Advertisement

Space Science Reviews

, 215:34 | Cite as

Interplanetary Dust, Meteoroids, Meteors and Meteorites

  • Detlef KoschnyEmail author
  • Rachel H. Soja
  • Cecile Engrand
  • George J. Flynn
  • Jérémie Lasue
  • Anny-Chantal Levasseur-Regourd
  • David Malaspina
  • Tomoki Nakamura
  • Andrew R. Poppe
  • Veerle J. Sterken
  • Josep M. Trigo-Rodríguez
Article
  • 427 Downloads
Part of the following topical collections:
  1. Cosmic Dust from the Laboratory to the Stars

Abstract

Interplanetary dust particles and meteoroids mostly originate from comets and asteroids. Understanding their distribution in the Solar system, their dynamical behavior and their properties, sheds light on the current state and the dynamical behavior of the Solar system. Dust particles can endanger Earth-orbiting satellites and deep-space probes, and a good understanding of the spatial density and velocity distribution of dust and meteoroids in the Solar system is important for designing proper spacecraft shielding. The study of interplanetary dust and meteoroids provides clues to the formation of the Solar system. Particles having formed 4.5 billion years ago can survive planetary accretion and those that survived until now did not evolve significantly since then. Meteoroids and interplanetary dust can be observed by measuring the intensity and polarization of the zodiacal light, by observing meteors entering the Earth’s atmosphere, by collecting them in the upper atmosphere, polar ices and snow, and by detecting them with in-situ detectors on space probes.

Keywords

Interplanetary dust Meteors Meteorites Zodiacal light Dynamics Formation Evolution 

Notes

Acknowledgements

This paper was made possible by the International Space Science Institute, Bern, who brought the authors together for a whole week in 2016 and supported the meeting location and stay of the participants. All of the authors acknowledge their respective institutes and funding agencies for their support. In particular, JMTR thanks Spanish Ministry of Science and Innovation under research project AYA2015-67175-P. We acknowledge the hard work done by two referees whose comments were extremely valuable to improve this review.

References

  1. J. Aléon, C. Engrand, L.A. Leshin, K.D. McKeegan, Oxygen isotopic composition of chondritic interplanetary dust particles: a genetic link between carbonaceous chondrites and comets. Geochim. Cosmochim. Acta 73, 4558–4575 (2009).  https://doi.org/10.1016/j.gca.2009.04.034 ADSCrossRefGoogle Scholar
  2. N. Altobelli, S. Kempf, M. Landgraf, R. Srama, V. Dikarev, H. Krüger, G. Moragas-Klostermeyer, E. Grün, Cassini between Venus and Earth: detection of interstellar dust. J. Geophys. Res. Space Phys. 108, 8032 (2003).  https://doi.org/10.1029/2003JA009874 ADSCrossRefGoogle Scholar
  3. N. Altobelli, H. Krüger, R. Moissl, M. Landgraf, E. Grün, Influence of wall impacts on the Ulysses dust detector on understanding the interstellar dust flux. Planet. Space Sci. 52, 1287–1295 (2004).  https://doi.org/10.1016/j.pss.2004.07.022 ADSCrossRefGoogle Scholar
  4. N. Altobelli, S. Kempf, H. Krüger, M. Landgraf, M. Roy, E. Grün, Interstellar dust flux measurements by the Galileo dust instrument between the orbits of Venus and Mars. J. Geophys. Res. Space Phys. 110(A9), 7102 (2005).  https://doi.org/10.1029/2004JA010772 ADSCrossRefGoogle Scholar
  5. N. Altobelli, E. Grün, M. Landgraf, A new look into the Helios dust experiment data: presence of interstellar dust inside the Earth’s orbit. Astron. Astrophys. 448, 243–252 (2006).  https://doi.org/10.1051/0004-6361:20053909 ADSCrossRefGoogle Scholar
  6. N. Altobelli, V. Dikarev, S. Kempf, R. Srama, S. Helfert, G. Moragas-Klostermeyer, M. Roy, E. Grün, Cassini/Cosmic Dust Analyzer in situ dust measurements between Jupiter and Saturn. J. Geophys. Res. Space Phys. 112, A07105 (2007).  https://doi.org/10.1029/2006JA011978 ADSCrossRefGoogle Scholar
  7. N. Altobelli, F. Postberg, K. Fiege, M. Trieloff, H. Kimura, V.J. Sterken, H.W. Hsu, J. Hillier, N. Khawaja, G. Moragas-Klostermeyer, J. Blum, M. Burton, R. Srama, S. Kempf, E. Grün, Flux and composition of interstellar dust at Saturn from Cassini’s Cosmic Dust Analyzer. Science 352, 312–318 (2016).  https://doi.org/10.1126/science.aac6397 ADSCrossRefGoogle Scholar
  8. D.J. Asher, D.I. Steel, Theoretical meteor radiants for macroscopic Taurid complex objects. Earth Moon Planets 68, 155–164 (1995).  https://doi.org/10.1007/BF00671504 ADSCrossRefGoogle Scholar
  9. B. Augé, E. Dartois, C. Engrand, J. Duprat, M. Godard, L. Delauche, N. Bardin, C. Mejía, R. Martinez, G. Muniz, A. Domaracka, P. Boduch, H. Rothard, Irradiation of nitrogen-rich ices by swift heavy ions. Clues for the formation of ultracarbonaceous micrometeorites. Astron. Astrophys. 592, A99 (2016).  https://doi.org/10.1051/0004-6361/201527650 ADSCrossRefGoogle Scholar
  10. F. Bagenal, M. Horányi, D.J. McComas, R.L. McNutt, H.A. Elliot, M.E. Hill, L.E. Brown, P.A. Delamere, P. Kollman, S.M. Krimigis, M. Kusterer, C.M. Lisse, D.G. Mitchell, M. Piquette, A.R. Poppe, D.F. Strobel, J.R. Szalay, P. Valek, J. Vandegriff, S. Weidner, E.J. Zirnstein, S.A. Stern, K. Ennico, C.B. Olkin, H.A. Weaver, L.A. Young (NHS Team), Pluto’s interaction with its space environment: solar wind, energetic particles, and dust. Science 351, 6279 (2016) CrossRefGoogle Scholar
  11. W.J. Baggaley, The interstellar particle component measured by AMOR, in Meteroids 1998, ed. by W.J. Baggaley, V. Porubcan (1999), p. 265 Google Scholar
  12. W.J. Baggaley, Advanced Meteor Orbit Radar observations of interstellar meteoroids. J. Geophys. Res. 105, 10353–10362 (2000).  https://doi.org/10.1029/1999JA900383 ADSCrossRefGoogle Scholar
  13. W.J. Baggaley, S.H. Marsh, S. Close, Interstellar meteors. Dust Planet. Syst. 643, 27–32 (2007) ADSGoogle Scholar
  14. M. Baguhl, E. Grün, M. Landgraf, In situ measurements of interstellar dust with the ULYSSES and Galileo spaceprobes. Space Sci. Rev. 78(1/2), 165–172 78:165–172 (1996) ADSCrossRefGoogle Scholar
