Advertisement

Space Science Reviews

, 215:37 | Cite as

Experimenting with Mixtures of Water Ice and Dust as Analogues for Icy Planetary Material

Recipes from the Ice Laboratory at the University of Bern
  • A. PommerolEmail author
  • B. Jost
  • O. Poch
  • Z. Yoldi
  • Y. Brouet
  • A. Gracia-Berná
  • R. Cerubini
  • A. Galli
  • P. Wurz
  • B. Gundlach
  • J. Blum
  • N. Carrasco
  • C. Szopa
  • N. Thomas
Article
  • 516 Downloads
Part of the following topical collections:
  1. Ices in the Solar System

Abstract

Due to its abundance and unique properties, water is a major actor in the formation and evolution of many planetary surfaces as well as a sensitive and reliable tracer of past geologic and climatic processes. Water ice is found in variable abundance at the surfaces of many Solar System objects, from the floor of permanently shadowed craters at the poles of Mercury to large fractions of the surfaces of several trans-Neptunian objects. With few exceptions, water is not found in pure form but associated to contaminants of various nature and concentration. These associations and the nature of the mixing and segregation processes that affect and control them are key for our understanding of some of the most important aspects of planetary evolution processes. The observation and characterization of water ice at the surface of Solar System objects is therefore among the primary scientific objectives of many space missions. The quantitative interpretation of remote sensing data in terms of surface composition and physical properties requires the use of complex physical models that rely on experimental data in two different ways. First, the models require as inputs the fundamental properties of the pure materials, such as the optical or dielectric constant. Second, the models can only be fully tested if their results are confronted to actual measurements performed on samples whose complexity comes close to the one encountered on natural planetary surfaces but which are nevertheless well-enough characterized to serve as reference. Such measurements are challenging as macroscopic ice-rich samples prepared as analogues of icy planetary surfaces tend to be unstable, the ice component being prone to metamorphism and phase change. The questions of the reproducibility of the samples and the relevance of the measurements are therefore critical. The Ice Laboratory at the University of Bern has been set up in 2010 to overcome some of these difficulties. We have developed protocols to prepare, store, handle and characterize various associations of ice with mineral and organics contaminants as analogues of different types of icy Solar System surfaces. The aims of this article are to present the context and background for our investigations, describe these protocols and associated hardware in a comprehensive way, provide quantitative characterization of the samples obtained using these protocols and summarize the main results obtained so far by experimenting with these samples. The current state and possible future evolutions of this project are then discussed in the context of the next generation of space missions to visit icy objects in the Solar System and longer term perspectives on future observations of protoplanetary discs and exoplanetary systems.

Keywords

Ice Dust Analogues Photometry Spectrometry 

Notes

Acknowledgements

Most of this work was financed by the Swiss National Science Foundation, in particular under the NCCR PlanetS. Significant contributions to the funding of this project by the University of Bern and especially its Centre for Space and Habitability are also acknowledged. O. P. acknowledges a postdoctoral fellowship from CNES.

We thank two anonymous reviewers for their careful reading of the manuscript and their useful and constructive reviews. We are also grateful to the organizers of the Ices in the Solar System conference in Madrid for the organisation of a stimulating and fruitful meeting.

Supplementary material

11214_2019_603_MOESM1_ESM.docx (105 kb)
(DOCX 105 kB)

