrobioloy 18(6), 663–708 (2018) ADSCrossRefGoogle Scholar
  320. S. Seager, E.L. Turner, J. Schafer, E.B. Ford, Vegetation’s red edge: a possible spectroscopic biosignature of extraterrestrial plants. Astrobiology 5, 372–390 (2005) ADSCrossRefGoogle Scholar
  321. A. Segura, K. Krelove, J.F. Kasting, D. Sommerlatt, V. Meadows, D. Crisp, M. Cohen, E. Mlawer, Ozone concentrations and ultraviolet fluxes on Earth-like planets around other stars. Astrobiology 3, 689–708 (2003) ADSCrossRefGoogle Scholar
  322. J.H. Seinfeld, S.N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, third edition. (Wiley, New York, 2016) Google Scholar
  323. F. Selsis, D. Despois, J.-P. Parisot, Signature of life on exoplanets: can Darwin produce false positive detections? Astrophys. Astrobiol. 388, 985–1003 (2002) ADSCrossRefGoogle Scholar
  324. F. Selsis, R.D. Wordsworth, F. Forget, Thermal phase curves of nontransiting terrestrial exoplanets I. Characterizing atmospheres. Astron. Astrophys. 532, A1 (2011).  https://doi.org/10.1051/0004-6361/201116654 ADSCrossRefGoogle Scholar
  325. B.D. Shizgal, G.G. Arkos, Nonthermal escape of the atmospheres of Venus, Earth and Mars. Rev. Geophys. 34, 483–505 (1996).  https://doi.org/10.1029/96RG02213 ADSCrossRefGoogle Scholar
  326. V.V. Shuvalov, Atmospheric erosion induced by oblique impacts. Meteorit. Planet. Sci. 44(8), 1095–1105 (2009) ADSCrossRefGoogle Scholar
  327. V.V. Shuvalov, N.A. Artemieva, M.Y. Kuz’micheva, T.V. Losseva, V.V. Svettsov, V.M. Khazins, Crater ejecta: markers of impact catastrophes. Izv. Phys. Solid Earth 48(3), 241–255 (2012) ADSCrossRefGoogle Scholar
  328. V.V. Shuvalov, E. Kührt, D. de Niem, K. Wünnemann, Impact induced erosion of hot and dense atmospheres. Planet. Space Sci. 98, 120–127 (2014).  https://doi.org/10.1016/j.pss.2013.08.018 ADSCrossRefGoogle Scholar
  329. D. Sifré, E. Gardés, M. Massuyeau, L. Hashim, S. Hier-Majumder, F. Gaillard, Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509, 81–85 (2014) ADSCrossRefGoogle Scholar
  330. B.M. Simonson, B.B. Glass, Spherule layersrecords of ancient impacts. Annu. Rev. Earth Planet. Sci. 32, 329–361 (2004) ADSCrossRefGoogle Scholar
  331. N.H. Sleep, Martian plate tectonics. J. Geophys. Res. 99, 5639–5655 (1994) ADSCrossRefGoogle Scholar
  332. N.H. Sleep, K. Zahnle, P.S. Neuhoff, Initiation of clement surface conditions on the early Earth. Proc. Natl Acad. Sci. USA 98, 3666–3672 (2001).  https://doi.org/10.1073/pnas.071045698 ADSCrossRefGoogle Scholar
  333. N.H. Sleep, D.K. Bird, E. Pope, Paleontology of Earth’s mantle. Annu. Rev. Earth Planet. Sci. 40, 277–300 (2012).  https://doi.org/10.1146/annurev-earth-092611-090602 ADSCrossRefGoogle Scholar
  334. V.S. Solomatov, Why plate tectonics is rare and how it started on Earth, in Bulletin of the American Physical Society, vol. 61 (Am. Math. Soc., Providence, 2016) Google Scholar
  335. V.S. Solomatov, L.N. Moresi, Stagnant lid convection on Venus. J. Geophys. Res., Planets 101(E2), 4737–4753 (1996) ADSCrossRefGoogle Scholar