  15. N. Bardin, J. Duprat, C. Engrand, G. Slodzian, D. Baklouti, E. Dartois, R. Brunetto, L. Delauche, M. Godard, T.D. Wu, J.L. Guerquin-Kern, D/H and 15N/14N isotopic ratios in organic matter of ultracarbonaceous Antarctic micrometeorites, in 78th Annual Meeting of the Meteoritical Society. LPI Contributions, vol. 1856 (2015), p. 5275 Google Scholar
  16. A. Bardyn, D. Baklouti, H. Cottin, N. Fray, C. Briois, J. Paquette, O. Stenzel, C. Engrand, H. Fischer, K. Hornung, R. Isnard, Y. Langevin, H. Lehto, L. Le Roy, N. Ligier, S. Merouane, P. Modica, F.R. Orthous-Daunay, J. Rynö, R. Schulz, J. Silén, L. Thirkell, K. Varmuza, B. Zaprudin, J. Kissel, M. Hilchenbach, Carbon-rich dust in comet 67P/Churyumov-Gerasimenko measured by COSIMA/Rosetta. Mon. Not. R. Astron. Soc. 469, S712–S722 (2017).  https://doi.org/10.1093/mnras/stx2640 CrossRefGoogle Scholar
  17. M. Battandier, L. Bonal, E. Quirico, P. Beck, C. Engrand, J. Duprat, Characterization of the organic matter and hydration state of a series of Antarctic micrometeorites, in Lunar and Planetary Science Conference, vol. 47 (2016), p. 1475 Google Scholar
  18. C. Beauge, S. Ferraz-Mello, Capture in exterior mean-motion resonances due to Poynting-Robertson drag. Icarus 110, 239–260 (1994).  https://doi.org/10.1006/icar.1994.1119 ADSCrossRefGoogle Scholar
  19. R. Behrisch, W. Eckstein, Sputtering by particle bombardment: experiments and computer calculations from threshold to MeV energies. Topics in Applied Physics, vol. 110 (Springer, Berlin, 2007) CrossRefGoogle Scholar
  20. E. Beitz, J. Blum, M.G. Parisi, J. Trigo-Rodriguez, The collisional evolution of undifferentiated asteroids and the formation of chondritic meteoroids. Astrophys. J. 824, 12 (2016).  https://doi.org/10.3847/0004-637X/824/1/12. arXiv:1604.02340 ADSCrossRefGoogle Scholar
  21. I. Belskaya, S. Fornasier, G. Tozzi, R. Gil-Hutton, A. Cellino, K. Antonyuk, Y.N. Krugly, A. Dovgopol, S. Faggi, Refining the asteroid taxonomy by polarimetric observations. Icarus 284, 30–42 (2017) ADSCrossRefGoogle Scholar
  22. O.E. Berg, U. Gerloff, More than two years of micrometeorite data from two Pioneer satellites, in Space Research XI, ed. by K.Y. Kondratyev, M.J. Rycroft, C. Sagan (1971), pp. 225–235 Google Scholar
  23. O.E. Berg, F.F. Richardson, The Pioneer 8 cosmic dust experiment. Rev. Sci. Instrum. 40, 1333–1337 (1969).  https://doi.org/10.1063/1.1683778 ADSCrossRefGoogle Scholar
  24. G. Berriman, N. Boggess, M. Hauser, T. Kelsall, C. Lisse, S. Moseley, W. Reach, R. Silverberg, Cobe dirbe near-infrared polarimetry of the zodiacal light: initial results. Astrophys. J. 431, L63–L66 (1994) ADSCrossRefGoogle Scholar
  25. I. Bertini, Main Belt comets: a new class of small bodies in the solar system. Planet. Space Sci. 59, 365–377 (2011).  https://doi.org/10.1016/j.pss.2011.01.014 ADSCrossRefGoogle Scholar
  26. J.P. Biersack, W. Eckstein, Sputtering studies with the Monte Carlo program TRIM.SP. Appl. Phys. A 34, 73–94 (1984) ADSCrossRefGoogle Scholar
  27. A. Bischoff, E.R.D. Scott, K. Metzler, C.A. Goodrich, Nature and Origins of Meteoritic Breccias (2006), pp. 679–712 Google Scholar
  28. A. Bischoff, M. Horstmann, M. Laubenstein, S. Haberer, Asteroid 2008 TC3—Almahata Sitta: not only a ureilitic meteorite, but a breccia containing many different achondritic and chondritic lithologies, in Lunar and Planetary Science Conference, vol. 41 (2010), p. 1763 Google Scholar
  29. R.C. Blaauw, M.D. Campbell-Brown, R.J. Weryk, A meteoroid stream survey using the Canadian Meteor Orbit Radar, III: mass distribution indices of six major meteor showers. Mon. Not. R. Astron. Soc. 414, 3322–3329 (2011a).  https://doi.org/10.1111/j.1365-2966.2011.18633.x ADSCrossRefGoogle Scholar
  30. R.C. Blaauw, M.D. Campbell-Brown, R.J. Weryk, Mass distribution indices of sporadic meteors using radar data. Mon. Not. R. Astron. Soc. 412, 2033–2039 (2011b).  https://doi.org/10.1111/j.1365-2966.2010.18038.x ADSCrossRefGoogle Scholar
  31. P.A. Bland, T.B. Smith, A.J.T. Jull, F.J. Berry, A.W.R. Bevan, S. Cloudt, C.T. Pillinger, The flux of meteorites to the Earth over the last 50,000 years. Mon. Not. R. Astron. Soc. 283, 551 (1996).  https://doi.org/10.1093/mnras/283.2.551 ADSCrossRefGoogle Scholar
  32. J. Blum, R. Schräpler, B.J.R. Davidsson, J.M. Trigo-Rodríguez, The physics of protoplanetesimal dust agglomerates, I: mechanical properties and relations to primitive bodies in the solar system. Astrophys. J. 652, 1768–1781 (2006).  https://doi.org/10.1086/508017 ADSCrossRefGoogle Scholar
  33. D. Bockelée-Morvan, D. Gautier, F. Hersant, J.M. Huré, F. Robert, Turbulent radial mixing in the solar nebula as the source of crystalline silicates in comets. Astron. Astrophys. 384, 1107–1118 (2002).  https://doi.org/10.1051/0004-6361:20020086 ADSCrossRefGoogle Scholar
  34. K.J. Borkowski, E. Dwek, The fragmentation and vaporization of dust in grain-grain collisions. Astrophys. J. 454, 254–276 (1995) ADSCrossRefGoogle Scholar
  35. J. Borovička, P. Koten, P. Spurný, J. Boček, R. Štork, A survey of meteor spectra and orbits: evidence for three populations of Na-free meteoroids. Icarus 174, 15–30 (2005).  https://doi.org/10.1016/j.icarus.2004.09.011 ADSCrossRefGoogle Scholar
  36. W.F. Bottke, H.F. Levison, A. Morbidelli, K. Tsiganis, The collisional evolution of objects captured in the Outer Asteroid Belt during the late heavy bombardment, in Lunar and Planetary Science Conference, vol. 39 (2008), p. 1447 Google Scholar
  37. W.F. Bottke Jr, D. Vokrouhlický, D.P. Rubincam, M. Broz, The Effect of Yarkovsky Thermal Forces on the Dynamical Evolution of Asteroids and Meteoroids (2002), pp. 395–408 Google Scholar
  38. J.P. Bradley, Chemically anomalous, preaccretionally irradiated grains in interplanetary dust from comets. Science 265, 925–929 (1994).  https://doi.org/10.1126/science.265.5174.925 ADSCrossRefGoogle Scholar
  39. J.P. Bradley, Interplanetary Dust Particles (Elsevier, Amsterdam, 2005), p. 689 Google Scholar
  40. J.P. Bradley, D.E. Brownlee, Cometary particles—thin sectioning and electron beam analysis. Science 231, 1542–1544 (1986).  https://doi.org/10.1126/science.231.4745.1542 ADSCrossRefGoogle Scholar