References

  1. F. Albarède, Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461(7268), 1227–1233 (2009).  https://doi.org/10.1038/nature08477 ADSCrossRefGoogle Scholar
  2. C.C. Allen, R.V. Morris, D.J. Lindstrom, M.M. Lindstrom, J.P. Lockwood, JSC Mars-1—Martian regolith simulant, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 28 (1997) Google Scholar
  3. K. Altwegg, H. Balsiger, A. Bar-Nun, J.J. Berthelier, A. Bieler, P. Bochsler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, P. Eberhardt, B. Fiethe, S. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. LeRoy, U. Mall, B. Marty, O. Mousis, E. Neefs, T. Owen, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, H. Waite, P. Wurz, 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015).  https://doi.org/10.1126/science.1261952 CrossRefGoogle Scholar
  4. J.D. Anderson, G. Schubert, Saturn’s satellite Rhea is a homogeneous mix of rock and ice. Geophys. Res. Lett. 34, 02202 (2007).  https://doi.org/10.1029/2006GL028100 ADSCrossRefGoogle Scholar
  5. A. Angstrom, The albedo of various surfaces of ground. Geogr. Ann. 7, 323–342 (1925) Google Scholar
  6. T. Appéré, B. Schmitt, Y. Langevin, S. Douté, A. Pommerol, F. Forget, A. Spiga, B. Gondet, J.-P. Bibring, Winter and spring evolution of northern seasonal deposits on Mars from OMEGA on Mars Express. J. Geophys. Res. 116, 05001 (2011).  https://doi.org/10.1029/2010JE003762 CrossRefGoogle Scholar
  7. C.N. Banwell, Fundamentals of Molecular Spectroscopy, 3rd edn. (McGraw-Hill, New York, 1983) Google Scholar
  8. A. Bar-Nun, D. Laufer, First experimental studies of large samples of gas-laden amorphous “cometary” ices. Icarus 161, 157–163 (2003).  https://doi.org/10.1016/S0019-1035(02)00016-7 ADSCrossRefGoogle Scholar
  9. S. Barabash, P. Wurz, P. Brandt, M. Wieser, M. Holmström, Y. Futaana, G. Stenberg, H. Nilsson, A. Eriksson, M. Tulej, A. Vorburger, N. Thomas, C. Paranicas, D.G. Mitchell, G. Ho, B.H. Mauk, D. Haggerty, J.H. Westlake, M. Fränz, N. Krupp, E. Roussos, E. Kallio, W. Schmidt, K. Szego, S. Szalai, K. Khurana, X. Jia, C. Paty, R.F. Wimmer-Schweingruber, B. Heber, A. Kazushi, M. Grande, H. Lammer, T. Zhang, S. McKenna-Lawlor, S.M. Krimigis, T. Sarris, D. Grodent, Particle environment package (PEP), in European Planetary Science Congress 8, 2013 (2013), pp. 2013–2709 Google Scholar
  10. M.A. Barucci, F. Merlin, A. Guilbert, C. de Bergh, A. Alvarez-Candal, O. Hainaut, A. Doressoundiram, C. Dumas, T. Owen, A. Coradini, Surface composition and temperature of the TNO orcus. Astron. Astrophys. 479, 13–16 (2008).  https://doi.org/10.1051/0004-6361:20079079 ADSCrossRefGoogle Scholar
  11. M.A. Barucci, E. Dotto, A.C. Levasseur-Regourd, Space missions to small bodies: asteroids and cometary nuclei. Astron. Astrophys. Rev. 19, 48 (2011).  https://doi.org/10.1007/s00159-011-0048-2 ADSCrossRefGoogle Scholar
  12. P. Becerra, M.M. Sori, S. Byrne, Signals of astronomical climate forcing in the exposure topography of the North Polar Layered Deposits of Mars. Geophys. Res. Lett. 44, 62–70 (2017).  https://doi.org/10.1002/2016GL071197 ADSCrossRefGoogle Scholar
  13. P. Beck, E. Quirico, D. Sevestre, G. Montes-Hernandez, A. Pommerol, B. Schmitt, Goethite as an alternative origin of the 3.1 μm band on dark asteroids. Astron. Astrophys. 526, 85 (2011).  https://doi.org/10.1051/0004-6361/201015851 ADSCrossRefGoogle Scholar
  14. P. Beck, A. Pommerol, N. Thomas, B. Schmitt, F. Moynier, J.-A. Barrat, Photometry of meteorites. Icarus 218, 364–377 (2012).  https://doi.org/10.1016/j.icarus.2011.12.005 ADSCrossRefGoogle Scholar
  15. M.J.S. Belton, J.W. Head III., A.P. Ingersoll, R. Greeley, A.S. McEwen, K.P. Klaasen, D. Senske, R. Pappalardo, G. Collins, A.R. Vasavada, R. Sullivan, D. Simonelli, P. Geissler, M.H. Carr, M.E. Davies, J. Veverka, P.J. Gierasch, D. Banfield, M. Bell, C.R. Chapman, C. Anger, R. Greenberg, G. Neukum, C.B. Pilcher, R.F. Beebe, J.A. Burns, F. Fanale, W. Ip, T.V. Johnson, D. Morrison, J. Moore, G.S. Orton, P. Thomas, R.A. West, Galileo’s First Images of Jupiter and the Galilean Satellites. Science 274, 377–385 (1996).  https://doi.org/10.1126/science.274.5286.377 ADSCrossRefGoogle Scholar
  16. J.-P. Bibring, Y. Langevin, F. Poulet, A. Gendrin, B. Gondet, M. Berthé, A. Soufflot, P. Drossart, M. Combes, G. Bellucci, V. Moroz, N. Mangold, B. Schmitt, S. Erard, O. Forni, N. Manaud, G. Poulleau, T. Encrenaz, T. Fouchet, R. Melchiorri, F. Altieri, V. Formisano, G. Bonello, S. Fonti, F. Capaccioni, P. Cerroni, A. Coradini, V. Kottsov, N. Ignatiev, D. Titov, L. Zasova, P. Pinet, C. Sotin, E. Hauber, H. Hoffman, R. Jaumann, U. Keller, R. Arvidson, J. Mustard, T. Duxbury, F. Forget (OMEGA Team), Perennial water ice identified in the south polar cap of Mars. Nature 428, 627–630 (2004).  https://doi.org/10.1038/nature02461 ADSCrossRefGoogle Scholar
  17. A.M. Bramson, S. Byrne, N.E. Putzig, S. Sutton, J.J. Plaut, T.C. Brothers, J.W. Holt, Widespread excess ice in Arcadia Planitia, mars. Geophys. Res. Lett. 42, 6566–6574 (2015).  https://doi.org/10.1002/2015GL064844 ADSCrossRefGoogle Scholar
  18. D. Britt, S.D. Covey, C. Schultz, University of central Florida/deep space industries asteroid regolith simulants, in AAS/Division for Planetary Sciences Meeting Abstracts #49. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 49 (2017), pp. 110–210 Google Scholar
  19. Y. Brouet, A.C. Levasseur-Regourd, P. Sabouroux, P. Encrenaz, N. Thomas, E. Heggy, W. Kofman, Permittivity measurements of porous matter in support of investigations of the surface and interior of 67P/Churyumov-Gerasimenko. Astron. Astrophys. 583, 39 (2015).  https://doi.org/10.1051/0004-6361/201526099 ADSCrossRefGoogle Scholar
  20. Y. Brouet, A.C. Levasseur-Regourd, P. Sabouroux, L. Neves, P. Encrenaz, O. Poch, A. Pommerol, N. Thomas, W. Kofman, A. Le Gall, V. Ciarletti, A. Hérique, A. Lethuillier, N. Carrasco, C. Szopa, A porosity gradient in 67P/C-G nucleus suggested from CONSERT and SESAME-PP results: an interpretation based on new laboratory permittivity measurements of porous icy analogues. Mon. Not. R. Astron. Soc. 462, 89–98 (2016a).  https://doi.org/10.1093/mnras/stw2151 CrossRefGoogle Scholar
  21. Y. Brouet, L. Neves, P. Sabouroux, A.C. Levasseur-Regourd, O. Poch, P. Encrenaz, A. Pommerol, N. Thomas, W. Kofman, Characterization of the permittivity of controlled porous water ice-dust mixtures to support the radar exploration of icy bodies. J. Geophys. Res., Planets 121, 2426–2443 (2016b).  https://doi.org/10.1002/2016JE005045 ADSCrossRefGoogle Scholar
  22. Y. Brouet, K. Jacob, A. Murk, R. Cerubini, A. Pommerol, N. Thomas, Dielectric properties of analogs of icy planetary surfaces in the mm-submm domain, in relation with the JUICE mission, in American Geophysical Union Fall Meeting, 11–15 December 2017, New Orleans, United States (2017) Google Scholar
  23. Y. Brouet, P. Becerra, P. Sabouroux, A. Pommerol, N. Thomas, A laboratory-based dielectric model for the radar sounding of the Martian subsurface. Icarus 321, 960–973 (2019) ADSCrossRefGoogle Scholar
  24. R.H. Brown, The Uranian satellites and Hyperion—new spectrophotometry and compositional implications. Icarus 56, 414–425 (1983).  https://doi.org/10.1016/0019-1035(83)90163-X ADSCrossRefGoogle Scholar
  25. R.H. Brown, R.N. Clark, Surface of Miranda—identification of water ice. Icarus 58, 288–292 (1984).  https://doi.org/10.1016/0019-1035(84)90045-9 ADSCrossRefGoogle Scholar
  26. M.E. Brown, C.D. Koresko, G.A. Blake, Detection of water ice on Nereid. Astrophys. J. Lett. 508, 175–176 (1998).  https://doi.org/10.1086/311741 ADSCrossRefGoogle Scholar
  27. R.H. Brown, K.H. Baines, G. Bellucci, J.-P. Bibring, B.J. Buratti, F. Capaccioni, P. Cerroni, R.N. Clark, A. Coradini, D.P. Cruikshank, P. Drossart, V. Formisano, R. Jaumann, Y. Langevin, D.L. Matson, T.B. McCord, V. Mennella, E. Miller, R.M. Nelson, P.D. Nicholson, B. Sicardy, C. Sotin, The Cassini visual and infrared mapping spectrometer (Vims) investigation. Space Sci. Rev. 115, 111–168 (2004).  https://doi.org/10.1007/s11214-004-1453-x ADSCrossRefGoogle Scholar
  28. M.E. Brown, E.L. Schaller, W.C. Fraser, Water ice in the Kuiper Belt. Astron. J. 143, 146 (2012).  https://doi.org/10.1088/0004-6256/143/6/146 ADSCrossRefGoogle Scholar
  29. R. Brunetto, M.A. Barucci, E. Dotto, G. Strazzulla, Ion irradiation of frozen methanol, methane, and benzene: linking to the colors of Centaurs and trans-neptunian objects. Astrophys. J. 644, 646–650 (2006).  https://doi.org/10.1086/503359 ADSCrossRefGoogle Scholar
  30. L. Bruzzone, J.J. Plaut, G. Alberti, D.D. Blankenship, F. Bovolo, B.A. Campbell, A. Ferro, Y. Gim, W. Kofman, G. Komatsu, W. McKinnon, G. Mitri, R. Orosei, G.W. Patterson, D. Plettemeier, R. Seu, RIME: radar for icy moon exploration, in European Planetary Science Congress, vol. 8 (2013), pp. 2013–2744 Google Scholar
  31. N. Buchschacher, D. Ségransan, S. Udry, R.D. ıaz, Data and analysis center for exoplanets, in Astronomical Data Analysis Software an Systems XXIV (ADASS XXIV), ed. by A.R. Taylor, E. Rosolowsky. Astronomical Society of the Pacific Conference Series, vol. 495 (2015), p. 7 Google Scholar
  32. B.J. Buratti, J.A. Mosher, Comparative global albedo and color maps of the Uranian satellites. Icarus 90, 1–13 (1991).  https://doi.org/10.1016/0019-1035(91)90064-Z ADSCrossRefGoogle Scholar
  33. M.J. Campbell, J. Ulrichs, Electrical properties of rocks and their significance for lunar radar observations. J. Geophys. Res. 74, 5867–5881 (1969).  https://doi.org/10.1029/JB074i025p05867 ADSCrossRefGoogle Scholar
  34. H. Campins, K. Hargrove, N. Pinilla-Alonso, E.S. Howell, M.S. Kelley, J. Licandro, T. Mothé-Diniz, Y. Fernández, J. Ziffer, Water ice and organics on the surface of the asteroid 24 Themis. Nature 464, 1320–1321 (2010).  https://doi.org/10.1038/nature09029 ADSCrossRefGoogle Scholar
  35. R.W. Carlson, R.E. Johnson, M.S. Anderson, Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286, 97–99 (1999).  https://doi.org/10.1126/science.286.5437.97 ADSCrossRefGoogle Scholar
  36. M.H. Carr, J.W. Head, Martian surface/near-surface water inventory: sources, sinks, and changes with time. Geophys. Res. Lett. 42(3), 726–732 (2015).  https://doi.org/10.1002/2014GL062464 ADSCrossRefGoogle Scholar