  336. S.M. Som, R. Buick, J.W. Hagadorn, T.S. Blake, J.M. Perreault, J.P. Harnmeijer, D.C. Catling, Earth’s air pressure 2.7 billion years ago constrained to less than half of modern levels. Nat. Geosci., Lett. 9, 448–451 (2016).  https://doi.org/10.1038/ngeo2713 ADSCrossRefGoogle Scholar
  337. G. Southam, F. Westall, T. Spohn, Geology, life and habitability, in Planets and Moons Treatise on Geophysics, vol. 10, 2nd edn. (Elsevier, Amsterdam, 2015), pp. 473–486. ISBN 978-0-444-53803-1 CrossRefGoogle Scholar
  338. T. Spohn, Editorial: special issue ‘Planetary evolution and life’. Planet. Space Sci. 98, 1–4 (2014).  https://doi.org/10.1016/j.pss.2014.04.015 ADSCrossRefGoogle Scholar
  339. T. Spohn, G. Schubert, Oceans in the icy Galilean satellites of Jupiter. Icarus 161, 456 (2003) ADSCrossRefGoogle Scholar
  340. V. Stagno, D.O. Ojwang, C.A. McCammon, D.J. Frost, The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493, 84–88 (2013) ADSCrossRefGoogle Scholar
  341. V. Stamenkovic, L. Noack, D. Breuer, T. Spohn, The influence of pressure-dependent viscosity on the thermal evolution of super-Earths. Astrophys. J. 748(1), 41 (2012).  https://doi.org/10.1088/0004-637X/748/1/41 ADSCrossRefGoogle Scholar
  342. R.J. Stern, M.I. Leybourne, T. Tsujimori, Kimberlites and the start of plate tectonics. Geology 44(10), 799–802 (2016) ADSCrossRefGoogle Scholar
  343. D.J. Stevenson, Planetary magnetic fields. Rep. Prog. Phys. 46, 555 (1983) ADSCrossRefGoogle Scholar
  344. A. Stökl, E.A. Dorfi, C.P. Johnstone, H. Lammer, Dynamical accretion of primordial atmospheres around planets with masses between 0.1 and 5 M in the habitable zone. Astrophys. J. 825(2), 86 (2016).  https://doi.org/10.3847/0004-637X/825/2/86 ADSCrossRefGoogle Scholar
  345. J.Y. Storme, S. Golubic, A. Wilmotte, J. Kleinteich, D. Velázquez, E.J. Javaux, Raman characterization of the UV-protective pigment gloeocapsin and its role in the survival of cyanobacteria. Astrobiology 15, 843–857 (2015) ADSCrossRefGoogle Scholar
  346. E.E. Stüeken, R. Buick, B.M. Guy, M.C. Koehler, Isotopic evidence for biological nitrogen fixation by molybdenum-nitrogenase from 3.2 Gyr. Nature 520(7549), 666–669 (2015) ADSCrossRefGoogle Scholar
  347. E.E. Stüeken, M.A. Kipp, M.C. Koehler, R. Buick, The evolution of Earth’s biogeochemical nitrogen cycle. Earth-Sci. Rev. 160, 220–239 (2016a).  https://doi.org/10.1016/j.earscirev.2016.07.007 CrossRefGoogle Scholar
  348. E.E. Stüeken, M.A. Kipp, M.C. Koehler, E.W. Schwieterman, B. Johnson, R. Buick, Modeling pN2 through geological time: implications for planetary climates and atmospheric biosignatures. Astrobiology 16(12), 949–963 (2016b) ADSCrossRefGoogle Scholar
  349. K. Sugitani, K. Lepot, T. Nagaoka, K. Mimura, M. Van Kranendonk, D.Z. Oehler, M.R. Walter, Biogenicity of morphologically diverse carbonaceous microstructures from the ca. 3400 Ma Strelley pool formation, in the Pilbara Craton, western Australia. Astrobiology 10(9), 899–920 (2010) ADSCrossRefGoogle Scholar
  350. V.V. Svetsov, Atmospheric erosion and replenishment induced by impacts of cosmic bodies upon the Earth and Mars. Sol. Syst. Res. 41(1), 28–41 (2007) ADSCrossRefGoogle Scholar