  41. J.P. Bradley, L.P. Keller, T.P. Snow, M.S. Hanner, G.J. Flynn, J.C. Gezo, S.J. Clemett, D.E. Brownlee, J.E. Bowey, An infrared spectral match between GEMS and interstellar grains. Science 285, 1716–1718 (1999).  https://doi.org/10.1126/science.285.5434.1716 ADSCrossRefGoogle Scholar
  42. A.J. Brearley, R.H. Jones, Chondritic meteorites, in Planetary Materials, ed. by J.J. Papike (Mineralogical Society of America, Washington, 1998), pp. 1–398 Google Scholar
  43. K.L.F. Brinton, C. Engrand, D.P. Glavin, J.L. Bada, M. Maurette, A search for extraterrestrial amino acids in carbonaceous Antarctic micrometeorites. Orig. Life Evol. Biosph. 28, 413–424 (1998) ADSCrossRefGoogle Scholar
  44. D.T. Britt, G.J. Consolmagno, The porosity of dark meteorites and the structure of low-albedo asteroids. Icarus 146, 213–219 (2000).  https://doi.org/10.1006/icar.2000.6374 ADSCrossRefGoogle Scholar
  45. P. Brown, R.J. Weryk, D.K. Wong, J. Jones, A meteoroid stream survey using the Canadian Meteor Orbit Radar, I: methodology and radiant catalogue. Icarus 195, 317–339 (2008).  https://doi.org/10.1016/j.icarus.2007.12.002 ADSCrossRefGoogle Scholar
  46. P.G. Brown, A.R. Hildebrand, M.E. Zolensky, M. Grady, R.N. Clayton, T.K. Mayeda, E. Tagliaferri, R. Spalding, N.D. MacRae, E.L. Hoffman, D.W. Mittlefehldt, J.F. Wacker, J.A. Bird, M.D. Campbell, R. Carpenter, H. Gingerich, M. Glatiotis, E. Greiner, M.J. Mazur, P.J. McCausland, H. Plotkin, T. Rubak Mazur, The fall, recovery, orbit, and composition of the Tagish lake meteorite: a new type of carbonaceous chondrite. Science 290, 320–325 (2000).  https://doi.org/10.1126/science.290.5490.320 ADSCrossRefGoogle Scholar
  47. D. Brownlee, Interplanetary dust. Rev. Geophys. 17(7), 1735–1743 (1979) ADSCrossRefGoogle Scholar
  48. D. Brownlee, P. Tsou, J. Aléon, C.M.O. Alexander, T. Araki, S. Bajt, G.A. Baratta, R. Bastien, P. Bland, P. Bleuet, J. Borg, J.P. Bradley, A. Brearley, F. Brenker, S. Brennan, J.C. Bridges, N.D. Browning, J.R. Brucato, E. Bullock, M.J. Burchell, H. Busemann, A. Butterworth, M. Chaussidon, A. Cheuvront, M. Chi, M.J. Cintala, B.C. Clark, S.J. Clemett, G. Cody, L. Colangeli, G. Cooper, P. Cordier, C. Daghlian, Z. Dai, L. D’Hendecourt, Z. Djouadi, G. Dominguez, T. Duxbury, J.P. Dworkin, D.S. Ebel, T.E. Economou, S. Fakra, S.A.J. Fairey, S. Fallon, G. Ferrini, T. Ferroir, H. Fleckenstein, C. Floss, G. Flynn, I.A. Franchi, M. Fries, Z. Gainsforth, J.P. Gallien, M. Genge, M.K. Gilles, P. Gillet, J. Gilmour, D.P. Glavin, M. Gounelle, M.M. Grady, G.A. Graham, P.G. Grant, S.F. Green, F. Grossemy, L. Grossman, J.N. Grossman, Y. Guan, K. Hagiya, R. Harvey, P. Heck, G.F. Herzog, P. Hoppe, F. Hörz, J. Huth, I.D. Hutcheon, K. Ignatyev, H. Ishii, M. Ito, D. Jacob, C. Jacobsen, S. Jacobsen, S. Jones, D. Joswiak, A. Jurewicz, A.T. Kearsley, L.P. Keller, H. Khodja, A.L.D. Kilcoyne, J. Kissel, A. Krot, F. Langenhorst, A. Lanzirotti, L. Le, L.A. Leshin, J. Leitner, L. Lemelle, H. Leroux, M.C. Liu, K. Luening, I. Lyon, G. MacPherson, M.A. Marcus, K. Marhas, B. Marty, G. Matrajt, K. McKeegan, A. Meibom, V. Mennella, K. Messenger, S. Messenger, T. Mikouchi, S. Mostefaoui, T. Nakamura, T. Nakano, M. Newville, L.R. Nittler, I. Ohnishi, K. Ohsumi, K. Okudaira, D.A. Papanastassiou, R. Palma, M.E. Palumbo, R.O. Pepin, D. Perkins, M. Perronnet, P. Pianetta, W. Rao, F.J.M. Rietmeijer, F. Robert, D. Rost, A. Rotundi, R. Ryan, S.A. Sandford, C.S. Schwandt, T.H. See, D. Schlutter, J. Sheffield-Parker, A. Simionovici, S. Simon, I. Sitnitsky, C.J. Snead, M.K. Spencer, F.J. Stadermann, A. Steele, T. Stephan, R. Stroud, J. Susini, S.R. Sutton, Y. Suzuki, M. Taheri, S. Taylor, N. Teslich, K. Tomeoka, N. Tomioka, A. Toppani, J.M. Trigo-Rodríguez, D. Troadec, A. Tsuchiyama, A.J. Tuzzolino, T. Tyliszczak, K. Uesugi, M. Velbel, J. Vellenga, E. Vicenzi, L. Vincze, J. Warren, I. Weber, M. Weisberg, A.J. Westphal, S. Wirick, D. Wooden, B. Wopenka, P. Wozniakiewicz, I. Wright, H. Yabuta, H. Yano, E.D. Young, R.N. Zare, T. Zega, K. Ziegler, L. Zimmerman, E. Zinner, M. Zolensky, Comet 81P/Wild 2 under a microscope. Science 314, 1711 (2006).  https://doi.org/10.1126/science.1135840 ADSCrossRefGoogle Scholar
  49. D.E. Brownlee, Cosmic dust—collection and research. Annu. Rev. Earth Planet. Sci. 13, 147–173 (1985).  https://doi.org/10.1146/annurev.ea.13.050185.001051 ADSCrossRefGoogle Scholar
  50. D.L. Buczkowski, O.S. Barnouin-Jha, L.M. Prockter, 433 Eros lineaments: global mapping and analysis. Icarus 193, 39–52 (2008).  https://doi.org/10.1016/j.icarus.2007.06.028 ADSCrossRefGoogle Scholar
  51. A. Buffington, M.M. Bisi, J.M. Clover, P.P. Hick, B.V. Jackson, T.A. Kuchar, S.D. Price, Measurements of the gegenschein brightness from the solar mass ejection imager (smei). Icarus 203(1), 124–133 (2009) ADSCrossRefGoogle Scholar
  52. A. Buffington, M.M. Bisi, J.M. Clover, P.P. Hick, B.V. Jackson, T.A. Kuchar, S.D. Price, Measurements and an empirical model of the zodiacal brightness as observed by the solar mass ejection imager (smei). Icarus 272, 88–101 (2016) ADSCrossRefGoogle Scholar
  53. J.A. Burns, P.L. Lamy, S. Soter, Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979).  https://doi.org/10.1016/0019-1035(79)90050-2 ADSCrossRefGoogle Scholar
  54. M.D. Campbell-Brown, High resolution radiant distribution and orbits of sporadic radar meteoroids. Icarus 196, 144–163 (2008).  https://doi.org/10.1016/j.icarus.2008.02.022 ADSCrossRefGoogle Scholar
  55. M.D. Campbell-Brown, D. Koschny, Model of the ablation of faint meteors. Astron. Astrophys. 418, 751–758 (2004).  https://doi.org/10.1051/0004-6361:20041001-1 ADSCrossRefGoogle Scholar
  56. M.D. Campbell-Brown, J. Kero, C. Szasz, A. Pellinen-Wannberg, R.J. Weryk, Photometric and ionization masses of meteors with simultaneous EISCAT UHF radar and intensified video observations. J. Geophys. Res. Space Phys. 117, A09323 (2012).  https://doi.org/10.1029/2012JA017800 ADSCrossRefGoogle Scholar
  57. M.D. Campbell-Brown, J. Borovička, P.G. Brown, E. Stokan, High-resolution modelling of meteoroid ablation. Astron. Astrophys. 557, A41 (2013).  https://doi.org/10.1051/0004-6361/201322005 ADSCrossRefGoogle Scholar