  37. N. Carrasco, I. Schmitz-Afonso, J.-Y. Bonnet, E. Quirico, R. Thissen, O. Dutuit, A. Bagag, O. Laprévote, A. Buch, A. Giulani, G. Adandé, F. Ouni, E. Hadamcik, C. Szopa, G. Cernogora, Chemical characterization of Titan’s tholins: solubility, morphology and molecular structure revisited. J. Phys. Chem. A 113, 11195–11203 (2009).  https://doi.org/10.1021/jp904735q CrossRefGoogle Scholar
  38. S. Chandrasekhar, Radiative Transfer (Clarendon, Oxford, 1950) zbMATHGoogle Scholar
  39. R.N. Clark, P.G. Lucey, Spectral properties of ice-particulate mixtures and implications for remote sensing. I—Intimate mixtures. J. Geophys. Res. 89, 6341–6348 (1984).  https://doi.org/10.1029/JB089iB07p06341 ADSCrossRefGoogle Scholar
  40. B.J.R. Davidsson, P.J. Gutiérrez, H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, H.U. Keller, J. Agarwal, M.F. A’Hearn, M.A. Barucci, J.-L. Bertaux, I. Bertini, D. Bodewits, G. Cremonese, V. Da Deppo, S. Debei, M. De Cecco, S. Fornasier, M. Fulle, O. Groussin, C. Güttler, S.F. Hviid, W.-H. Ip, L. Jorda, J. Knollenberg, G. Kovacs, J.-R. Kramm, E. Kührt, M. Küppers, F. La Forgia, L.M. Lara, M. Lazzarin, J.J. Lopez Moreno, S. Lowry, S. Magrin, F. Marzari, H. Michalik, R. Moissl-Fraund, G. Naletto, N. Oklay, M. Pajola, C. Snodgrass, N. Thomas, C. Tubiana, J.-B. Vincent, Orbital elements of the material surrounding comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 583, 16 (2015).  https://doi.org/10.1051/0004-6361/201525841 CrossRefGoogle Scholar
  41. M.C. De Sanctis, E. Ammannito, A. Raponi, S. Marchi, T.B. McCord, H.Y. McSween, F. Capaccioni, M.T. Capria, F.G. Carrozzo, M. Ciarniello, A. Longobardo, F. Tosi, S. Fonte, M. Formisano, A. Frigeri, M. Giardino, G. Magni, E. Palomba, D. Turrini, F. Zambon, J.-P. Combe, W. Feldman, R. Jaumann, L.A. Mc-Fadden, C.M. Pieters, T. Prettyman, M. Toplis, C.A. Raymond, C.T. Russell, Ammoniated phyllosilicates with a likely outer Solar System origin on (1) Ceres. Nature 528, 241–244 (2015a).  https://doi.org/10.1038/nature16172 ADSCrossRefGoogle Scholar
  42. M.C. De Sanctis, F. Capaccioni, M. Ciarniello, G. Filacchione, M. Formisano, S. Mottola, A. Raponi, F. Tosi, D. Bockelée-Morvan, S. Erard, C. Leyrat, B. Schmitt, E. Ammannito, G. Arnold, M.A. Barucci, M. Combi, M.T. Capria, P. Cerroni, W.-H. Ip, E. Kuehrt, T.B. McCord, E. Palomba, P. Beck, E. Quirico, G. Piccioni, G. Bellucci, M. Fulchignoni, R. Jaumann, K. Stephan, A. Longobardo, V. Mennella, A. Migliorini, J. Benkhoff, J.P. Bibring, A. Blanco, M. Blecka, R. Carlson, U. Carsenty, L. Colangeli, M. Combes, J. Crovisier, P. Drossart, T. Encrenaz, C. Federico, U. Fink, S. Fonti, P. Irwin, Y. Langevin, G. Magni, L. Moroz, V. Orofino, U. Schade, F. Taylor, D. Tiphene, G.P. Tozzi, N. Biver, L. Bonal, J.-P. Combe, D. Despan, E. Flamini, S. Fornasier, A. Frigeri, D. Grassi, M.S. Gudipati, F. Mancarella, K. Markus, F. Merlin, R. Orosei, G. Rinaldi, M. Cartacci, A. Cicchetti, S. Giuppi, Y. Hello, F. Henry, S. Jacquinod, J.M. Rees, R. Noschese, R. Politi, G. Peter (VIRTIS Team), The diurnal cycle of water ice on comet 67P/Churyumov-Gerasimenko. Nature 525, 500–503 (2015b).  https://doi.org/10.1038/nature14869 ADSCrossRefGoogle Scholar
  43. T. Denk, G. Neukum, T. Roatsch, C.C. Porco, J.A. Burns, G.G. Galuba, N. Schmedemann, P. Helfenstein, P.C. Thomas, R.J. Wagner, R.A. West, Iapetus: unique surface properties and a global color dichotomy from Cassini imaging. Science 327, 435 (2010).  https://doi.org/10.1126/science.1177088 ADSCrossRefGoogle Scholar
  44. O.V. Dobrovolsky, E.A. Kaimakov, Surface phenomena in simulated cometary nuclei, in IAU Colloq. 39: Comets, Asteroids, Meteorites: Interrelations, Evolution and Origins, ed. by A.H. Delsemme (1977), pp. 37–45 Google Scholar
  45. M. Dumont, O. Brissaud, G. Picard, B. Schmitt, J.-C. Gallet, Y. Arnaud, High-accuracy measurements of snow bidirectional reflectance distribution function at visible and NIR wavelengths—comparison with modelling results. Atmos. Chem. Phys. 10, 2507–2520 (2010) ADSCrossRefGoogle Scholar
  46. C.M. Dundas, A.S. McEwen, M. Chojnacki, M.P. Milazzo, S. Byrne, J.N. McElwaine, A. Urso, Granular flows at recurring slope Lineae on Mars indicate a limited role for liquid water. Nat. Geosci. 10, 903–907 (2017).  https://doi.org/10.1038/s41561-017-0012-5 ADSCrossRefGoogle Scholar
  47. V.R. Eke, S.A. Bartram, D.A. Lane, D. Smith, L.F.A. Teodoro, Lunar polar craters—icy, rough or just sloping? Icarus 241, 66–78 (2014).  https://doi.org/10.1016/j.icarus.2014.06.021 ADSCrossRefGoogle Scholar
  48. M.R. El-Maarry, W.A. Watters, Z. Yoldi, A. Pommerol, D. Fischer, U. Eggenberger, N. Thomas, Field investigation of dried lakes in western United States as an analogue to desiccation fractures on Mars. J. Geophys. Res., Planets 120, 2241–2257 (2015).  https://doi.org/10.1002/2015JE004895 ADSCrossRefGoogle Scholar
  49. N. Engler, H.M. Schmid, C. Thalmann, A. Boccaletti, A. Bazzon, A. Baruffolo, J.L. Beuzit, R. Claudi, A. Costille, S. Desidera, K. Dohlen, C. Dominik, M. Feldt, T. Fusco, C. Ginski, D. Gisler, J.H. Girard, R. Gratton, T. Henning, N. Hubin, M. Janson, M. Kasper, Q. Kral, M. Langlois, E. Lagadec, F. Ménard, M.R. Meyer, J. Milli, D. Mouillet, J. Olofsson, A. Pavlov, J. Pragt, P. Puget, S.P. Quanz, R. Roelfsema, B. Salasnich, R. Siebenmorgen, E. Sissa, M. Suarez, J. Szulagyi, M. Turatto, S. Udry, F. Wildi, The HIP 79977 debris disk in polarized light. Astron. Astrophys. 607, 90 (2017).  https://doi.org/10.1051/0004-6361/201730846 CrossRefGoogle Scholar
  50. W.C. Feldman, T.H. Prettyman, S. Maurice, J.J. Plaut, D.L. Bish, D.T. Vaniman, M.T. Mellon, A.E. Metzger, S.W. Squyres, S. Karunatillake, W.V. Boynton, R.C. Elphic, H.O. Funsten, D.J. Lawrence, R.L. Tokar, Global distribution of near-surface hydrogen on Mars. J. Geophys. Res., Planets 109, 09006 (2004).  https://doi.org/10.1029/2003JE002160 ADSCrossRefGoogle Scholar
  51. C. Feller, S. Fornasier, P.H. Hasselmann, A. Barucci, F. Preusker, F. Scholten, L. Jorda, A. Pommerol, B. Jost, O. Poch, M.R. ElMaary, N. Thomas, I. Belskaya, M. Pajola, H. Sierks, C. Barbieri, P.L. Lamy, D. Koschny, H. Rickman, R. Rodrigo, J. Agarwal, M. A’Hearn, J.-L. Bertaux, I. Bertini, S. Boudreault, G. Cremonese, V. Da Deppo, B.J.R. Davidsson, S. Debei, M. De Cecco, J. Deller, M. Fulle, A. Giquel, O. Groussin, P.J. Gutierrez, C. Güttler, M. Hofmann, S.F. Hviid, H. Keller, W.-H. Ip, J. Knollenberg, G. Kovacs, J.-R. Kramm, E. Kührt, M. Küppers, M.L. Lara, M. Lazzarin, C. Leyrat, J.J. Lopez Moreno, F. Marzari, N. Masoumzadeh, S. Mottola, G. Naletto, D. Perna, N. Oklay, X. Shi, C. Tubiana, J.-B. Vincent, Decimetre-scaled spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Mon. Not. R. Astron. Soc. 462, 287–303 (2016).  https://doi.org/10.1093/mnras/stw2511 CrossRefGoogle Scholar
  52. G. Filacchione, M.C. de Sanctis, F. Capaccioni, A. Raponi, F. Tosi, M. Ciarniello, P. Cerroni, G. Piccioni, M.T. Capria, E. Palomba, G. Bellucci, S. Erard, D. Bockelee-Morvan, C. Leyrat, G. Arnold, M.A. Barucci, M. Fulchignoni, B. Schmitt, E. Quirico, R. Jaumann, K. Stephan, A. Longobardo, V. Mennella, A. Migliorini, E. Ammannito, J. Benkhoff, J.P. Bibring, A. Blanco, M.I. Blecka, R. Carlson, U. Carsenty, L. Colangeli, M. Combes, M. Combi, J. Crovisier, P. Drossart, T. Encrenaz, C. Federico, U. Fink, S. Fonti, W.H. Ip, P. Irwin, E. Kuehrt, Y. Langevin, G. Magni, T. McCord, L. Moroz, S. Mottola, V. Orofino, U. Schade, F. Taylor, D. Tiphene, G.P. Tozzi, P. Beck, N. Biver, L. Bonal, J.-P. Combe, D. Despan, E. Flamini, M. Formisano, S. Fornasier, A. Frigeri, D. Grassi, M.S. Gudipati, D. Kappel, F. Mancarella, K. Markus, F. Merlin, R. Orosei, G. Rinaldi, M. Cartacci, A. Cicchetti, S. Giuppi, Y. Hello, F. Henry, S. Jacquinod, J.M. Reess, R. Noschese, R. Politi, G. Peter, Exposed water ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Nature 529, 368–372 (2016a).  https://doi.org/10.1038/nature16190 ADSCrossRefGoogle Scholar
  53. G. Filacchione, A. Raponi, F. Capaccioni, M. Ciarniello, F. Tosi, M.T. Capria, M.C. De Sanctis, A. Migliorini, G. Piccioni, P. Cerroni, M.A. Barucci, S. Fornasier, B. Schmitt, E. Quirico, S. Erard, D. Bockelee-Morvan, C. Leyrat, G. Arnold, V. Mennella, E. Ammannito, G. Bellucci, J. Benkhoff, J.P. Bibring, A. Blanco, M.I. Blecka, R. Carlson, U. Carsenty, L. Colangeli, M. Combes, M. Combi, J. Crovisier, P. Drossart, T. Encrenaz, C. Federico, U. Fink, S. Fonti, M. Fulchignoni, W.-H. Ip, P. Irwin, R. Jaumann, E. Kuehrt, Y. Langevin, G. Magni, T. McCord, L. Moroz, S. Mottola, E. Palomba, U. Schade, K. Stephan, F. Taylor, D. Tiphene, G.P. Tozzi, P. Beck, N. Biver, L. Bonal, J.-P. Combe, D. Despan, E. Flamini, M. Formisano, A. Frigeri, D. Grassi, M.S. Gudipati, D. Kappel, A. Longobardo, F. Mancarella, K. Markus, F. Merlin, R. Orosei, G. Rinaldi, M. Cartacci, A. Cicchetti, Y. Hello, F. Henry, S. Jacquinod, J.M. Reess, R. Noschese, R. Politi, G. Peter, Seasonal exposure of carbon dioxide ice on the nucleus of comet 67P/Churyumov-Gerasimenko. Science 354, 1563–1566 (2016b).  https://doi.org/10.1126/science.aag3161 ADSCrossRefGoogle Scholar
  54. S. Fornasier, E. Dotto, M.A. Barucci, C. Barbieri, Water ice on the surface of the large TNO 2004 DW. Astron. Astrophys. 422, 43–46 (2004).  https://doi.org/10.1051/0004-6361:20048004 ADSCrossRefGoogle Scholar
  55. S. Fornasier, C. Lantz, M.A. Barucci, M. Lazzarin, Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy. Icarus 233, 163–178 (2014).  https://doi.org/10.1016/j.icarus.2014.01.040 ADSCrossRefGoogle Scholar
  56. S. Fornasier, S. Mottola, H.U. Keller, M.A. Barucci, B. Davidsson, C. Feller, J.D.P. Deshapriya, H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, M. A’Hearn, J. Agarwal, J.-L. Bertaux, I. Bertini, S. Besse, G. Cremonese, V. Da Deppo, S. Debei, M. De Cecco, J. Deller, M.R. El-Maarry, M. Fulle, O. Groussin, P.J. Gutierrez, C. Güttler, M. Hofmann, S.F. Hviid, W.-H. Ip, L. Jorda, J. Knollenberg, G. Kovacs, R. Kramm, E. Kührt, M. Küppers, M.L. Lara, M. Lazzarin, J.J.L. Moreno, F. Marzari, M. Massironi, G. Naletto, N. Oklay, M. Pajola, A. Pommerol, F. Preusker, F. Scholten, X. Shi, N. Thomas, I. Toth, C. Tubiana, J.-B. Vincent, Rosetta’s comet 67P/Churyumov-Gerasimenko sheds its dusty mantle to reveal its icy nature. Science 354, 1566–1570 (2016).  https://doi.org/10.1126/science.aag2671 ADSCrossRefGoogle Scholar
  57. N. Fray, B. Schmitt, Sublimation of ices of astrophysical interest: a bibliographic review. Planet. Space Sci. 57, 2053–2080 (2009).  https://doi.org/10.1016/j.pss.2009.09.011 ADSCrossRefGoogle Scholar