  351. J.W. Szostak, The origin of life on Earth and the design of alternative life forms. Mol. Front. J. 01(02), 121–131 (2017) CrossRefGoogle Scholar
  352. J.A. Tarduno, E.G. Blackman, E.E. Mamajek, Detecting the oldest geodynamo and attendant shielding from the solar wind: implications for habitability. Phys. Earth Planet. Inter. 233, 68–87 (2014) ADSCrossRefGoogle Scholar
  353. T. Tashiro, A. Ishida, M. Hori, M. Igisu, M. Koike, P. Méjean, N. Takahata, Y. Sano, T. Komiya, Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549(7673), 516 (2017) ADSCrossRefGoogle Scholar
  354. F. Tian, Atmospheric escape from solar system terrestrial planets and exoplanets. Annu. Rev. Earth Planet. Sci. 43, 459–476 (2015) ADSCrossRefGoogle Scholar
  355. F. Tian, S. Ida, Water contents of Earth-mass planets around M dwarfs. Nat. Geosci. 8(3), 177–180 (2015).  https://doi.org/10.1038/ngeo2372 ADSCrossRefGoogle Scholar
  356. F. Tian, M. Güdel, C.P. Johnstone, H. Lammer, R. Luger, P. Odert, Water loss from young planets. Space Sci. Rev. 214(3), 65 (2018) ADSCrossRefGoogle Scholar
  357. S.M. Tikoo, L.T. Elkins-Tanton, The fate of water within Earth and super-Earths and implications for plate tectonics. Philos. Trans. R. Soc. A 375, 20150394 (2017) ADSCrossRefGoogle Scholar
  358. G. Tinetti, V.S. Meadows, D. Crisp, N.Y. Kiang, B.H. Kahn, E. Bosc, E. Fishbein, T. Velusamy, M. Turnbull, Detectability of planetary characteristics in disk-averaged spectra II: synthetic spectra and light-curves of Earth. Astrobiology 6, 881–900 (2006) ADSCrossRefGoogle Scholar
  359. N. Tosi, M. Godolt, B. Stracke, T. Ruedas, J.L. Grenfell, D. Höning, A. Nikolaou, A.-C. Plesa, D. Breuer, T. Spohn, The habitability of a stagnant-lid Earth. Astron. Astrophys. 605, A71 (2017).  https://doi.org/10.1051/0004-6361/201730728 ADSCrossRefGoogle Scholar
  360. L. Tu, C.P. Johnstone, M. Güdel, H. Lammer, The extreme ultraviolet and X-ray Sun in time: high-energy evolutionary tracks of a solar-like star. Astron. Astrophys. 577(L3), 577–580 (2015).  https://doi.org/10.1051/0004-6361/201526146 CrossRefGoogle Scholar
  361. M. Turbet, F. Forget, V. Svetsov, O. Popova, C. Gillmann, Ö. Karatekin, Q. Wallemacq, J.W. Head, R. Wordsworth, Catastrophic events: possible solutions to the early Mars enigma (s), in 6th Mars Atmosphere Modelling and Observation (MAMO) Workshop, vol. 4304 (2017), extended abstract Google Scholar
  362. M. Turbet, E. Bolmont, J. Leconte et al., The nature of the TRAPPIST-1 exoplanets. Astron. Astrophys. 612, A86 (2018).  https://doi.org/10.1051/0004-6361/201732233 CrossRefGoogle Scholar