  58. M.D. Campbell-Brown, R. Blaauw, A. Kingery, Optical fluxes and meteor properties of the camelopardalid meteor shower. Icarus 277, 141–153 (2016).  https://doi.org/10.1016/j.icarus.2016.05.001 ADSCrossRefGoogle Scholar
  59. Z. Ceplecha, J. Borovička, W.G. Elford, D.O. Revelle, R.L. Hawkes, V. Porubčan, M. Šimek, Meteor phenomena and bodies. Space Sci. Rev. 84, 327–471 (1998).  https://doi.org/10.1023/A:1005069928850 ADSCrossRefGoogle Scholar
  60. E. Charon, C. Engrand, K. Benzerara, H. Leroux, S. Swaraj, R. Belkhou, J. Duprat, E. Dartois, M. Godard, L. Delauche, A C-, N-, O-XANES/STXM and TEM study of organic matter and minerals in ultracarbonaceous Antarctic micrometeorites (UCAMMs), in Lunar and Planetary Science Conference, vol. 48 (2017), p. 2085 Google Scholar
  61. A.A. Christou, R.M. Killen, M.H. Burger, The meteoroid stream of comet Encke at Mercury: implications for Mercury surface, space environment, geochemistry, and ranging observations of the exosphere. Geophys. Res. Lett. 42, 7311–7318 (2015).  https://doi.org/10.1002/2015GL065361 ADSCrossRefGoogle Scholar
  62. F.J. Ciesla, Outward transport of high-temperature materials around the midplane of the solar nebula. Science 318, 613 (2007).  https://doi.org/10.1126/science.1147273 ADSCrossRefGoogle Scholar
  63. F.J. Ciesla, S.A. Sandford, Organic synthesis via irradiation and warming of ice grains in the solar nebula. Science 336, 452 (2012).  https://doi.org/10.1126/science.1217291 ADSCrossRefGoogle Scholar
  64. B.C. Clark, S.F. Green, T.E. Economou, S.A. Sandford, M.E. Zolensky, N. McBride, D.E. Brownlee, Release and fragmentation of aggregates to produce heterogeneous, lumpy coma streams. J. Geophys. Res., Planets 109(E18), E12S03 (2004).  https://doi.org/10.1029/2004JE002319 ADSCrossRefGoogle Scholar
  65. S.J. Clemett, X.D.F. Chillier, S. Gillette, R.N. Zare, M. Maurette, C. Engrand, G. Kurat, Observation of indigenous polycyclic aromatic hydrocarbons in ‘giant’ carbonaceous Antarctic micrometeorites. Orig. Life Evol. Biosph. 28, 425–448 (1998) ADSCrossRefGoogle Scholar
  66. C. Cordier, L. Folco, C. Suavet, C. Sonzogni, P. Rochette, Major, trace element and oxygen isotope study of glass cosmic spherules of chondritic composition: the record of their source material and atmospheric entry heating. Geochim. Cosmochim. Acta 75, 5203–5218 (2011).  https://doi.org/10.1016/j.gca.2011.06.014 ADSCrossRefGoogle Scholar
  67. B.G. Cour-Palais, Meteoroid environment model-1969 [Near Earth to Lunar Surface]. NASA SP-8013, NASA (1969) Google Scholar
  68. A. Czechowski, I. Mann, Formation and acceleration of nano dust in the inner heliosphere. Astrophys. J. 714, 89 (2010).  https://doi.org/10.1088/0004-637X/714/1/89 ADSCrossRefGoogle Scholar
  69. E. Dartois, C. Engrand, R. Brunetto, J. Duprat, T. Pino, E. Quirico, L. Remusat, N. Bardin, G. Briani, S. Mostefaoui, G. Morinaud, B. Crane, N. Szwec, L. Delauche, F. Jamme, C. Sandt, P. Dumas, Ultracarbonaceous Antarctic micrometeorites, probing the solar system beyond the nitrogen snow-line. Icarus 224, 243–252 (2013).  https://doi.org/10.1016/j.icarus.2013.03.002 ADSCrossRefGoogle Scholar
  70. E. Dartois, C. Engrand, J. Duprat, M. Godard, E. Charon, L. Delauche, C. Sandt, F. Borondics, Dome C ultracarbonaceous Antarctic micrometeorites. Infrared and Raman fingerprints. Astron. Astrophys. 609, A65 (2018).  https://doi.org/10.1051/0004-6361/201731322. arXiv:1711.00647 ADSCrossRefGoogle Scholar
  71. B.T. de Gregorio, R.M. Stroud, G.D. Cody, L.R. Nittler, A.L. David Kilcoyne, S. Wirick, Correlated microanalysis of cometary organic grains returned by stardust. Meteorit. Planet. Sci. 46, 1376–1396 (2011).  https://doi.org/10.1111/j.1945-5100.2011.01237.x ADSCrossRefGoogle Scholar
  72. F.E. DeMeo, B. Carry, Solar system evolution from compositional mapping of the asteroid belt. Nature 505, 629 (2014) ADSCrossRefGoogle Scholar
  73. S. Dermott, P. Nicholson, J. Burns, J. Houck, Origin of the solar system dust bands discovered by iras. Nature 312(5994), 505–509 (1984) ADSCrossRefGoogle Scholar
  74. S.F. Dermott, K. Grogan, D.D. Durda, S. Jayaraman, T.J.J. Kehoe, S.J. Kortenkamp, M.C. Wyatt, Orbital Evolution of Interplanetary Dust (2001), p. 569 CrossRefGoogle Scholar
  75. V. Dikarev, E. Grün, J. Baggaley, D. Galligan, M. Landgraf, R. Jehn, Modeling the sporadic meteoroid background cloud. Earth Moon Planets 95, 109–122 (2004).  https://doi.org/10.1007/s11038-005-9017-y ADSCrossRefGoogle Scholar
  76. V. Dikarev, E. Grün, J. Baggaley, D. Galligan, M. Landgraf, R. Jehn, The new ESA meteoroid model. Adv. Space Res. 35, 1282–1289 (2005).  https://doi.org/10.1016/j.asr.2005.05.014 ADSCrossRefGoogle Scholar
  77. N. Divine, Five populations of interplanetary meteoroids. J. Geophys. Res. 98(17), 029 (1993).  https://doi.org/10.1029/93JE01203. 048 CrossRefGoogle Scholar
  78. E. Dobrică, C. Engrand, J. Duprat, M. Gounelle, H. Leroux, E. Quirico, J.N. Rouzaud, Connection between micrometeorites and Wild 2 particles: from Antarctic snow to cometary ices. Meteorit. Planet. Sci. 44, 1643–1661 (2009).  https://doi.org/10.1111/j.1945-5100.2009.tb01196.x ADSCrossRefGoogle Scholar
  79. E. Dobrică, C. Engrand, J. Duprat, M. Gounelle, A statistical overview of CONCORDIA Antarctic micrometeorites. Meteorit. Planet. Sci. Suppl. 73, 5213 (2010) ADSGoogle Scholar
  80. E. Dobrică, C. Engrand, H. Leroux, J.N. Rouzaud, J. Duprat, Transmission electron microscopy of CONCORDIA ultracarbonaceous Antarctic micrometeorites (UCAMMs): mineralogical properties. Geochim. Cosmochim. Acta 76, 68–82 (2012).  https://doi.org/10.1016/j.gca.2011.10.025 ADSCrossRefGoogle Scholar
  81. E. Dobricǎ, C. Engrand, E. Quirico, G. Montagnac, J. Duprat, Raman characterization of carbonaceous matter in CONCORDIA Antarctic micrometeorites. Meteorit. Planet. Sci. 46, 1363–1375 (2011).  https://doi.org/10.1111/j.1945-5100.2011.01235.x ADSCrossRefGoogle Scholar