  58. A. Galli, A. Vorburger, A. Pommerol, P. Wurz, B. Jost, O. Poch, Y. Brouet, M. Tulej, N. Thomas, Surface charging of thick porous water ice layers relevant for ion sputtering experiments. Planet. Space Sci. 126, 63–71 (2016).  https://doi.org/10.1016/j.pss.2016.03.016 ADSCrossRefGoogle Scholar
  59. A. Galli, A. Vorburger, P. Wurz, M. Tulej, Sputtering of water ice films: a re-assessment with singly and doubly charged oxygen and argon ions, molecular oxygen, and electrons. Icarus 291, 36–45 (2017).  https://doi.org/10.1016/j.icarus.2017.03.018 ADSCrossRefGoogle Scholar
  60. A. Galli, A. Vorburger, P. Wurz, R. Cerubini, M. Tulej, First experimental data of sulphur ions sputtering water ice. Icarus 312, 1–6 (2018).  https://doi.org/10.1016/j.icarus.2018.04.029 ADSCrossRefGoogle Scholar
  61. A. Garenne, G. Montes-Hernandez, P. Beck, B. Schmitt, O. Brissaud, A. Pommerol, Gas-solid carbonation as a possible source of carbonates in cold planetary environments. Planet. Space Sci. 76, 28–41 (2013).  https://doi.org/10.1016/j.pss.2012.11.005 ADSCrossRefGoogle Scholar
  62. E. Georget, R. Abdeddaim, P. Sabouroux, A quasi-universal method to measure the electromagnetic characteristics of usual materials in the microwave range. C. R. Phys. 15, 448–457 (2014) ADSCrossRefGoogle Scholar
  63. A. Gracia-Berná, A. Pommerol, N. Thomas, R. Marschall, Z. Yoldi, B. Jost, O. Poch, Photometry of fractal meshes for applications to large-scale rough planetary surfaces, in GPU Technology Conference (2016) Google Scholar
  64. C. Grima, D.M. Schroeder, D.D. Blankenship, Identifying surface characteristics with an ice penetrating radar sounder at Europa: potential for landing site selection, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 44 (2013), p. 2980 Google Scholar
  65. E. Grün, H. Kochan, K.J. Seidensticker, Laboratory simulation, a tool for comet research. Geophys. Res. Lett. 18, 245–248 (1991).  https://doi.org/10.1029/90GL02522 ADSCrossRefGoogle Scholar
  66. K. Gunderson, N. Thomas, Polarimetric NIR reflectance measurements of regolith simulants at zero phase angle. Planet. Space Sci. 56, 1925–1938 (2008).  https://doi.org/10.1016/j.pss.2008.09.004 ADSCrossRefGoogle Scholar
  67. K. Gunderson, N. Thomas, J.A. Whitby, First measurements with the Physikalisches Institut Radiometric Experiment (PHIRE). Planet. Space Sci. 54, 1046–1056 (2006).  https://doi.org/10.1016/j.pss.2005.12.020 ADSCrossRefGoogle Scholar
  68. K. Gunderson, B. Lüthi, P. Russell, N. Thomas, Visible/NIR photometric signatures of liquid water in Martian regolith simulant. Planet. Space Sci. 55, 1272–1282 (2007).  https://doi.org/10.1016/j.pss.2007.03.004 ADSCrossRefGoogle Scholar
  69. B. Gundlach, J. Blum, The stickiness of micrometer-sized water-ice particles. Astrophys. J. 798, 34 (2015).  https://doi.org/10.1088/0004-637X/798/1/34 ADSCrossRefGoogle Scholar
  70. B. Gundlach, S. Kilias, E. Beitz, J. Blum, Micrometer-sized ice particles for planetary-science experiments—I. Preparation, critical rolling friction force, and specific surface energy. Icarus 214, 717–723 (2011b).  https://doi.org/10.1016/j.icarus.2011.05.005 ADSCrossRefGoogle Scholar
  71. B. Gundlach, Y.V. Skorov, J. Blum, Outgassing of icy bodies in the Solar System—I. The sublimation of hexagonal water ice through dust layers. Icarus 213, 710–719 (2011a).  https://doi.org/10.1016/j.icarus.2011.03.022 ADSCrossRefGoogle Scholar
  72. K.P. Hand, R.W. Carlson, Europa’s surface color suggests an ocean rich with sodium chloride. Geophys. Res. Lett. 42, 3174–3178 (2015).  https://doi.org/10.1002/2015GL063559 ADSCrossRefGoogle Scholar
  73. K.P. Hand, C.F. Chyba, J.C. Priscu, R.W. Carlson, K.H. Nealson, in Astrobiology and the Potential for Life on Europa, ed. by R.T. Pappalardo, W.B. McKinnon, K.K. Khurana (2009), p. 589 Google Scholar
  74. R. Hanel, B. Conrath, F.M. Flasar, V. Kunde, W. Maguire, J.C. Pearl, J. Pirraglia, R. Samuelson, D.P. Cruikshank, D. Gautier, P.J. Gierasch, L. Horn, C. Ponnamperuma, Infrared observations of the Saturnian system from Voyager 2. Science 215, 544–548 (1982).  https://doi.org/10.1126/science.215.4532.544 ADSCrossRefGoogle Scholar
  75. G.B. Hansen, T.B. McCord, Amorphous and crystalline ice on the Galilean satellites: a balance between thermal and radiolytic processes. J. Geophys. Res., Planets 109, 01012 (2004).  https://doi.org/10.1029/2003JE002149 ADSCrossRefGoogle Scholar
  76. G.B. Hansen, E.C. Hollenbeck, K. Stephan, S.K. Apple, E.-J.Z. Shin-White, Water ice abundance and CO2 band strength on the saturnian satellite Phoebe from Cassini/VIMS observations. Icarus 220, 331–338 (2012).  https://doi.org/10.1016/j.icarus.2012.05.004 ADSCrossRefGoogle Scholar
  77. A. Hanslmeier, Water in the Universe. Astrophys. Space Sci. Library, vol. 368, ISBN 978-90-481-9983-9 (Springer, Berlin, 2011),  https://doi.org/10.1007/978-90-481-9984-6. CrossRefGoogle Scholar
  78. B. Hapke, Bidirectional reflectance spectroscopy. 1. Theory. J. Geophys. Res. 86, 4571–4586 (1981) ADSGoogle Scholar
  79. B. Hapke, Bidirectional reflectance spectroscopy. III—Correction for macroscopic roughness. Icarus 59, 41–59 (1984).  https://doi.org/10.1016/0019-1035(84)90054-X ADSCrossRefGoogle Scholar
  80. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (1993) CrossRefGoogle Scholar
  81. B. Hapke, Bidirectional reflectance spectroscopy. 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523–534 (2002).  https://doi.org/10.1006/icar.2002.6853 ADSCrossRefGoogle Scholar
  82. B. Hapke, Theory of Reflectance and Emittance Spectroscopy (2005), p. 469 Google Scholar
  83. B. Hapke, Bidirectional reflectance spectroscopy. 6. Effects of porosity. Icarus 195, 918–926 (2008).  https://doi.org/10.1016/j.icarus.2008.01.003 ADSCrossRefGoogle Scholar
  84. B. Hapke, Bidirectional reflectance spectroscopy 7. The single particle phase function hockey stick relation. Icarus 221, 1079–1083 (2012).  https://doi.org/10.1016/j.icarus.2012.10.022 ADSCrossRefGoogle Scholar
  85. B. Hapke, E. Wells, Bidirectional reflectance spectroscopy. II—Experiments and observations. J. Geophys. Res. 86, 3055–3060 (1981).  https://doi.org/10.1029/JB086iB04p03055 ADSCrossRefGoogle Scholar
  86. B. Hapke, Comment on “a critical assessment of the Hapke photometric model” by Y. Shkuratov et al. J. Quant. Spectrosc. Radiat. Transf. 116, 184–190 (2013).  https://doi.org/10.1016/j.jqsrt.2012.11.002 ADSCrossRefGoogle Scholar
  87. J.K. Harmon, M.A. Slade, Radar mapping of Mercury—full-disk images and polar anomalies. Science 258, 640–643 (1992).  https://doi.org/10.1126/science.258.5082.640 ADSCrossRefGoogle Scholar
  88. P.H. Hasselmann, M.A. Barucci, S. Fornasier, C. Feller, J.D.P. Deshapriya, M. Fulchignoni, B. Jost, H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, M. A’Hearn, J.-L. Bertaux, I. Bertini, G. Cremonese, V. Da Deppo, B. Davidsson, S. Debei, M. De Cecco, J. Deller, M. Fulle, R.W. Gaskell, O. Groussin, P.J. Gutierrez, C. Güttler, M. Hofmann, S.F. Hviid, W.-H. Ip, L. Jorda, H.U. Keller, J. Knollenberg, G. Kovacs, R. Kramm, E. Kührt, M. Küppers, M.L. Lara, M. Lazzarin, J.J. Lopez-Moreno, F. Marzari, S. Mottola, G. Naletto, N. Oklay, A. Pommerol, N. Thomas, C. Tubiana, J.-B. Vincent, The opposition effect of 67P/Churyumov-Gerasimenko on post-perihelion Rosetta images. Mon. Not. R. Astron. Soc. 469, 550–567 (2017).  https://doi.org/10.1093/mnras/stx1834 CrossRefGoogle Scholar
  89. E. Hauber, D. Reiss, M. Ulrich, F. Preusker, F. Trauthan, M. Zanetti, H. Hiesinger, R. Jaumann, L. Johansson, A. Johnsson, S. Van Gaselt, M. Olvmo, Landscape evolution in Martian mid-latitude regions: insights from analogous periglacial landforms in Svalbard, in Martian Geomorphology, ed. by M. Balme, A. Bargery, C. Gallagher, S. Guta. Special Publications, vol. 356 (Geological Society, London, 2011), pp. 111–131 Google Scholar
  90. E. Heggy, P. Paillou, G. Ruffie, J.M. Malezieux, F. Costard, G. Grandjean, On water detection in the Martian subsurface using sounding radar. Icarus 154, 244–257 (2001).  https://doi.org/10.1006/icar.2001.6717 ADSCrossRefGoogle Scholar
  91. E. Heggy, E.M. Palmer, W. Kofman, S.M. Clifford, K. Righter, A. Hérique, Radar properties of comets: parametric dielectric modeling of comet 67P/Churyumov-Gerasimenko. Icarus 221, 925–939 (2012).  https://doi.org/10.1016/j.icarus.2012.09.023 ADSCrossRefGoogle Scholar
  92. L.G. Henyey, J.L. Greenstein, Diffuse radiation in the Galaxy. Astrophys. J. 93, 70–83 (1941).  https://doi.org/10.1086/144246 ADSCrossRefzbMATHGoogle Scholar
  93. S.R. Hudson, S.G. Warren, R.E. Brandt, T.C. Grenfell, D. Six, Spectral bidirectional reflectance of Antarctic snow: measurements and parameterization. J. Geophys. Res., Atmos. 111, 18106 (2006).  https://doi.org/10.1029/2006JD007290 ADSCrossRefGoogle Scholar
  94. R. Jaumann, K. Stephan, G.B. Hansen, R.N. Clark, B.J. Buratti, R.H. Brown, K.H. Baines, S.F. Newman, G. Bellucci, G. Filacchione, A. Coradini, D.P. Cruikshank, C.A. Griffith, C.A. Hibbitts, T.B. McCord, R.M. Nelson, P.D. Nicholson, C. Sotin, R. Wagner, Distribution of icy particles across Enceladus’ surface as derived from Cassini-VIMS measurements. Icarus 193, 407–419 (2008).  https://doi.org/10.1016/j.icarus.2007.09.013 ADSCrossRefGoogle Scholar
  95. D.C. Jewitt, J. Luu, Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature 432, 731–733 (2004).  https://doi.org/10.1038/nature03111 ADSCrossRefGoogle Scholar
  96. T.V. Johnson, J.I. Lunine, Saturn’s moon Phoebe as a captured body from the outer Solar System. Nature 435, 69–71 (2005).  https://doi.org/10.1038/nature03384 ADSCrossRefGoogle Scholar
  97. K.L. Jones, R.E. Arvidson, E.A. Guinness, S.L. Bragg, S.D. Wall, C.E. Carlston, D.G. Pidek, One Mars year-Viking lander imaging observations. Science 204, 799–806 (1979).  https://doi.org/10.1126/science.204.4395.799 ADSCrossRefGoogle Scholar
  98. B. Jost, B. Gundlach, A. Pommerol, J. Oesert, S.N. Gorb, J. Blum, N. Thomas, Micrometer-sized ice particles for planetary-science experiments—II. Bidirectional reflectance. Icarus 225, 352–366 (2013).  https://doi.org/10.1016/j.icarus.2013.04.007 ADSCrossRefGoogle Scholar
  99. B. Jost, A. Pommerol, O. Poch, B. Gundlach, M. Leboeuf, M. Dadras, J. Blum, N. Thomas, Experimental characterization of the opposition surge in fine-grained water-ice and high albedo ice analogs. Icarus 264, 109–131 (2016).  https://doi.org/10.1016/j.icarus.2015.09.020 ADSCrossRefGoogle Scholar