  363. J.L. Vago, F. Westall, A.J. Coates, Pasteur Instrument Teams: R. Jaumann, O. Korablev, V. Ciarletti, I. Mitrofanov, J.-L. Josset, M.C. De Sanctis, J.-P. Bibring, F. Rull, F. Goesmann, H. Steininger, W. Goetz, W. Brinckerhoff, C. Szopa, F. Raulin, Landing Site Selection Working Group: H.G.M. Edwards, L.G. Whyte, A.G. Fairén, J.-P. Bibring, J. Bridges, E. Hauber, G.G. Ori, S. Werner, D. Loizeau, R.O. Kuzmin, R.M.E. Williams, J. Flahaut, F. Forget, J.L. Vago, D. Rodionov, O. Korablev, H. Svedhem, E. Sefton-Nash, G. Kminek, L. Lorenzoni, L. Joudrier, V. Mikhailov, A. Zashchirinskiy, S. Alexashkin, F. Calantropio, A. Merlo, P. Poulakis, O. Witasse, O. Bayle, S. Bayón, Other Contributors: U. Meierhenrich, J. Carter, J.M. García-Ruiz, P. Baglioni, A. Haldemann, A.J. Ball, A. Debus, R. Lindner, F. Haessig, D. Monteiro, R. Trautner, C. Voland, P. Rebeyre, D. Goulty, F. Didot, S. Durrant, E. Zekri, D. Koschny, A. Toni, G. Visentin, M. Zwick, M. van Winnendael, M. Azkarate, C. Carreau, Habitability on early Mars and the search for biosignatures with the ExoMars Rover. Astrobiology 17(6–7), 471–510 (2017). ADSCrossRefGoogle Scholar
  364. D. Valencia, R.J. O’Connell, D.D. Sasselov, Inevitability of plate tectonics on super-Earths. Astrophys. J. 670(1), L45–L48 (2007).  https://doi.org/10.1086/524012 ADSCrossRefGoogle Scholar
  365. H.J.J. van Heck, P.J. Tackley, Plate tectonics on super-earths: equally or more likely than on Earth. Earth and Planetary Science Letters 310(3), 252–261 (2011).  https://doi.org/10.1016/j.epsl.2011.07.029 ADSCrossRefGoogle Scholar
  366. L. Van Valen, The history and stability of atmospheric oxygen. Science 171(3970), 439–443 (1971) ADSCrossRefGoogle Scholar
  367. M.A. Van Zuilen, A. Lepland, G. Arrhenius, Reassessing the evidence for the earliest traces of life. Nature 418(6898), 627–630 (2002).  https://doi.org/10.1038/nature00934 ADSCrossRefGoogle Scholar
  368. D. Veras, D.J. Armstrong, J.A. Blake, J.F. Gutiérrez-Marcos, A.P. Jackson, H. Schäeffer, Dynamical and biological panspermia constraints within multi-planet exosystems. Astrobiology 18(9), 1106–1122 (2018).  https://doi.org/10.1089/ast.2017.1786 ADSCrossRefGoogle Scholar
  369. A.M. Vickery, H.J. Melosh, Atmospheric erosion and impactor retention in large impacts, with application to mass extinctions, in Global Catastrophes in Earth History, vol. 247 (1990), pp. 289–300 Google Scholar
  370. A.A. Vidotto, M. Jardine, C. Helling, Early UV ingress in WASP-12b: measuring planetary magnetic fields. Astrophys. J. Lett. 722, 2 (2010) CrossRefGoogle Scholar
  371. P. von Paris, P. Hedelt, F. Selsis, F. Schreier, T. Trautmann, Characterization of potentially habitable planets: retrieval of atmospheric and planetary properties from emission spectra. Astron. Astrophys. 551, A120 (2013) CrossRefGoogle Scholar
  372. D. Wacey, N. Noffke, M. Saunders, P. Guagliardo, D.M. Pyle, Volcanogenic pseudo-fossils from the ∼3.48 Ga dresser formation, Pilbara, Western Australia. Astrobiology (2018).  https://doi.org/10.1089/ast.2017.1734 CrossRefGoogle Scholar
  373. J. Wade, B.J. Wood, Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005) ADSCrossRefGoogle Scholar
  374. F.W. Wagner, N. Tosi, F. Sohl, F. Rauer, T. Spohn, Rocky super-Earth interiors structure and internal dynamics of CoRoT-7b and Kepler-10b. Astron. Astrophys. 541, A103 (2012).  https://doi.org/10.1051/0004-6361/201118441 ADSCrossRefGoogle Scholar
  375. R.J. Walker, Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde, Geochem. 69, 101–125 (2009) ADSCrossRefGoogle Scholar