  82. L. Dones, P.R. Weissman, H.F. Levison, M.J. Duncan, Oort cloud formation and dynamics, in Comets II, ed. by M.C. Festou, H.U. Keller, H.A. Weaver (University of Arizona Press, Tucson, 2004) Google Scholar
  83. G. Drolshagen, V. Dikarev, M. Landgraf, H. Krag, W. Kuiper, Comparison of meteoroid flux models for near earth space. Earth Moon Planets 102, 191–197 (2008).  https://doi.org/10.1007/s11038-007-9199-6 ADSCrossRefGoogle Scholar
  84. J.D. Drummond, A test of comet and meteor shower associations. Icarus 45, 545–553 (1981).  https://doi.org/10.1016/0019-1035(81)90020-8 ADSCrossRefGoogle Scholar
  85. A. Dubietis, R. Arlt, Taurid resonant-swarm encounters from two decades of visual observations. Mon. Not. R. Astron. Soc. 376, 890–894 (2007).  https://doi.org/10.1111/j.1365-2966.2007.11488.x ADSCrossRefGoogle Scholar
  86. R. Dumont, Phase function and polarization curve of interplanetary scatterers from zodiacal light photopolarimetry. Planet. Space Sci. 21(12), 2149–2155 (1973) ADSCrossRefGoogle Scholar
  87. R. Dumont, A.C. Levasseur-Regourd, Zodiacal light photopolarimetry, IV: annual variations of brightness and the symmetry plane of the zodiacal cloud: absence of solar-cycle variations. Astron. Astrophys. 64, 9–16 (1978) ADSGoogle Scholar
  88. R. Dumont, A.L. Levasseur-Regourd, Zodiacal light gathered along the line of sight: retrieval of the local scattering coefficient from photometric surveys of the ecliptic plane. Planet. Space Sci. 33(1), 1–9 (1985) ADSCrossRefGoogle Scholar
  89. R. Dumont, F. Sanchez, Zodiacal light photopolarimetry, I: observations, reductions, disturbing phenomena, accuracy; II: gradients along the ecliptic and the phase functions of interplanetary matter. Astron. Astrophys. 38, 397–403 (1975a) ADSGoogle Scholar
  90. R. Dumont, F. Sanchez, Zodiacal light photopolarimetry, II: gradients along the ecliptic and the phase functions of interplanetary matter. Astron. Astrophys. 38, 405 (1975b) ADSGoogle Scholar
  91. J. Duprat, C. Engrand, M. Maurette, F. Naulin, G. Kurat, M. Gounelle, The micrometeorite mass flux as recorded in Dome C central Antarctic surface snow. Meteorit. Planet. Sci. Suppl. 41, 5239 (2006) ADSGoogle Scholar
  92. J. Duprat, C. Engrand, M. Maurette, G. Kurat, M. Gounelle, C. Hammer, Micrometeorites from central Antarctic snow: the CONCORDIA collection. Adv. Space Res. 39, 605–611 (2007).  https://doi.org/10.1016/j.asr.2006.05.029 ADSCrossRefGoogle Scholar
  93. J. Duprat, E. Dobrică, C. Engrand, J. Aléon, Y. Marrocchi, S. Mostefaoui, A. Meibom, H. Leroux, J.N. Rouzaud, M. Gounelle, F. Robert, Extreme deuterium excesses in ultracarbonaceous micrometeorites from central Antarctic snow. Science 328, 742 (2010).  https://doi.org/10.1126/science.1184832 ADSCrossRefGoogle Scholar
  94. J. Duprat, N. Bardin, C. Engrand, D. Baklouti, R. Brunetto, E. Dartois, L. Delauche, M. Godard, J.L. Guerquin-Kern, G. Slodzian, T.D. Wu, Isotopic analysis of organic matter in ultra-carbonaceous antarctic micrometeorites, in 77th Annual Meeting of the Meteoritical Society. LPI Contributions, vol. 1800 (2014), p. 5341 Google Scholar
  95. T.E. Economou, S.F. Green, D.E. Brownlee, B.C. Clark, Dust flux monitor instrument measurements during Stardust-NExT Flyby of Comet 9P/Tempel 1. Icarus 222, 526–539 (2013).  https://doi.org/10.1016/j.icarus.2012.09.019 ADSCrossRefGoogle Scholar
  96. C. Engrand, M. Maurette, Carbonaceous micrometeorites from Antarctica. Meteorit. Planet. Sci. 33, 565–580 (1998).  https://doi.org/10.1111/j.1945-5100.1998.tb01665.x ADSCrossRefGoogle Scholar
  97. C. Engrand, E. Deloule, F. Robert, M. Maurette, G. Kurat, Extraterrestrial water in micrometeorites and cosmic spherules from Antarctica: an ion microprobe study. Meteorit. Planet. Sci. 34, 773–786 (1999a).  https://doi.org/10.1111/j.1945-5100.1999.tb01390.x ADSCrossRefGoogle Scholar
  98. C. Engrand, K.D. McKeegan, L.A. Leshin, Oxygen isotopic compositions of individual minerals in Antarctic micrometeorites: further links to carbonaceous chondrites. Geochim. Cosmochim. Acta 63, 2623–2636 (1999b).  https://doi.org/10.1016/S0016-7037(99)00160-X ADSCrossRefGoogle Scholar
  99. C. Engrand, K.D. McKeegan, L.A. Leshin, J.P. Bradley, D.E. Brownlee, Oxygen isotopic compositions of interplanetary dust particles: 16O-Excess in a GEMS-rich IDP, in Lunar and Planetary Science Conference, vol. 30 (1999c) Google Scholar
  100. C. Engrand, K.D. McKeegan, L.A. Leshin, G.F. Herzog, C. Schnabel, L.E. Nyquist, D.E. Brownlee, Isotopic compositions of oxygen, iron, chromium, and nickel in cosmic spherules: toward a better comprehension of atmospheric entry heating effects. Geochim. Cosmochim. Acta 69, 5365–5385 (2005).  https://doi.org/10.1016/j.gca.2005.07.002 ADSCrossRefGoogle Scholar
  101. C. Engrand, J. Duprat, M. Maurette, M. Gounelle, Fe-Ni sulfides in Concordia Antarctic micrometeorites, in Lunar and Planetary Science Conference, vol. 38 (2007), p. 1668 Google Scholar
  102. C. Engrand, K. Benzerara, H. Leroux, J. Duprat, E. Dartois, N. Bardin, L. Delauche, Carbonaceous phases and mineralogy of ultracarbonaceous Antarctic micrometeorites identified by C- and N-XANES/STXM and TEM, in Lunar and Planetary Science Conference, vol. 46 (2015), p. 1902 Google Scholar
  103. E.M. Epifani, C. Snodgrass, D. Perna, M. Dall’Ora, P. Palumbo, V. Della Corte, A. Alvarez-Candal, M. Melita, A. Rotundi, Photometry of the Oort Cloud comet C/2009 P1 (Garradd): pre-perihelion observations at 5.7 and 2.5 AU. Planet. Space Sci. 132, 23–31 (2016) ADSCrossRefGoogle Scholar
  104. D. Fixsen, E. Dwek, The zodiacal emission spectrum as determined by cobe and its implications. Astrophys. J. 578(2), 1009 (2002) ADSCrossRefGoogle Scholar
  105. C. Floss, F.J. Stadermann, Isotopically primitive interplanetary dust particles of cometary origin: evidence from nitrogen isotopic compositions, in Lunar and Planetary Science Conference, ed. by S. Mackwell, E. Stansbery (2004), p. 1281 Google Scholar
  106. G.J. Flynn, D.D. Durda, Chemical and mineralogical size segregation in the impact disruption of inhomogeneous, anhydrous meteorites. Planet. Space Sci. 52, 1129–1140 (2004).  https://doi.org/10.1016/j.pss.2004.07.010 ADSCrossRefGoogle Scholar