  100. B. Jost, A. Pommerol, O. Poch, Y. Brouet, S. Fornasier, N. Carrasco, C. Szopa, N. Thomas, Bidirectional reflectance of laboratory cometary analogues to interpret the spectrophotometric properties of the nucleus of comet 67P/Churyumov-Gerasimenko. Planet. Space Sci. 148, 1–11 (2017b).  https://doi.org/10.1016/j.pss.2017.09.009 ADSCrossRefGoogle Scholar
  101. B. Jost, A. Pommerol, O. Poch, Z. Yoldi, S. Fornasier, P.H. Hasselmann, C. Feller, N. Carrasco, C. Szopa, N. Thomas, Bidirectional reflectance and VIS-NIR spectroscopy of cometary analogues under simulated space conditions. Planet. Space Sci. 145, 14–27 (2017a).  https://doi.org/10.1016/j.pss.2017.07.009 ADSCrossRefGoogle Scholar
  102. S. Kaasalainen, M. Kaasalainen, T. Mielonen, J. Suomalainen, J.I. Peltoniemi, J. Näränen, Optical properties of snow in backscatter. J. Glaciol. 52, 574–584 (2006).  https://doi.org/10.3189/172756506781828421 ADSCrossRefGoogle Scholar
  103. K.K. Khurana, R.T. Pappalardo, N. Murphy, T. Denk, The origin of Ganymede’s polar caps. Icarus 191, 193–202 (2007).  https://doi.org/10.1016/j.icarus.2007.04.022 ADSCrossRefGoogle Scholar
  104. W. Kofman, A. Herique, Y. Barbin, J.-P. Barriot, V. Ciarletti, S. Clifford, P. Edenhofer, C. Elachi, C. Eyraud, J.-P. Goutail, E. Heggy, L. Jorda, J. Lasue, A.-C. Levasseur-Regourd, E. Nielsen, P. Pasquero, F. Preusker, P. Puget, D. Plettemeier, Y. Rogez, H. Sierks, C. Statz, H. Svedhem, I. Williams, S. Zine, J. Van Zyl, Jet Properties of the 67P/Churyumov-Gerasimenko interior revealed by CONSERT radar. Science 349(2), aab0639 (2015).  https://doi.org/10.1126/science.aab0639 CrossRefGoogle Scholar
  105. N.I. Kömle, G. Kargl, K. Thiel, K. Seiferlin, Thermal properties of cometary ices and sublimation residuals including organics. Planet. Space Sci. 44, 675–689 (1996).  https://doi.org/10.1016/0032-0633(96)00043-8 ADSCrossRefGoogle Scholar
  106. K.J. Kossacki, W.J. Markiewicz, Comet 67P/CG: influence of the sublimation coefficient on the temperature and outgassing. Icarus 224, 172–177 (2013).  https://doi.org/10.1016/j.icarus.2013.02.012 ADSCrossRefGoogle Scholar
  107. M. Küppers, L. O’Rourke, D. Bockelée-Morvan, V. Zakharov, S. Lee, P. von Allmen, B. Carry, D. Teyssier, A. Marston, T. Müller, J. Crovisier, M.A. Barucci, R. Moreno, Localized sources of water vapour on the dwarf planet (1)Ceres. Nature 505, 525–527 (2014).  https://doi.org/10.1038/nature12918 ADSCrossRefGoogle Scholar
  108. H. Kurokawa, M. Sato, M. Ushioda, T. Matsuyama, R. Moriwaki, J.M. Dohm, T. Usui, Evolution of water reservoirs on Mars: constraints from hydrogen isotopes in martian meteorites. Earth Planet. Sci. Lett. 394, 179–185 (2014).  https://doi.org/10.1016/j.epsl.2014.03.027 ADSCrossRefGoogle Scholar
  109. P. Lacerda, S. Fornasier, E. Lellouch, C. Kiss, E. Vilenius, P. Santos-Sanz, M. Rengel, T. Müller, J. Stansberry, R. Duffard, A. Delsanti, A. Guilbert-Lepoutre, The albedo-color diversity of transneptunian objects. Astrophys. J. Lett. 793, 2 (2014).  https://doi.org/10.1088/2041-8205/793/1/L2 ADSCrossRefGoogle Scholar
  110. M. Lambrechts, A. Johansen, Rapid growth of gas-giant cores by pebble accretion. Astron. Astrophys. 544, 32 (2012).  https://doi.org/10.1051/0004-6361/201219127 ADSCrossRefGoogle Scholar
  111. M. Lambrechts, A. Johansen, Forming the cores of giant planets from the radial pebble flux in protoplanetary discs. Astron. Astrophys. 572, 107 (2014).  https://doi.org/10.1051/0004-6361/201424343 ADSCrossRefGoogle Scholar
  112. M. Lambrechts, A. Johansen, A. Morbidelli, Separating gas-giant and ice-giant planets by halting pebble accretion. Astron. Astrophys. 572, 35 (2014).  https://doi.org/10.1051/0004-6361/201423814 ADSCrossRefGoogle Scholar
  113. P.L. Lamy, I. Toth, Y.R. Fernandez, H.A. Weaver, in The Sizes, Shapes, Albedos, and Colors of Cometary Nuclei, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (2004), pp. 223–264 Google Scholar
  114. D. Laufer, A. Bar-Nun, I. Pat-El, R. Jacovi, Experimental studies of ice grain ejection by massive gas flow from ice and implications to comets, Triton and Mars. Icarus 222, 73–80 (2013).  https://doi.org/10.1016/j.icarus.2012.10.030 ADSCrossRefGoogle Scholar
  115. D.J. Lawrence, W.C. Feldman, J.O. Goldsten, S. Maurice, P.N. Peplowski, B.J. Anderson, D. Bazell, R.L. McNutt, L.R. Nittler, T.H. Prettyman, D.J. Rodgers, S.C. Solomon, S.Z. Weider, Evidence for water ice near Mercury’s North Pole from MESSENGER neutron spectrometer measurements. Science 339, 292 (2013).  https://doi.org/10.1126/science.1229953 ADSCrossRefGoogle Scholar
  116. A. Lefort, P.S. Russell, N. Thomas, Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE. Icarus 205, 259–268 (2010).  https://doi.org/10.1016/j.icarus.2009.06.005 ADSCrossRefGoogle Scholar
  117. A. Lethuillier, A. Le Gall, M. Hamelin, W. Schmidt, K.J. Seidensticker, R. Grard, V. Ciarletti, S. Caujolle-Bert, H.-H. Fischer, R. Trautner, Electrical properties and porosity of the first meter of the nucleus of 67P/Churyumov-Gerasimenko. As constrained by the permittivity probe SESAME-PP/Philae/Rosetta. Astron. Astrophys. 591, 32 (2016).  https://doi.org/10.1051/0004-6361/201628304 CrossRefGoogle Scholar
  118. H.F. Levison, K.A. Kretke, M.J. Duncan, Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015a).  https://doi.org/10.1038/nature14675 ADSCrossRefGoogle Scholar
  119. H.F. Levison, K.A. Kretke, K.J. Walsh, W.F. Bottke, Growing the terrestrial planets from the gradual accumulation of sub-meter sized objects. Proc. Natl. Acad. Sci. 112, 14180–14185 (2015b).  https://doi.org/10.1073/pnas.1513364112 ADSCrossRefGoogle Scholar
  120. J.-Y. Li, M.F. A’Hearn, M.J.S. Belton, C.J. Crockett, T.L. Farnham, C.M. Lisse, L.A. McFadden, K.J. Meech, J.M. Sunshine, P.C. Thomas, J. Veverka, Deep impact photometry of comet 9P/Tempel 1. Icarus 187, 41–55 (2007).  https://doi.org/10.1016/j.icarus.2006.09.018 ADSCrossRefGoogle Scholar
  121. J.-Y. Li, S. Besse, M.F. A’Hearn, M.J.S. Belton, D. Bodewits, T.L. Farnham, K.P. Klaasen, C.M. Lisse, K.J. Meech, J.M. Sunshine, P.C. Thomas, Photometric properties of the nucleus of comet 103P/Hartley 2. Icarus 222, 559–570 (2013).  https://doi.org/10.1016/j.icarus.2012.11.001 ADSCrossRefGoogle Scholar
  122. S. Li, P.G. Lucey, R.E. Milliken, P.O. Hayne, E. Fisher, J.-P. Williams, D.M. Hurley, R.C. Elphic, Direct evidence of surface exposed water ice in the lunar polar regions. Proc. Natl. Acad. Sci. 115(36), 8907–8912 (2018).  https://doi.org/10.1073/pnas.1802345115. ADSCrossRefGoogle Scholar
  123. J. Licandro, H. Campins, M. Kelley, K. Hargrove, N. Pinilla-Alonso, D. Cruikshank, A.S. Rivkin, J. Emery, (65) Cybele: detection of small silicate grains, water-ice, and organics. Astron. Astrophys. 525, 34 (2011).  https://doi.org/10.1051/0004-6361/201015339 ADSCrossRefGoogle Scholar
  124. N. Ligier, F. Poulet, J. Carter, R. Brunetto, F. Gourgeot, VLT/SINFONI observations of Europa: new insights into the surface composition. Astron. J. 151, 163 (2016).  https://doi.org/10.3847/0004-6256/151/6/163 ADSCrossRefGoogle Scholar
  125. P.J. Linstrom, W.G. Mallard, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, vol. MD (National Institute of Standards and Technology, Gaithersburg, 2005), p. 20899.  https://doi.org/10.18434/T4D303 CrossRefGoogle Scholar
  126. L. Lliboutry, The origin of penitents. J. Glaciol. 2, 331–338 (1954) ADSCrossRefGoogle Scholar
  127. K. Lodders, Solar system abundances and condensation temperatures of the elements. Astrophys. J. 591(2), 1220–1247 (2003).  https://doi.org/10.1086/375492 ADSCrossRefGoogle Scholar
  128. P.G. Lucey, G.A. Neumann, M.A. Riner, E. Mazarico, D.E. Smith, M.T. Zuber, D.A. Paige, D.B. Bussey, J.T. Cahill, A. McGovern, P. Isaacson, L.M. Corley, M.H. Torrence, H.J. Melosh, J.W. Head, E. Song, The global albedo of the Moon at 1064 nm from LOLA. J. Geophys. Res., Planets 119, 1665–1679 (2014).  https://doi.org/10.1002/2013JE004592 ADSCrossRefGoogle Scholar
  129. N. Mangold, S. Maurice, W.C. Feldman, F. Costard, F. Forget, Spatial relationships between patterned ground and ground ice detected by the neutron spectrometer on Mars. J. Geophys. Res., Planets 109, 08001 (2004).  https://doi.org/10.1029/2004JE002235 ADSCrossRefGoogle Scholar
  130. U. Marboeuf, B. Schmitt, J.-M. Petit, O. Mousis, N. Fray, A cometary nucleus model taking into account all phase changes of water ice: amorphous, crystalline, and clathrate. Astron. Astrophys. 542, 82 (2012).  https://doi.org/10.1051/0004-6361/201118176 ADSCrossRefGoogle Scholar
  131. J. Markkanen, T. Väisänen, A. Penttilä, K. Muinonen, Light scattering and absorption by space weathered planetary bodies: novel numerical solution, in AAS/Division for Planetary Sciences Meeting Abstracts #49. AAS/Division for Planetary Sciences Meeting Abstracts, vol. 49 (2017), pp. 110–142 Google Scholar
  132. A. Marti, R. Schletti, P. Wurz, P. Bochsler, Calibration facility for solar wind plasma instrumentation. Rev. Sci. Instrum. 72, 1354–1360 (2001).  https://doi.org/10.1063/1.1340020 ADSCrossRefGoogle Scholar
  133. G.M. Martínez, E. Fischer, N.O. Rennó, E. Sebastián, O. Kemppinen, N. Bridges, C.S. Borlina, P.-Y. Meslin, M. Genzer, A.-H. Harri, A. Vicente-Retortillo, M. Ramos, M. de la Torre Juárez, F. Gómez, J. Gómez-Elvira, Likely frost events at gale crater: analysis from MSL/REMS measurements. Icarus 280, 93–102 (2016).  https://doi.org/10.1016/j.icarus.2015.12.004 ADSCrossRefGoogle Scholar
  134. B. Marty, The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313, 56–66 (2012).  https://doi.org/10.1016/j.epsl.2011.10.040 ADSCrossRefGoogle Scholar
  135. B. Marty, K. Altwegg, H. Balsiger, A. Bar-Nun, D.V. Bekaert, J.J. Berthelier, A. Bieler, C. Briois, U. Calmonte, M. Combi, J. De Keyser, B. Fiethe, S.A. Fuselier, S. Gasc, T.I. Gombosi, K.C. Hansen, M. Hässig, A. Jäckel, E. Kopp, A. Korth, L. LeRoy, U. Mall, O. Mousis, T. Owen, H. Rème, M. Rubin, T. Sémon, C.-Y. Tzou, H. Waite, P. Wurz, Xenon isotopes in 67P/Churyumov-Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356, 1069–1072 (2017) ADSCrossRefGoogle Scholar
  136. C. McCarthy, R.F. Cooper, D.L. Goldsby, W.B. Durham, S.H. Kirby, Transient and steady state creep response of ice I and magnesium sulfate hydrate eutectic aggregates. J. Geophys. Res., Planets 116, 04007 (2011).  https://doi.org/10.1029/2010JE003689 ADSCrossRefGoogle Scholar