  376. J.C.G. Walker, P.B. Hays, J.F. Kasting, A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776 (1981) ADSCrossRefGoogle Scholar
  377. S.I. Walker, W. Bains, L. Cronin, S. Dassarma, S.O. Danielache, S. Domagal-Goldman, B. Kacar, N.Y. Kiang, A. Lenardic, C. Reinhard, W. Moore, E.W. Schwieterman, E.L. Shkolnik, H.B. Smith, Exoplanet biosignatures: future directions. Astrobiology 18(6), 779–824 (2018).  https://doi.org/10.1089/ast.2017.1738 ADSCrossRefGoogle Scholar
  378. K. Wallmann, G. Aloisi, The global carbon cycle: geological processes, in Fundamentals of Geobiology, ed. by A.H. Knoll, D.E. Canfield, K.O. Konhauser (Wiley, New York, 2012), pp. 20–35 CrossRefGoogle Scholar
  379. K.J. Walsh, A. Morbidelli, N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475(7355), 206–209 (2011).  https://doi.org/10.1038/nature10201 ADSCrossRefGoogle Scholar
  380. B. Ward, The global nitrogen cycle, in Fundamentals of Geobiology, ed. by A.H. Knoll, D.E. Canfield, K.O. Konhauser (Wiley, New York, 2012), pp. 36–48 CrossRefGoogle Scholar
  381. C. Warren, Plate tectonics: when ancient continents collide. Nat. Geosci. 10, 245–246 (2017) ADSCrossRefGoogle Scholar
  382. A.J. Watson, T.M. Donahue, J.C.G. Walker, The dynamics of a highly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48, 150–166 (1981) ADSCrossRefGoogle Scholar
  383. W.A. Watters, M.T. Zuber, B.H. Hager, Thermal perturbations caused by large impacts and consequences for mantle convection. J. Geophys. Res., Planets 114, E2 (2009) CrossRefGoogle Scholar
  384. O.M. Weller, M.R. St-Onge, Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogeny. Nat. Geosci. 10(4), 305–311 (2017).  https://doi.org/10.1038/ngeo2904 ADSCrossRefGoogle Scholar
  385. S.C. Werner, B.A. Ivanov, Exogenic dynamics, cratering and surface ages, in Treatise on Geophysics, vol. 11, ed. by e.G. Schubert 2nd edn. (Elsevier, Amsterdam, 2015), pp. 327–365 CrossRefGoogle Scholar
  386. F. Westall, Morphological biosignatures in early terrestrial and extraterrestrial materials. Space Sci. Rev. 135(1–4), 95–114 (2008) ADSCrossRefGoogle Scholar
  387. F. Westall, F. Foucher, B. Cavalazzi, S.T. de Vries, W. Nijman, V. Pearson, J. Watson, V. Verschovsky, I. Wright, A.N. Rousaud, D. Marchesini, A. Severine, Volcaniclastic habitats for early life on Earth and Mars: a case study from ∼3.5 Ga-old rocks from the Pilbara, Australia. Planet. Space Sci. 59(10), 1093–1106 (2011).  https://doi.org/10.1016/j.pss.2010.09.006 ADSCrossRefGoogle Scholar
  388. F. Westall, F. Foucher, N. Bost, M. Bertrand, D. Loizeau, J.L. Vago, G. Kminek, F. Gaboyer, K.A. Campbell, J.-G. Bréhéret, P. Gautret, C.S. Cockell, Biosignatures on Mars: what, where, and how? Implications for the search for martian life. Astrobiology 15, 998–1029 (2015) ADSCrossRefGoogle Scholar
  389. M.J. Whitehouse, A.A. Nemchin, R.T. Pidgeon, What can Hadean detrital zircon really tell us? A critical evaluation of their geochronology with implications for the interpretation of oxygen and hafnium isotopes. Gondwana Res. 51, 78–91 (2017) ADSCrossRefGoogle Scholar