  107. G.J. Flynn, S. Wirick, L.P. Keller, Organic grain coatings in primitive interplanetary dust particles: implications for grain sticking in the Solar Nebula. Earth Planets Space 65, 1159–1166 (2013).  https://doi.org/10.5047/eps.2013.05.007 ADSCrossRefGoogle Scholar
  108. G.J. Flynn, L.R. Nittler, C. Engrand, Composition of cosmic dust: sources and implications for the early solar system. Elements 12(3), 177 (2016).  https://doi.org/10.2113/gselements.12.3.177 CrossRefGoogle Scholar
  109. S. Fornasier, M. Lazzarin, C. Barbieri, M.A. Barucci, Spectroscopic comparison of aqueous altered asteroids with CM2 carbonaceous chondrite meteorites. Astron. Astrophys. Suppl. Ser. 135, 65–73 (1999).  https://doi.org/10.1051/aas:1999161 ADSCrossRefGoogle Scholar
  110. N. Fray, A. Bardyn, H. Cottin, K. Altwegg, D. Baklouti, C. Briois, L. Colangeli, C. Engrand, H. Fischer, A. Glasmachers, E. Grün, G. Haerendel, H. Henkel, H. Höfner, K. Hornung, E.K. Jessberger, A. Koch, H. Krüger, Y. Langevin, H. Lehto, K. Lehto, L. Le Roy, S. Merouane, P. Modica, F.R. Orthous-Daunay, J. Paquette, F. Raulin, J. Rynö, R. Schulz, J. Silén, S. Siljeström, W. Steiger, O. Stenzel, T. Stephan, L. Thirkell, R. Thomas, K. Torkar, K. Varmuza, K.P. Wanczek, B. Zaprudin, J. Kissel, M. Hilchenbach, High-molecular-weight organic matter in the particles of comet 67P/Churyumov-Gerasimenko. Nature 538, 72–74 (2016).  https://doi.org/10.1038/nature19320 ADSCrossRefGoogle Scholar
  111. N. Fray, A. Bardyn, H. Cottin, D. Baklouti, C. Briois, C. Engrand, H. Fischer, K. Hornung, R. Isnard, Y. Langevin, H. Lehto, L. Le Roy, E.M. Mellado, S. Merouane, P. Modica, F.R. Orthous-Daunay, J. Paquette, J. Rynö, R. Schulz, J. Silén, S. Siljeström, O. Stenzel, L. Thirkell, K. Varmuza, B. Zaprudin, J. Kissel, M. Hilchenbach, Nitrogen-to-carbon atomic ratio measured by COSIMA in the particles of comet 67P/Churyumov-Gerasimenko. Mon. Not. R. Astron. Soc. 469, S506–S516 (2017).  https://doi.org/10.1093/mnras/stx2002 CrossRefGoogle Scholar
  112. P.C. Frisch, J.M. Dorschner, J. Geiss, J.M. Greenberg, E. Grün, M. Landgraf, P. Hoppe, A.P. Jones, W. Krätschmer, T.J. Linde, G.E. Morfill, W. Reach, J.D. Slavin, J. Svestka, A.N. Witt, G.P. Zank, Dust in the local interstellar wind. Astrophys. J. 525, 492–516 (1999) ADSCrossRefGoogle Scholar
  113. A. Fujiwara, J. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano, M. Yoshikawa, D.J. Scheeres, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A.M. Nakamura, R. Nakamura, S. Sasaki, K. Uesugi, The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330–1334 (2006).  https://doi.org/10.1126/science.1125841 ADSCrossRefGoogle Scholar
  114. M. Fulle, Dust from short-period comet P/Schwassmann-Wachmann 1 and replenishment of the interplanetary dust cloud. Nature 359, 42–44 (1992) ADSCrossRefGoogle Scholar
  115. M. Fulle, Motion of Cometary Dust (2004), pp. 565–575 Google Scholar
  116. M.J. Gaffey, T.B. McCord, Asteroid surface materials—mineralogical characterizations from reflectance spectra. Space Sci. Rev. 21, 555–628 (1978).  https://doi.org/10.1007/BF00240908 ADSCrossRefGoogle Scholar
  117. D.P. Galligan, W.J. Baggaley, Wavelet enhancement for detecting shower structure in radar meteoroid data, I: methodology, in IAU Colloq. 181: Dust in the Solar System and Other Planetary Systems, vol. 15, ed. by S.F. Green, I.P. Williams, J.A.M. McDonnell, N. McBride (2002), p. 42 Google Scholar
  118. D.P. Galligan, W.J. Baggaley, The orbital distribution of radar-detected meteoroids of the Solar system dust cloud. Mon. Not. R. Astron. Soc. 353, 422–446 (2004).  https://doi.org/10.1111/j.1365-2966.2004.08078.x ADSCrossRefGoogle Scholar
  119. D.P. Galligan, W.J. Baggaley, The radiant distribution of AMOR radar meteors. Mon. Not. R. Astron. Soc. 359, 551–560 (2005).  https://doi.org/10.1111/j.1365-2966.2005.08918.x ADSCrossRefGoogle Scholar
  120. M.J. Genge, Koronis asteroid dust within Antarctic ice. Geology 36(9), 687–690 (2008).  https://doi.org/10.1130/G24493A.1 ADSCrossRefGoogle Scholar
  121. M.J. Genge, M.M. Grady, R. Hutchison, The textures and compositions of fine-grained Antarctic micrometeorites—implications for comparisons with meteorites. Geochim. Cosmochim. Acta 61, 5149 (1997).  https://doi.org/10.1016/S0016-7037(97)00308-6 ADSCrossRefGoogle Scholar
  122. M.J. Genge, A. Gileski, M.M. Grady, Chondrules in Antarctic micrometeorites. Meteorit. Planet. Sci. 40, 225 (2005).  https://doi.org/10.1111/j.1945-5100.2005.tb00377.x ADSCrossRefGoogle Scholar
  123. M.J. Genge, C. Engrand, M. Gounelle, S. Taylor, The classification of micrometeorites. Meteorit. Planet. Sci. 43, 497–515 (2008).  https://doi.org/10.1111/j.1945-5100.2008.tb00668.x ADSCrossRefGoogle Scholar
  124. R. Giese, Light scattering by small particles and models of interplanetary matter derived from the zodiacal light. Space Sci. Rev. 1(3), 589–611 (1963) ADSCrossRefGoogle Scholar
  125. R. Giese, Optical properties of single-component zodiacal light models. Planet. Space Sci. 21(3), 513–521 (1973) ADSCrossRefGoogle Scholar
  126. R. Giese, K. Weiss, R. Zerull, T. Ono, Large fluffy particles-a possible explanation of the optical properties of interplanetary dust. Astron. Astrophys. 65, 265–272 (1978) ADSGoogle Scholar
  127. J.C. Gómez Martín, D.L. Bones, J.D. Carrillo-Sánchez, A.D. James, J.M. Trigo-Rodríguez, B. Fegley Jr., J.M.C. Plane, Novel experimental simulations of the atmospheric injection of meteoric metals. Astrophys. J. 836, 212 (2017).  https://doi.org/10.3847/1538-4357/aa5c8f ADSCrossRefGoogle Scholar
  128. M. Gounelle, M.E. Zolensky, J.C. Liou, P.A. Bland, O. Alard, Mineralogy of carbonaceous chondritic microclasts in howardites: identification of C2 fossil micrometeorites. Geochim. Cosmochim. Acta 67, 507–527 (2003).  https://doi.org/10.1016/S0016-7037(02)00985-7 ADSCrossRefGoogle Scholar
  129. M. Gounelle, C. Engrand, O. Alard, P.A. Bland, M.E. Zolensky, S.S. Russell, J. Duprat, Hydrogen isotopic composition of water from fossil micrometeorites in howardites. Geochim. Cosmochim. Acta 69, 3431–3443 (2005a).  https://doi.org/10.1016/j.gca.2004.12.021 ADSCrossRefGoogle Scholar