  137. T.B. McCord, G.B. Hansen, R.N. Clark, P.D. Martin, C.A. Hibbitts, F.P. Fanale, J.C. Granahan, M. Segura, D.L. Matson, T.V. Johnson, R.W. Carlson, W.D. Smythe, G.E. Danielson, Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation. J. Geophys. Res. 103, 8603–8626 (1998a).  https://doi.org/10.1029/98JE00788 ADSCrossRefGoogle Scholar
  138. T.B. McCord, G.B. Hansen, F.P. Fanale, R.W. Carlson, D.L. Matson, T.V. Johnson, W.D. Smythe, J.K. Crow-ley, P.D. Martin, A. Ocampo, C.A. Hibbitts, J.C. Granahan, Salts on Europa’s surface detected by Galileo’s near infrared mapping spectrometer. Science 280, 1242 (1998b).  https://doi.org/10.1126/science.280.5367.1242 ADSCrossRefGoogle Scholar
  139. A.F. McGuire, B.W. Hapke, An experimental study of light scattering by large, irregular particles. Icarus 113, 134–155 (1995).  https://doi.org/10.1006/icar.1995.1012 ADSCrossRefGoogle Scholar
  140. D.S. McKay, J.L. Carter, W.W. Boles, C.C. Allen, J.H. Allton, JSC-1: a new lunar regolith simulant, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 24 (1993) Google Scholar
  141. C.P. McKay, A.D. Anbar, C. Porco, P. Tsou, Follow the plume: the habitability of Enceladus. Astrobiology 14, 352–355 (2014).  https://doi.org/10.1089/ast.2014.1158 ADSCrossRefGoogle Scholar
  142. F. Merlin, A. Guilbert, C. Dumas, M.A. Barucci, C. de Bergh, P. Vernazza, Properties of the icy surface of the TNO 136108 (2003 EL61). Astron. Astrophys. 466, 1185–1188 (2007).  https://doi.org/10.1051/0004-6361:20066866 ADSCrossRefGoogle Scholar
  143. G. Mie, Beitrage zur Optik truber Medien, speziell kolloidaler Metallosungen. Ann. Phys. 330, 377–445 (1908).  https://doi.org/10.1002/andp.19083300302 CrossRefzbMATHGoogle Scholar
  144. R.S. Miller, G. Nerurkar, D.J. Lawrence, Enhanced hydrogen at the lunar poles: new insights from the detection of epithermal and fast neutron signatures. J. Geophys. Res., Planets 117, 11007 (2012).  https://doi.org/10.1029/2012JE004112 ADSCrossRefGoogle Scholar
  145. S.T.F. Möhlmann, Adsorption water-related potential chemical and biological processes in the upper martian surface. Astrobiology 5(6), 770–777 (2005).  https://doi.org/10.1089/ast.2005.5.770 ADSCrossRefGoogle Scholar
  146. D.T.F. Möhlmann, M. Niemand, V. Formisano, H. Savijarvi, P. Wolkenberg, Fog phenomena on Mars. Planet. Space Sci. 57, 1987–1992 (2009).  https://doi.org/10.1016/j.pss.2009.08.003 ADSCrossRefGoogle Scholar
  147. M.H. Moore, R.L. Hudson, Far-infrared spectral studies of phase changes in water ice induced by proton irradiation. Astrophys. J. 401, 353–360 (1992).  https://doi.org/10.1086/172065 ADSCrossRefGoogle Scholar
  148. A. Morbidelli, B. Bitsch, A. Crida, M. Gounelle, T. Guillot, S. Jacobson, A. Johansen, M. Lambrechts, E. Lega, Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016).  https://doi.org/10.1016/j.icarus.2015.11.027 ADSCrossRefGoogle Scholar
  149. J. Mouginot, A. Pommerol, P. Beck, W. Kofman, S.M. Clifford, Dielectric map of the Martian northern hemisphere and the nature of plain filling materials. Geophys. Res. Lett. 39, 02202 (2012).  https://doi.org/10.1029/2011GL050286 ADSCrossRefGoogle Scholar
  150. K. Muinonen, Coherent backscattering of light by complex random media of spherical scatterers: numerical solution. Waves Random Media 14, 365–388 (2004).  https://doi.org/10.1088/0959-7174/14/3/010 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  151. K. Muinonen, M.I. Mishchenko, J.M. Dlugach, E. Zubko, A. Penttilä, G. Videen, Coherent backscattering verified numerically for a finite volume of spherical particles. Astrophys. J. 760, 118 (2012).  https://doi.org/10.1088/0004-637X/760/2/118 ADSCrossRefGoogle Scholar
  152. A. Nathues, M. Hoffmann, M. Schaefer, L. Le Corre, V. Reddy, T. Platz, E.A. Cloutis, U. Christensen, T. Kneissl, J.-Y. Li, K. Mengel, N. Schmedemann, T. Schaefer, C.T. Russell, D.M. Applin, D.L. Buczkowski, M.R.M. Izawa, H.U. Keller, D.P. O’Brien, C.M. Pieters, C.A. Raymond, J. Ripken, P.M. Schenk, B.E. Schmidt, H. Sierks, M.V. Sykes, G.S. Thangjam, J.-B. Vincent, Sublimation in bright spots on (1) Ceres. Nature 528, 237–240 (2015).  https://doi.org/10.1038/nature15754 ADSCrossRefGoogle Scholar
  153. G.A. Neumann, J.F. Cavanaugh, X. Sun, E.M. Mazarico, D.E. Smith, M.T. Zuber, D. Mao, D.A. Paige, S.C. Solomon, C.M. Ernst, O.S. Barnouin, Bright and dark polar deposits on Mercury: evidence for surface volatiles. Science 339, 296 (2013).  https://doi.org/10.1126/science.1229764 ADSCrossRefGoogle Scholar
  154. S.F. Newman, B.J. Buratti, R.H. Brown, R. Jaumann, J. Bauer, T. Momary, Photometric and spectral analysis of the distribution of crystalline and amorphous ices on Enceladus as seen by Cassini. Icarus 193, 397–406 (2008).  https://doi.org/10.1016/j.icarus.2007.04.019 ADSCrossRefGoogle Scholar
  155. F. Nimmo, J.R. Spencer, R.T. Pappalardo, M.E. Mullen, Shear heating as the origin of the plumes and heat flux on Enceladus. Nature 447, 289–291 (2007).  https://doi.org/10.1038/nature05783 ADSCrossRefGoogle Scholar
  156. J.A. Nuth III., S.B. Charnley, N.M. Johnson, in Chemical Processes in the Interstellar Medium: Source of the Gas and Dust in the Primitive Solar Nebula, ed. by D.S. Lauretta, H.Y. McSween (2006), pp. 147–167 Google Scholar
  157. K.I. Öberg, R.T. Garrod, E.F. van Dishoeck, H. Linnartz, Formation rates of complex organics in UV irradiated CH3OH-rich ices. I. Experiments. Astron. Astrophys. 504, 891–913 (2009).  https://doi.org/10.1051/0004-6361/200912559 ADSCrossRefGoogle Scholar
  158. A. Oehler, G. Neukum, Visible and near IR albedo measurements of ice/dust mixtures. Geophys. Res. Lett. 18, 253–256 (1991).  https://doi.org/10.1029/91GL00174 ADSCrossRefGoogle Scholar
  159. N. Oklay, J.-B. Vincent, S. Fornasier, M. Pajola, S. Besse, B.J.R. Davidsson, L.M. Lara, S. Mottola, G. Naletto, H. Sierks, A.M. Barucci, F. Scholten, F. Preusker, A. Pommerol, N. Masoumzadeh, M. Lazzarin, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, M.F. A’Hearn, J.-L. Bertaux, I. Bertini, D. Bodewits, G. Cremonese, V. Da Deppo, S. Debei, M. De Cecco, M. Fulle, O. Groussin, P.J. Gutiérrez, C. Güttler, I. Hall, M. Hofmann, S.F. Hviid, W.-H. Ip, L. Jorda, H.U. Keller, J. Knollenberg, G. Kovacs, J.-R. Kramm, E. Kührt, M. Küppers, Z.-Y. Lin, J.J. Lopez Moreno, F. Marzari, F. Moreno, X. Shi, N. Thomas, I. Toth, C. Tubiana, Variegation of comet 67P/Churyumov-Gerasimenko in regions showing activity. Astron. Astrophys. 586, 80 (2016).  https://doi.org/10.1051/0004-6361/201527369 CrossRefGoogle Scholar
  160. T. Okuchi, Hydrogen partitioning into molten iron at high pressure: implications for Earth’s Core. Science 278, 1781 (1997).  https://doi.org/10.1126/science.278.5344.1781 ADSCrossRefGoogle Scholar
  161. R. Orosei, S.E. Lauro, E. Pettinelli, A. Cicchetti, M. Coradini, B. Cosciotti, F. Di Paolo, E. Flamini, E. Mattei, M. Pajola, F. Soldovieri, M. Cartacci, F. Cassenti, A. Frigeri, S. Giuppi, R. Martufi, A. Masdea, G. Mitri, C. Nenna, R. Noschese, M. Restano, R. Seu, Radar evidence of subglacial liquid water on Mars. Science 361(6401), 490–493 (2018).  https://doi.org/10.1126/science.aar7268 ADSCrossRefGoogle Scholar
  162. D.A. Paige, M.A. Siegler, J.K. Harmon, G.A. Neumann, E.M. Mazarico, D.E. Smith, M.T. Zuber, E. Harju, M.L. Delitsky, S.C. Solomon, Thermal stability of volatiles in the North polar region of Mercury. Science 339, 300 (2013).  https://doi.org/10.1126/science.1231106 ADSCrossRefGoogle Scholar
  163. E.D. Pallik, Handbook of Optical Constants of Solids II (Academic Press, Boston, 1991) Google Scholar
  164. A. Penttilä, T. Väisänen, J. Markkanen, J. Martikainen, M. Gritsevich, K. Muinonen, Multiple scattering modeling pipeline for spectroscopy, polarimetry, and photometry of airless Solar System objects, in European Planetary Science Congress 2017, held 17–22 September, 2017 in Riga, Latvia, EPSC2017-544 (2017) Google Scholar
  165. E. Pettinelli, B. Cosciotti, F. Di Paolo, S.E. Lauro, E. Mattei, R. Orosei, G. Vannaroni, Dielectric properties of Jovian satellite ice analogs for subsurface radar exploration: a review. Rev. Geophys. 53, 593–641 (2015).  https://doi.org/10.1002/2014RG000463 ADSCrossRefGoogle Scholar
  166. N. Pinilla-Alonso, J. Licandro, R. Gil-Hutton, R. Brunetto, The water ice rich surface of (145453) 2005 RR43:a case for a carbon-depleted population of TNOs? Astron. Astrophys. 468, 25–28 (2007).  https://doi.org/10.1051/0004-6361:20077294 ADSCrossRefGoogle Scholar
  167. K.M. Pitman, B.J. Buratti, J.A. Mosher, Disk-integrated bolometric bond albedos and rotational light curves of saturnian satellites from Cassini Visual and Infrared Mapping Spectrometer. Icarus 206, 537–560 (2010).  https://doi.org/10.1016/j.icarus.2009.12.001 ADSCrossRefGoogle Scholar
  168. O. Poch, A. Pommerol, B. Jost, N. Carrasco, C. Szopa, N. Thomas, Sublimation of water ice mixed with silicates and tholins: evolution of surface texture and reflectance spectra, with implications for comets. Icarus 267, 154–173 (2016).  https://doi.org/10.1016/j.icarus.2015.12.017 ADSCrossRefGoogle Scholar
  169. O. Poch, J. Frey, I. Roditi, A. Pommerol, B. Jost, N. Thomas, Remote sensing of potential biosignatures from rocky, liquid, or icy (Exo) planetary surfaces. Astrobiology 17, 231–252 (2017).  https://doi.org/10.1089/ast.2016.1523 ADSCrossRefGoogle Scholar
  170. O. Poch, R. Cerubini, A. Pommerol, B. Jost, N. Thomas, Polarimetry of water ice particles providing insights on grain size and degree of sintering on icy planetary surfaces. J. Geophys. Res., Planets 123(10), 2564–2584 (2018).  https://doi.org/10.1029/2018JE005753 ADSCrossRefGoogle Scholar
  171. A. Pommerol, G. Portyankina, N. Thomas, K.-M. Aye, C.J. Hansen, M. Vincendon, Y. Langevin, Evolution of South seasonal cap during Martian spring: insights from high-resolution observations by HiRISE and CRISM on Mars reconnaissance orbiter. J. Geophys. Res., Planets 116, 08007 (2011a).  https://doi.org/10.1029/2010JE003790 ADSCrossRefGoogle Scholar
  172. A. Pommerol, N. Thomas, M. Affolter, G. Portyankina, B. Jost, K. Seiferlin, K.-M. Aye, Photometry and bulk physical properties of Solar System surfaces icy analogs: the Planetary Ice Laboratory at University of Bern. Planet. Space Sci. 59, 1601–1612 (2011b).  https://doi.org/10.1016/j.pss.2011.07.009 ADSCrossRefGoogle Scholar
  173. A. Pommerol, T. Appéré, G. Portyankina, K.-M. Aye, N. Thomas, C.J. Hansen, Observations of the northern seasonal polar cap on Mars III: CRISM/HiRISE observations of spring sublimation. Icarus 225, 911–922 (2013a).  https://doi.org/10.1016/j.icarus.2012.08.039 ADSCrossRefGoogle Scholar