  390. D.M. Williams, Capture of terrestrial-sized moons by gas giant planets. Astrobiology 13, 315 (2013) ADSCrossRefGoogle Scholar
  391. E.T. Wolf, Assessing the habitability of the TRAPPIST-1 system using a 3D climate model. Astrophys. J. Lett. 839, L1 (2017) ADSCrossRefGoogle Scholar
  392. C.-C. Yang, A. Johansen, D. Carrera, Concentrating small particles in protoplanetary disks through the streaming instability. Astron. Astrophys. 606, A80 (2017) CrossRefGoogle Scholar
  393. Y.L. Yung, W.B. De More, Earth: imprint of life, in Photochemistry of Planetary Atmospheres. (Oxford University Press, London, 1999), Chap. 9 Google Scholar
  394. K.J. Zahnle, N.H. Sleep, Comets and the Origin and Evolution of Life, 1st edn. P.J. Thomas, C.F. Chyba, C.P. McKay (Springer, New York, 1997), pp. 175–208 CrossRefGoogle Scholar
  395. K.J. Zahnle, N.H. Sleep, Comets and the Origin and Evolution of Life, 2nd edn, ed. by P.J. Thomas, C.F. Chyba, C.P. McKay (Springer, Berlin, 2006), pp. 207–252 CrossRefGoogle Scholar
  396. A.L. Zerkle, S. Mikhail, The geobiological nitrogen cycle: from microbes to the mantle. Geobiology 15, 343–352 (2017) CrossRefGoogle Scholar
  397. A.L. Zerkle, S.W. Poulton, R.J. Newton, C. Mettam, M.W. Claire, A. Bekker, C.K. Junium, Onset of the aerobic nitrogen cycle during the Great Oxidation Event. Nature 542, 465–467 (2017).  https://doi.org/10.1038/nature20826 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Veronique Dehant
    • 1
    • 2
  • Vinciane Debaille
    • 3
  • Vera Dobos
    • 4
    • 5
    • 6
  • Fabrice Gaillard
    • 7
  • Cedric Gillmann
    • 1
    • 3
  • Steven Goderis
    • 8
  • John Lee Grenfell
    • 9
  • Dennis Höning
    • 10
    • 9
  • Emmanuelle J. Javaux
    • 11
  • Özgür Karatekin
    • 1
  • Alessandro Morbidelli
    • 12
  • Lena Noack
    • 1
    • 13
  • Heike Rauer
    • 13
    • 14
    • 9
  • Manuel Scherf
    • 15
  • Tilman Spohn
    • 9
  • Paul Tackley
    • 16
  • Tim Van Hoolst
    • 1
  • Kai Wünnemann
    • 13
    • 17
  1. 1.Royal Observatory of BelgiumBrusselsBelgium
  2. 2.Université Catholique de LouvainLouvain-la-NeuveBelgium
  3. 3.Université Libre de BruxellesBrusselsBelgium
  4. 4.Konkoly Thege Miklós Astronomical Institute, Research Centre for Astronomy and Earth SciencesHungarian Academy of SciencesBudapestHungary
  5. 5.Geodetic and Geophysical Institute, Research Centre for Astronomy and Earth SciencesHungarian Academy of SciencesSopronHungary
  6. 6.MTA-ELTE Exoplanet Research GroupSzombathelyHungary
  7. 7.University of OrléansOrléansFrance
  8. 8.Vrije Universiteit BrusselBrusselsBelgium
  9. 9.German Aerospace Centre (DLR)BerlinGermany
  10. 10.Vrije Universiteit AmsterdamAmsterdamThe Netherlands
  11. 11.University of LiègeLiègeBelgium
  12. 12.University of NiceNiceFrance
  13. 13.Free University of BerlinBerlinGermany
  14. 14.Berlin Institute of TechnologyBerlinGermany
  15. 15.Austrian Academy of SciencesViennaAustria
  16. 16.ETH ZürichZürichSwitzerland
  17. 17.Museum of Natural HistoryBerlinGermany

Personalised recommendations