  130. M. Gounelle, C. Engrand, M. Maurette, G. Kurat, K.D. McKeegan, F. Brandsttter, Small Antarctic micrometeorites: a mineralogical and in situ oxygen isotope study. Meteorit. Planet. Sci. 40, 917 (2005b).  https://doi.org/10.1111/j.1945-5100.2005.tb00163.x ADSCrossRefGoogle Scholar
  131. J. Gradie, E. Tedesco, Compositional structure of the asteroid belt. Science 216, 1405–1407 (1982).  https://doi.org/10.1126/science.216.4553.1405 ADSCrossRefGoogle Scholar
  132. M.M. Grady, C.T. Pillinger, Carbon isotope relationships in winonaites and forsterite chondrites. Geochim. Cosmochim. Acta 50, 255–263 (1986).  https://doi.org/10.1016/0016-7037(86)90174-2 ADSCrossRefGoogle Scholar
  133. A.L. Graps, E. Grün, H. Svedhem, H. Krüger, M. Horányi, A. Heck, S. Lammers, Io as a source of the jovian dust streams. Nature 405, 48–50 (2000) ADSCrossRefGoogle Scholar
  134. S.F. Green, J.A.M. McDonnell, N. McBride, M.T.S.H. Colwell, A.J. Tuzzolino, T.E. Economou, P. Tsou, B.C. Clark, D.E. Brownlee, The dust mass distribution of comet 81P/Wild 2. J. Geophys. Res., Planets 109(E18), E12S04 (2004).  https://doi.org/10.1029/2004JE002318 ADSCrossRefGoogle Scholar
  135. A. Grigorieva, P. Thébault, P. Artymowicz, A. Brandeker, Survival of icy grains in debris discs. The role of photosputtering. Astron. Astrophys. 475, 755–764 (2007a).  https://doi.org/10.1051/0004-6361:20077686. arXiv:0709.0811 ADSCrossRefGoogle Scholar
  136. A. Grigorieva, P. Thébault, P. Artymowicz, A. Brandeker, Survival of icy grains in debris disks: the role of photosputtering. Astron. Astrophys. 475, 755–764 (2007b) ADSCrossRefGoogle Scholar
  137. M. Gritsevich, D. Koschny, Constraining the luminous efficiency of meteors. Icarus 212, 877–884 (2011).  https://doi.org/10.1016/j.icarus.2011.01.033 ADSCrossRefGoogle Scholar
  138. E. Grün, M. Landgraf, Collisional consequences of big interstellar grains. J. Geophys. Res. 105, 10,291–10,298 (2000) ADSCrossRefGoogle Scholar
  139. E. Grün, N. Pailer, H. Fechtig, J. Kissel, Orbital and physical characteristics of micrometeoroids in the inner solar system as observed by HELIOS 1. Planet. Space Sci. 28, 333–349 (1980).  https://doi.org/10.1016/0032-0633(80)90022-7 ADSCrossRefGoogle Scholar
  140. E. Grün, H.A. Zook, H. Fechtig, R.H. Giese, Collisional balance of the meteoritic complex. Icarus 62, 244–272 (1985).  https://doi.org/10.1016/0019-1035(85)90121-6 ADSCrossRefGoogle Scholar
  141. E. Grün, H. Zook, M. Baguhl, A. Balogh, S. Bame, H. Fechtig, R. Forsyth, M. Hanner, M. Horanyi, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J. McDonnel, G. Morfill, J. Phillips, C. Polanskey, G. Schwehm, N. Siddique, P. Staubach, J. Svestka, A. Taylor, Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362, 428–430 (1993a) ADSCrossRefGoogle Scholar
  142. E. Grün, H.A. Zook, M. Baguhl, A. Balogh, S. Bame, H. Fechtig, R. Forsyth, M. Manner, M. Horanyi, J. Kissel et al., Discovery of jovian dust streams and interstellar grains by the Ulysses spacecraft. Nature 362(6419), 428–430 (1993b) ADSCrossRefGoogle Scholar
  143. E. Grün, H.A. Zook, M. Baguhl, A. Balogh, S.J. Bame, H. Fechtig, R. Forsyth, M.S. Hanner, M. Horanyi, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, J.L. Phillips, C. Polanskey, G. Schwehm, N. Siddique, P. Staubach, J. Svestka, A. Taylor, Discovery of Jovian dust streams and interstellar grains by the ULYSSES spacecraft. Nature 362, 428–430 (1993c).  https://doi.org/10.1038/362428a0 ADSCrossRefGoogle Scholar
  144. E. Grün, B. Gustafson, I. Mann, M. Baguhl, G.E. Morfill, P. Staubach, A. Taylor, H.A. Zook, Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924 (1994) ADSGoogle Scholar
  145. E. Grün, M. Baguhl, D.P. Hamilton, R. Riemann, H.A. Zook, S. Dermott, H. Fechtig, B.A. Gustafson, M.S. Hanner, M. Horányi, K.K. Khurana, J. Kissel, M. Kivelson, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, Constraints from Galileo observations on the origin of jovian dust streams. Nature 381, 395–398 (1996).  https://doi.org/10.1038/381395a0 ADSCrossRefGoogle Scholar
  146. E. Grün, P. Staubach, M. Baguhl, D.P. Hamilton, H.A. Zook, S. Dermott, B.A. Gustafson, H. Fechtig, J. Kissel, D. Linkert, G. Linkert, R. Srama, M.S. Hanner, C. Polanskey, M. Horányi, B.A. Lindblad, I. Mann, J.A.M. McDonnell, G.E. Morfill, G. Schwehm, South-north and radial traverses through the interplanetary dust cloud. Icarus 129, 270–288 (1997).  https://doi.org/10.1006/icar.1997.5789 ADSCrossRefGoogle Scholar
  147. E. Grün, M. Baguhl, H. Svedhem, H.A. Zook, In situ Measurements of Cosmic Dust (2001), p. 295 Google Scholar
  148. E. Grün, R. Srama, M. Horányi, H. Krüger, R. Soja, V. Sterken, Z. Sternovsky, P. Strub, Comparative analysis of the ESA and NASA interplanetary meteoroid enviroment models, in 6th European Conference on Space Debris. ESA Special Publication, vol. 723 (2013), p. 36 Google Scholar
  149. P.S. Gural, Fully correcting for the spread in meteor radiant positions due to gravitational attraction. J. Int.l Meteor Org. 29, 134–138 (2001) ADSGoogle Scholar
  150. D.A. Gurnett, E. Grun, D. Gallagher, W.S. Kurth, F.L. Scarf, Micron-sized particles detected near Saturn by the Voyager plasma wave instrument. Icarus 53, 236–254 (1983).  https://doi.org/10.1016/0019-1035(83)90145-8 ADSCrossRefGoogle Scholar
  151. D.A. Gurnett, T.F. Averkamp, F.L. Scarf, E. Grun, Dust particles detected near Giacobini-Zinner by the ICE plasma wave instrument. Geophys. Res. Lett. 13, 291–294 (1986).  https://doi.org/10.1029/GL013i003p00291 ADSCrossRefGoogle Scholar
  152. D.A. Gurnett, W.S. Kurth, K.L. Scarf, J.A. Burns, J.N. Cuzzi, Micron-sized particle impacts detected near Uranus by the Voyager 2 plasma wave instrument. J. Geophys. Res. Space Phys. 92, 14,959–14,968 (1987).  https://doi.org/10.1029/JA092iA13p14959 ADSCrossRefGoogle Scholar
  153. D.A. Gurnett, W.S. Kurth, L.J. Granroth, S.C. Allendorf, R.L. Poynter, Micron-sized particles detected near Neptune by the Voyager 2 plasma wave instrument. J. Geophys. Res. Space Phys. 96, 19 (1991).  https://doi.org/10.1029/91JA01270 CrossRefGoogle Scholar