  174. A. Pommerol, N. Thomas, B. Jost, P. Beck, C. Okubo, A.S. McEwen, Photometric properties of Mars soils analogs. J. Geophys. Res., Planets 118, 2045–2072 (2013b).  https://doi.org/10.1002/jgre.20158 ADSCrossRefGoogle Scholar
  175. A. Pommerol, B. Jost, O. Poch, M.R. El-Maarry, B. Vuitel, N. Thomas, The SCITEAS experiment: optical characterizations of sublimating icy planetary analogues. Planet. Space Sci. 109, 106–122 (2015b).  https://doi.org/10.1016/j.pss.2015.02.004 ADSCrossRefGoogle Scholar
  176. A. Pommerol, N. Thomas, M.R. El-Maarry, M. Pajola, O. Groussin, A.-T. Auger, N. Oklay, S. Fornasier, C. Feller, B. Davidsson, A. Gracia-Berná, B. Jost, R. Marschall, O. Poch, M.A. Barucci, J.-L. Bertaux, F. La Forgia, H.U. Keller, E. Kührt, S.C. Lowry, S. Mottola, G. Naletto, H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, J. Agarwal, M.F. A’Hearn, I. Bertini, S. Boudreault, G. Cremonese, V. Da Deppo, M. De Cecco, S. Debei, C. Güttler, M. Fulle, P.J. Gutierrez, S.F. Hviid, W.-H. Ip, L. Jorda, J. Knollenberg, G. Kovacs, J.-R. Kramm, E. Küppers, L. Lara, M. Lazzarin, J.L. Lopez Moreno, F. Marzari, H. Michalik, F. Preusker, F. Scholten, C. Tubiana, J.-B. Vincent, OSIRIS observations of meter-sized exposures of H2O ice at the surface of 67P/Churyumov-Gerasimenko and interpretation using laboratory experiments. Astron. Astrophys. 583, 25 (2015a).  https://doi.org/10.1051/0004-6361/201525977 CrossRefGoogle Scholar
  177. R.M. Pope, E.S. Fry, Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt. 36, 8710–8723 (1997).  https://doi.org/10.1364/AO.36.008710 ADSCrossRefGoogle Scholar
  178. M.J. Poston, R.W. Carlson, K.P. Hand, Spectral behavior of irradiated sodium chloride crystals under Europa-like conditions. J. Geophys. Res., Planets 122(12), 2644–2654 (2017).  https://doi.org/10.1002/2017JE005429 ADSCrossRefGoogle Scholar
  179. P. Prem, N.A. Artemieva, D.B. Goldstein, P.L. Varghese, L.M. Trafton, Transport of water in a transient impact-generated lunar atmosphere. Icarus 255, 148–158 (2015).  https://doi.org/10.1016/j.icarus.2014.10.017 ADSCrossRefGoogle Scholar
  180. A.S. Rivkin, J.P. Emery, Detection of ice and organics on an asteroidal surface. Nature 464, 1322–1323 (2010).  https://doi.org/10.1038/nature09028 ADSCrossRefGoogle Scholar
  181. V. Roloff, A. Pommerol, L. Gambicorti, A. Servonet, N. Thomas, M. Brändli, A. Casciello, G. Cremonese, V. Da Deppo, M. Erismann, I. Ficai Veltroni, M. Gerber, M. Gruber, P. Gubler, T. Hausner, M. Johnson, P. Lochmatter, E. Pelˋo, B. Sodor, S. Szalai, G. Troznai, D. Vernani, T. Weigel, R. Ziethe, C. Zimmermann, On-ground performance and calibration of the ExoMars trace gas orbiter CaSSIS imager. Space Sci. Rev. 212, 1871–1896 (2017).  https://doi.org/10.1007/s11214-017-0404-2 ADSCrossRefGoogle Scholar
  182. T.L. Roush, J.B. Pollack, F.C. Witteborn, J.D. Bregman, J.P. Simpson, Ice and minerals on Callisto–a reassessment of the reflectance spectra. Icarus 86, 355–382 (1990).  https://doi.org/10.1016/0019-1035(90)90225-X ADSCrossRefGoogle Scholar
  183. P. Sabouroux, D. Ba, EPSIMU, a tool for dielectric properties measurement of porous media: application in wet granular materials characterization. Prog. Electromagn. Res. 29, 191–207 (2011) CrossRefGoogle Scholar
  184. N.J. Sack, R.E. Johnson, J.W. Boring, R.A. Baragiola, The effect of magnetospheric ion bombardment on the reflectance of Europa’s surface. Icarus 100, 534–540 (1992).  https://doi.org/10.1016/0019-1035(92)90116-O ADSCrossRefGoogle Scholar
  185. T. Sato, S. Okuzumi, S. Ida, On the water delivery to terrestrial embryos by ice pebble accretion. Astron. Astrophys. 589, A15 (2016).  https://doi.org/10.1051/0004-6361/201527069 ADSCrossRefGoogle Scholar
  186. R.S. Saunders, F.P. Fanale, T.J. Parker, J.B. Stephens, S. Sutton, Properties of filamentary sublimation residues from dispersions of clay in ice. Icarus 66, 94–104 (1986).  https://doi.org/10.1016/0019-1035(86)90009-6 ADSCrossRefGoogle Scholar
  187. B. Schmitt, E. Quirico, F. Trotta, W.M. Grundy, Optical properties of ices from UV to infrared, in Solar System Ices. Astrophys. Space Sci. Library (ASSL) Series, vol. 227 (Kluwer Academic, Dordrecht, 1998).  https://doi.org/10.1007/978-94-011-5252-5_9. ISBN-10 0792349024 CrossRefGoogle Scholar
  188. B. Schmitt, D. Albert, P. Bollard, L. Bonal, M. Gorbacheva, L. Mercier, S. Consortium, Partners, SSHADE in H2020: development of an European database infrastructure in solid spectroscopy, in European Planetary Science Congress, vol. 10 (2015), pp. 2015–2628 Google Scholar
  189. N. Schorghofer, Temperature response of Mars to Milankovitch cycles. Geophys. Res. Lett. 35, 18201 (2008).  https://doi.org/10.1029/2008GL034954 ADSCrossRefGoogle Scholar
  190. N. Schorghofer, Migration calculations for water in the exosphere of the Moon: dusk-dawn asymmetry, heterogeneous trapping, and D/H fractionation. Geophys. Res. Lett. 41, 4888–4893 (2014).  https://doi.org/10.1002/2014GL060820 ADSCrossRefGoogle Scholar
  191. F. Scipioni, F. Tosi, K. Stephan, G. Filacchione, M. Ciarniello, F. Capaccioni, P. Cerroni, Spectroscopic classification of icy satellites of Saturn I: identification of terrain units on Dione. Icarus 226, 1331–1349 (2013).  https://doi.org/10.1016/j.icarus.2013.08.008 ADSCrossRefGoogle Scholar
  192. F. Scipioni, F. Tosi, K. Stephan, G. Filacchione, M. Ciarniello, F. Capaccioni, P. Cerroni, Spectroscopic classification of icy satellites of Saturn II: identification of terrain units on Rhea. Icarus 234, 1–16 (2014).  https://doi.org/10.1016/j.icarus.2014.02.010 ADSCrossRefGoogle Scholar
  193. F. Scipioni, P. Schenk, F. Tosi, E. D’Aversa, R. Clark, J.-P. Combe, C.M.D. Ore, Deciphering sub-micron ice particles on Enceladus surface. Icarus 290, 183–200 (2017).  https://doi.org/10.1016/j.icarus.2017.02.012 ADSCrossRefGoogle Scholar
  194. M.K. Shepard, P. Helfenstein, A test of the Hapke photometric model. J. Geophys. Res., Planets 112, 03001 (2007).  https://doi.org/10.1029/2005JE002625 ADSCrossRefGoogle Scholar
  195. Y.G. Shkuratov, P. Helfenstein, The opposition effect and the quasi-fractal structure of regolith: I. theory. Icarus 152, 96–116 (2001).  https://doi.org/10.1006/icar.2001.6630 ADSCrossRefGoogle Scholar
  196. Y. Shkuratov, A. Ovcharenko, E. Zubko, O. Miloslavskaya, K. Muinonen, J. Piironen, R. Nelson, W. Smythe, V. Rosenbush, P. Helfenstein, The opposition effect and negative polarization of structural analogs for planetary regoliths. Icarus 159, 396–416 (2002).  https://doi.org/10.1006/icar.2002.6923 ADSCrossRefGoogle Scholar
  197. Y. Shkuratov, V. Kaydash, V. Korokhin, Y. Velikodsky, D. Petrov, E. Zubko, D. Stankevich, G. Videen, A critical assessment of the Hapke photometric model. J. Quant. Spectrosc. Radiat. Transf. 113, 2431–2456 (2012).  https://doi.org/10.1016/j.jqsrt.2012.04.010 ADSCrossRefGoogle Scholar
  198. A.P. Showman, R. Malhotra, The Galilean satellites. Science 296, 77–84 (1999) ADSCrossRefGoogle Scholar
  199. M.A. Slade, B.J. Butler, D.O. Muhleman, Mercury radar imaging—evidence for polar ice. Science 258, 635–640 (1992).  https://doi.org/10.1126/science.258.5082.635 ADSCrossRefGoogle Scholar
  200. P.H. Smith, L.K. Tamppari, R.E. Arvidson, D. Bass, D. Blaney, W.V. Boynton, A. Carswell, D.C. Catling, B.C. Clark, T. Duck, E. DeJong, D. Fisher, W. Goetz, H.P. Gunnlaugsson, M.H. Hecht, V. Hipkin, J. Hoffman, S.F. Hviid, H.U. Keller, S.P. Kounaves, C.F. Lange, M.T. Lemmon, M.B. Madsen, W.J. Markiewicz, J. Marshall, C.P. McKay, M.T. Mellon, D.W. Ming, R.V. Morris, W.T. Pike, N. Renno, U. Staufer, C. Stoker, P. Taylor, J.A. Whiteway, A.P. Zent, H2O at the Phoenix landing site. Science 325(5936), 58–61 (2009).  https://doi.org/10.1126/science.1172339 ADSCrossRefGoogle Scholar
  201. V.L. Snoeyink, D. Jenkins, Water Chemistry (Wiley, New York, 1980) Google Scholar
  202. W.B. Sparks, J. Hough, T.A. Germer, F. Chen, S. DasSarma, P. DasSarma, F.T. Robb, N. Manset, L. Kolokolova, N. Reid, F.D. Macchetto, W. Martin, Detection of circular polarization in light scattered from photosynthetic microbes. Proc. Natl. Acad. Sci. 106, 7816–7821 (2009).  https://doi.org/10.1073/pnas.0810215106 ADSCrossRefGoogle Scholar
  203. W.B. Sparks, B.E. Schmidt, M.A. McGrath, K.P. Hand, J.R. Spencer, M. Cracraft, S.E. Deustua, Active Cryovolcanism on Europa? Astrophys. J. Lett. 839, 18 (2017).  https://doi.org/10.3847/2041-8213/aa67f8 ADSCrossRefGoogle Scholar
  204. J.R. Spencer, T. Denk, Formation of Iapetus’ extreme albedo dichotomy by exogenically triggered thermal ice migration. Science 327, 432 (2010).  https://doi.org/10.1126/science.1177132 ADSCrossRefGoogle Scholar
  205. J.R. Spencer, J.C. Pearl, M. Segura, F.M. Flasar, A. Mamoutkine, P. Romani, B.J. Buratti, A.R. Hendrix, L.J. Spilker, R.M.C. Lopes, Cassini encounters Enceladus: background and the discovery of a South polar hot spot. Science 311, 1401–1405 (2006).  https://doi.org/10.1126/science.1121661 ADSCrossRefGoogle Scholar
  206. J.N. Spitale, C.C. Porco, Association of the jets of Enceladus with the warmest regions on its South-polar fractures. Nature 449, 695–697 (2007).  https://doi.org/10.1038/nature06217 ADSCrossRefGoogle Scholar
  207. P.D. Spudis, D.B.J. Bussey, S.M. Baloga, B.J. Butler, D. Carl, L.M. Carter, M. Chakraborty, R.C. Elphic, J.J. Gillis-Davis, J.N. Goswami, E. Heggy, M. Hillyard, R. Jensen, R.L. Kirk, D. LaVallee, P. McKerracher, C.D. Neish, S. Nozette, S. Nylund, M. Palsetia, W. Patterson, M.S. Robinson, R.K. Raney, R.C. Schulze, H. Sequeira, J. Skura, T.W. Thompson, B.J. Thomson, E.A. Ustinov, H.L. Winters, Initial results for the North Pole of the Moon from Mini-SAR, Chandrayaan-1 mission. Geophys. Res. Lett. 37, 06204 (2010).  https://doi.org/10.1029/2009GL042259 ADSCrossRefGoogle Scholar
  208. J.K. Steckloff, B.C. Johnson, T. Bowling, H. Jay Melosh, D. Minton, C.M. Lisse, K. Battams, Dynamic sublimation pressure and the catastrophic breakup of comet ISON. Icarus 258, 430–437 (2015).  https://doi.org/10.1016/j.icarus.2015.06.032 ADSCrossRefGoogle Scholar
  209. J.R. Stephens, B.A.S. Gustafson, Laboratory reflectance measurements of analogues to ‘dirty’ ice surfaces on atmosphereless solar system bodies. Icarus 94, 209–217 (1991).  https://doi.org/10.1016/0019-1035(91)90151-I ADSCrossRefGoogle Scholar
  210. S.A. Stern, F. Bagenal, K. Ennico, G.R. Gladstone, W.M. Grundy, W.B. McKinnon, J.M. Moore, C.B. Olkin, J.R. Spencer, H.A. Weaver, L.A. Young, T. Andert, J. Andrews, M. Banks, B. Bauer, J. Bauman, O.S. Barnouin, P. Bedini, K. Beisser, R.A. Beyer, S. Bhaskaran, R.P. Binzel, E. Birath, M. Bird, D.J. Bogan, A. Bowman, V.J. Bray, M. Brozovic, C. Bryan, M.R. Buckley, M.W. Buie, B.J. Buratti, S.S. Bushman, A. Calloway, B. Carcich, A.F. Cheng, S. Conard, C.A. Conrad, J.C. Cook, D.P. Cruikshank, O.S. Custodio, C.M. Dalle Ore, C. Deboy, Z.J.B. Dischner, P. Dumont, A.M. Earle, H.A. Elliott, J. Ercol, C.M. Ernst, T. Finley, S.H. Flanigan, G. Fountain, M.J. Freeze, T. Greathouse, J.L. Green, Y. Guo, M. Hahn, D.P. Hamilton, S.A. Hamilton, J. Hanley, A. Harch, H.M. Hart, C.B. Hersman, A. Hill, M.E. Hill, D.P. Hinson, M.E. Holdridge, M. Horanyi, A.D. Howard, C.J.A. Howett, C. Jackman, R.A. Jacobson, D.E. Jennings, J.A. Kammer, H.K. Kang, D.E. Kaufmann, P. Kollmann, S.M. Krimigis, D. Kusnierkiewicz, T.R. Lauer, J.E. Lee, K.L. Lindstrom, I.R. Linscott, C.M. Lisse, A.W. Lunsford, V.A. Mallder, N. Martin, D.J. McComas, R.L. McNutt, D. Mehoke, T. Mehoke, E.D. Melin, M. Mutchler, D. Nelson, F. Nimmo, J.I. Nunez, A. Ocampo, W.M. Owen, M. Paetzold, B. Page, A.H. Parker, J.W. Parker, F. Pelletier, J. Peterson, N. Pinkine, M. Piquette, S.B. Porter, S. Protopapa, J. Redfern, H.J. Reitsema, D.C. Reuter, J.H. Roberts, S.J. Robbins, G. Rogers, D. Rose, K. Runyon, K.D. Retherford, M.G. Ryschkewitsch, P. Schenk, E. Schindhelm, B. Sepan, M.R. Showalter, K.N. Singer, M. Soluri, D. Stanbridge, A.J. Steffl, D.F. Strobel, T. Stryk, M.E. Summers, J.R. Szalay, M. Tapley, A. Taylor, H. Taylor, H.B. Throop, C.C.C. Tsang, G.L. Tyler, O.M. Umurhan, A.J. Verbiscer, M.H. Versteeg, M. Vincent, R. Webbert, S. Weidner, G.E. Weigle, O.L. White, K. Whittenburg, B.G. Williams, K. Williams, S. Williams, W.W. Woods, A.M. Zangari, E. Zirnstein, The Pluto system: Initial results from its exploration by New Horizons. Science 350, 1815 (2015).  https://doi.org/10.1126/science.aad1815 ADSCrossRefGoogle Scholar
  211. C.R. Stoker, A. Zent, D.C. Catling, S. Douglas, J.R. Marshall, D. Archer, B. Clark, S.P. Kounaves, M.T. Lemmon, R. Quinn, N. Renno, P.H. Smith, S.M.M. Young, Habitability of the Phoenix landing site. J. Geophys. Res., Planets 115, 00 (2010).  https://doi.org/10.1029/2009JE003421 CrossRefGoogle Scholar
  212. A.D. Storrs, F.P. Fanale, R.S. Saunders, J.B. Stephens, The formation of filamentary sublimate residues (FSR) from mineral grains. Icarus 76, 493–512 (1988).  https://doi.org/10.1016/0019-1035(88)90017-6 ADSCrossRefGoogle Scholar
  213. G. Strazzulla, G.A. Baratta, G. Leto, G. Foti, Ion-beam-induced amorphization of crystalline water ice. Europhys. Lett. 18, 517 (1992).  https://doi.org/10.1209/0295-5075/18/6/008 ADSCrossRefGoogle Scholar
  214. G. Strazzulla, M. Garozzo, D. Fulvio, Z. Kanuchova, M.A. Palumbo, Cosmic ion induced chemistry in ices. Lincei, Rend. 22(2), 145–152 (2011).  https://doi.org/10.1007/s12210-011-0121-9. CrossRefGoogle Scholar
  215. C.M. Stuurman, G.R. Osinski, J.W. Holt, J.S. Levy, T.C. Brothers, M. Kerrigan, B.A. Campbell, SHARAD detection and characterization of subsurface water ice deposits in Utopia Planitia. Mars. Geophys. Res. Lett. 43, 9484–9491 (2016).  https://doi.org/10.1002/2016GL070138 ADSCrossRefGoogle Scholar
  216. J.M. Sunshine, M.F. A’Hearn, O. Groussin, J.-Y. Li, M.J.S. Belton, W.A. Delamere, J. Kissel, K.P. Klaasen, L.A. McFadden, K.J. Meech, H.J. Melosh, P.H. Schultz, P.C. Thomas, J. Veverka, D.K. Yeomans, I.C. Busko, M. Desnoyer, T.L. Farnham, L.M. Feaga, D.L. Hampton, D.J. Lindler, C.M. Lisse, D.D. Wellnitz, Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science 311, 1453–1455 (2006).  https://doi.org/10.1126/science.1123632 ADSCrossRefGoogle Scholar
  217. J.M. Sunshine, L.M. Feaga, O. Groussin, S. Protopapa, M.F. A’Hearn, T.L. Farnham, S. Besse (DIXI Team), The distribution of water ice on comet 103P/Hartley 2. LPI Contrib. 1667, 6438 (2012) ADSGoogle Scholar
  218. C. Szopa, G. Cernogora, L. Boufendi, J.J. Correia, P. Coll, PAMPRE: a dusty plasma experiment for Titan’s tholins production and study. Planet. Space Sci. 54, 394–404 (2006).  https://doi.org/10.1016/j.pss.2005.12.012 ADSCrossRefGoogle Scholar
  219. D.J. Tholen, Asteroid taxonomy from cluster analysis of photometry, PhD thesis (University of Arizona, Tucson, 1984) Google Scholar
  220. N. Thomas, T. Spohn, J.-P. Barriot, W. Benz, G. Beutler, U. Christensen, V. Dehant, C. Fallnich, D. Giardini, O. Groussin, K. Gunderson, E. Hauber, M. Hilchenbach, L. Iess, P. Lamy, L.-M. Lara, P. Lognonné, J.J. Lopez-Moreno, H. Michaelis, J. Oberst, D. Resendes, J.-L. Reynaud, R. Rodrigo, S. Sasaki, K. Seiferlin, M. Wieczorek, J. Whitby, The BepiColombo Laser Altimeter (BELA): concept and baseline design. Planet. Space Sci. 55, 1398–1413 (2007).  https://doi.org/10.1016/j.pss.2007.03.003 ADSCrossRefGoogle Scholar
  221. N. Thomas, B. Davidsson, M.R. El-Maarry, S. Fornasier, L. Giacomini, A.G. Gracia-Berná, S.F. Hviid, W.-H. Ip, L. Jorda, H.U. Keller, J. Knollenberg, E. Kührt, F. La Forgia, I.L. Lai, Y. Liao, R. Marschall, M. Massironi, S. Mottola, M. Pajola, O. Poch, A. Pommerol, F. Preusker, F. Scholten, C.C. Su, J.S. Wu, J.-B. Vincent, H. Sierks, C. Barbieri, P.L. Lamy, R. Rodrigo, D. Koschny, H. Rickman, M.F. A’Hearn, M.A. Barucci, J.-L. Bertaux, I. Bertini, G. Cremonese, V. Da Deppo, S. Debei, M. de Cecco, M. Fulle, O. Groussin, P.J. Gutierrez, J.-R. Kramm, M. Küppers, L.M. Lara, M. Lazzarin, J.J. Lopez Moreno, F. Marzari, H. Michalik, G. Naletto, J. Agarwal, C. Güttler, N. Oklay, C. Tubiana, Redistribution of particles across the nucleus of comet 67P/Churyumov-Gerasimenko. Astron. Astrophys. 583, 17 (2015).  https://doi.org/10.1051/0004-6361/201526049 CrossRefGoogle Scholar
  222. N. Thomas, G. Cremonese, R. Ziethe, M. Gerber, M. Brändli, G. Bruno, M. Erismann, L. Gambicorti, T. Gerber, K. Ghose, M. Gruber, P. Gubler, H. Mischler, J. Jost, D. Piazza, A. Pommerol, M. Rieder, V. Roloff, A. Servonet, W. Trottmann, T. Uthaicharoenpong, C. Zimmermann, D. Vernani, M. Johnson, E. Pelˋo, T. Weigel, J. Viertl, N. De Roux, P. Lochmatter, G. Sutter, A. Casciello, T. Hausner, I. Ficai Veltroni, V. Da Deppo, P. Orleanski, W. Nowosielski, T. Zawistowski, S. Szalai, B. Sodor, S. Tulyakov, G. Troznai, M. Banaskiewicz, J.C. Bridges, S. Byrne, S. Debei, M.R. El-Maarry, E. Hauber, C.J. Hansen, A. Ivanov, L. Keszthelyi, R. Kirk, R. Kuzmin, N. Mangold, L. Marinangeli, W.J. Markiewicz, M. Massironi, A.S. McEwen, C. Okubo, L.L. Tornabene, P. Wajer, J.J. Wray, The colour and stereo surface imaging system (CaSSIS) for the ExoMars trace gas orbiter. Space Sci. Rev. 212, 1897–1944 (2017).  https://doi.org/10.1007/s11214-017-0421-1 ADSCrossRefGoogle Scholar
  223. T.W. Thompson, E.A. Ustinov, E. Heggy, Modeling radar scattering from icy lunar regoliths at 13 cm and 4 cm wavelengths. J. Geophys. Res., Planets 116, 01006 (2011).  https://doi.org/10.1029/2009JE003368 ADSCrossRefGoogle Scholar
  224. S.A. Twomey, C.F. Bohren, J.L. Mergenthaler, Reflectance and albedo differences between wet and dry surfaces. Appl. Opt. 25, 431–437 (1986).  https://doi.org/10.1364/AO.25.000431 ADSCrossRefGoogle Scholar
  225. F.T. Ulaby, D.G. Long, Microwave Radar and Radiometric Remote Sensing (University of Michigan Press, Ann Arbor, 2014) CrossRefGoogle Scholar
  226. A.J. Verbiscer, J. Veverka, Scattering properties of natural snow and frost—comparison with icy satellite photometry. Icarus 88, 418–428 (1990).  https://doi.org/10.1016/0019-1035(90)90092-N ADSCrossRefGoogle Scholar
  227. A. Virkki, K. Muinonen, Radar scattering by planetary surfaces modeled with laboratory-characterized particles. Icarus 269, 38–49 (2016).  https://doi.org/10.1016/j.icarus.2016.01.011 ADSCrossRefGoogle Scholar
  228. A. Vorburger, P. Wurz, H. Lammer, S. Barabash, O. Mousis, Monte-Carlo simulation of Callisto’s exosphere. Icarus 262, 14–29 (2015).  https://doi.org/10.1016/j.icarus.2015.07.035 ADSCrossRefGoogle Scholar
  229. W. Wagner, A. Pruß, The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002).  https://doi.org/10.1063/1.1461829 ADSCrossRefGoogle Scholar
  230. S.G. Warren, R.E. Brandt, Optical constants of ice from the ultraviolet to the microwave: a revised compilation. J. Geophys. Res. 113, D14220 (2008).  https://doi.org/10.1029/2007JD009744 ADSCrossRefGoogle Scholar
  231. O.L. White, O.M. Umurhan, J.M. Moore, A.D. Howard, Modeling of ice pinnacle formation on Callisto. J. Geophys. Res., Planets 121, 21–45 (2016).  https://doi.org/10.1002/2015JE004846 ADSCrossRefGoogle Scholar
  232. O. Wilkman, K. Muinonen, J. Peltoniemi, Photometry of dark atmosphereless planetary bodies: an efficient numerical model. Planet. Space Sci. 118, 250–255 (2015).  https://doi.org/10.1016/j.pss.2015.06.004 ADSCrossRefGoogle Scholar
  233. X. Wu, W. Dai, X. Shan, W. Wang, L. Tang, Visual and theoretical analyses of the early stage of frost formation on cold surfaces. J. Enhanc. Heat Transf. 14, 1–12 (2007) CrossRefGoogle Scholar
  234. Z. Yoldi, VISNIR reflectance of water ice/regolith analogue mixtures and implications for the detectability of ice mixed within planetary regoliths. Geophys. Res. Lett. 42(15), 6205–6212 (2015).  https://doi.org/10.1002/2015GL064780 ADSCrossRefGoogle Scholar
  235. M.T. Zuber, J.W. Head, D.E. Smith, G.A. Neumann, E. Mazarico, M.H. Torrence, O. Aharonson, A.R. Tye, C.I. Fassett, M.A. Rosenburg, H.J. Melosh, Constraints on the volatile distribution within Shackleton crater at the lunar South pole. Nature 486, 378–381 (2012).  https://doi.org/10.1038/nature11216 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • A. Pommerol
    • 1
    Email author
  • B. Jost
    • 1
    • 2
  • O. Poch
    • 1
    • 3
  • Z. Yoldi
    • 1
  • Y. Brouet
    • 1
  • A. Gracia-Berná
    • 1
    • 4
  • R. Cerubini
    • 1
  • A. Galli
    • 1
  • P. Wurz
    • 1
  • B. Gundlach
    • 5
  • J. Blum
    • 5
  • N. Carrasco
    • 6
  • C. Szopa
    • 6
  • N. Thomas
    • 1
  1. 1.Physikalisches InstitutUniversität BernBernSwitzerland
  2. 2.Jet Propulsion LaboratoryPasadenaUSA
  3. 3.CNRS, IPAGUniv. Grenoble AlpesGrenobleFrance
  4. 4.Boeing Research & Technology EuropeMadridSpain
  5. 5.Institut für Geophysik und extraterrestrische PhysikTU BraunschweigBraunschweigGermany
  6. 6.LATMOS, Université Versailles St-Quentin, Sorbonne UniversitésUPMC Univ. Paris 06, CNRSGuyancourtFrance

Personalised recommendations