  154. D.A. Gurnett, J.A. Ansher, W.S. Kurth, L.J. Granroth, Micron-sized dust particles detected in the outer solar system by the Voyager 1 and 2 plasma wave instruments. Geophys. Res. Lett. 24(24), 3125–3128 (1997) ADSCrossRefGoogle Scholar
  155. D.A. Gurnett, W.S. Kurth, D.L. Kirchner, G.B. Hospodarsky, T.F. Averkamp, P. Zarka, A. Lecacheux, R. Manning, A. Roux, P. Canu, N. Cornilleau-Wehrlin, P. Galopeau, A. Meyer, R. Boström, G. Gustafsson, J.E. Wahlund, L. Åhlen, H.O. Rucker, H.P. Ladreiter, W. Macher, L.J.C. Woolliscroft, H. Alleyne, M.L. Kaiser, M.D. Desch, W.M. Farrell, C.C. Harvey, P. Louarn, P.J. Kellogg, K. Goetz, A. Pedersen, The Cassini radio and plasma wave investigation. Space Sci. Rev. 114, 395–463 (2004).  https://doi.org/10.1007/s11214-004-1434-0 ADSCrossRefGoogle Scholar
  156. B.A.S. Gustafson, Comet ejection and dynamics of nonspherical dust particles and meteoroids. Astrophys. J. 337, 945–949 (1989).  https://doi.org/10.1086/167164 ADSCrossRefGoogle Scholar
  157. B.A.S. Gustafson, Physics of zodiacal dust. Annu. Rev. Earth Planet. Sci. 22, 553–595 (1994).  https://doi.org/10.1146/annurev.ea.22.050194.003005 ADSCrossRefGoogle Scholar
  158. E. Hadamcik, A.C. Levasseur-Regourd, Imaging polarimetry of cometary dust: different comets and phase angles. J. Quant. Spectrosc. Radiat. Transf. 79, 661–678 (2003) ADSCrossRefGoogle Scholar
  159. M. Hajduková Jr, On the frequency of interstellar meteoroids. Astron. Astrophys. 288, 330–334 (1994) ADSGoogle Scholar
  160. M. Hajduková, Meteors in the IAU meteor data center on hyperbolic orbits. Earth Moon Planets 102, 67–71 (2008).  https://doi.org/10.1007/s11038-007-9171-5 ADSCrossRefGoogle Scholar
  161. M. Hajduková Jr, Interstellar meteoroids in the Japanese tv catalogue. Publ. Astron. Soc. Jpn. 63, 481–487 (2011).  https://doi.org/10.1093/pasj/63.3.481 ADSCrossRefGoogle Scholar
  162. M. Hajduková Jr, The occurrence of interstellar particles in the vicinity of the Sun an overview—25 years of research, in International Meteor Conference Egmond, ed. by A. Roggemans, P. Roggemans, the Netherlands, 2–5 June 2016 (2016), pp. 105–110 Google Scholar
  163. M. Hajduková, L. Kornoš, J. Tóth, Frequency of hyperbolic and interstellar meteoroids. Meteorit. Planet. Sci. 49, 63–68 (2014a).  https://doi.org/10.1111/maps.12119 ADSCrossRefGoogle Scholar
  164. M. Hajduková Jr, L. Kornoš, J. Tóth, Hyperbolic orbits in the EDMOND. Meteoroids 2013, 289–295 (2014b) ADSGoogle Scholar
  165. M. Hajduková, V.J. Sterken, P. Wiegert, Interstellar Meteoroids (2018) Google Scholar
  166. I. Halliday, A.A. Griffin, A.T. Blackwell, Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids. Meteorit. Planet. Sci. 31, 185–217 (1996).  https://doi.org/10.1111/j.1945-5100.1996.tb02014.x ADSCrossRefGoogle Scholar
  167. D.P. Hamilton, E. Grün, M. Baguhl, Electromagnetic escape of dust from the solar system. Int. Astron. Union Colloq. 150, 31 (1996).  https://doi.org/10.1017/S0252921100501225 CrossRefGoogle Scholar
  168. D. Han, A.R. Poppe, M. Piquette, E. Grün, M. Horányi, Constraints on dust production in the Edgeworth-Kuiper Belt from Pioneer 10 and New Horizons measurement. Geophys. Res. Lett. 38, L24102 (2011) ADSGoogle Scholar
  169. M. Hanner, R. Giese, K. Weiss, R. Zerull, On the definition of albedo and application to irregular particles. Astron. Astrophys. 104, 42–46 (1981) ADSGoogle Scholar
  170. M.S. Hanner, M.E. Zolensky, The mineralogy of cometary dust, in Lecture Notes in Physics, vol. 815, ed. by T. Henning (Springer, Berlin, 2010), pp. 203–232.  https://doi.org/10.1007/978-3-642-13259-9_4 CrossRefGoogle Scholar
  171. V. Haudebourg, M. Cabane, A.C. Levasseur-Regourd, Theoretical polarimetric responses of fractal aggregates, in relation with experimental studies of dust in the solar system. Phys. Chem. Earth, Part C, Sol.-Terr. Planet. Sci. 24(5), 603–608 (1999) Google Scholar
  172. R.L. Hawkes, S.C. Woodworth, Optical detection of two meteoroids from interstellar space. J. R. Astron. Soc. Can. 91, 218 (1997) ADSGoogle Scholar
  173. G.S. Hawkins, Variation in the occurrence rate of meteors. Astron. J. 61, 386 (1956).  https://doi.org/10.1086/107367 ADSCrossRefGoogle Scholar
  174. G.S. Hawkins, Symposium: small meteoric particles in the earth’s neighborhood: radar determination of meteor orbits. Astron. J. 67, 241 (1962).  https://doi.org/10.1086/108702 ADSCrossRefGoogle Scholar
  175. G.S. Hawkins, The Harvard radio meteor project. Smithson. Contrib. Astrophys. 7, 53 (1963) ADSGoogle Scholar
  176. G.S. Hawkins, E.K.L. Upton, The influx rate of meteors in the Earth’s atmosphere. Astrophys. J. 128, 727 (1958).  https://doi.org/10.1086/146585 ADSCrossRefGoogle Scholar
  177. G.F.H. Herzog, S. Xue, G.S. Hall, L.E. Nyquist, C. Shih, H. Wiesmann, D.E. Brownlee, Isotopic and elemental composition of iron, nickel, and chromium in type I deep-sea spherules: implications for origin and composition of the parent micrometeoroids. Geochim. Cosmochim. Acta 63, 1443–1457 (1999).  https://doi.org/10.1016/S0016-7037(99)00011-3 ADSCrossRefGoogle Scholar
  178. K.A. Hill, L.A. Rogers, R.L. Hawkes, High geocentric velocity meteor ablation. Astron. Astrophys. 444, 615–624 (2005).  https://doi.org/10.1051/0004-6361:20053053 ADSCrossRefGoogle Scholar
  179. J.K. Hillier, S.F. Green, N. McBride, N. Altobelli, F. Postberg, S. Kempf, J. Schwanethal, R. Srama, J.A.M. McDonnell, E. Grün, Interplanetary dust detected by the Cassini CDA Chemical Analyser. Icarus 190, 643–654 (2007).  https://doi.org/10.1016/j.icarus.2007.03.024 ADSCrossRefGoogle Scholar
  180. T. Hiroi, C.M. Pieters, M.E. Zolensky, M.E. Lipschutz, Evidence of thermal metamorphism on the C, G, B, and F asteroids. Science 261, 1016–1018 (1993).  https://doi.org/10.1126/science.261.5124.1016 ADSCrossRefGoogle Scholar
  181. H.J. Hoffmann, H. Fechtig, E. Grün, J. Kissel, First results of the micrometeoroid experiment S 215 on the HEOS 2 satellite. Planet. Space Sci. 23, 215–224 (1975a).  https://doi.org/10.1016/0032-0633(75)90080-X ADSCrossRefGoogle Scholar
  182. H.J. Hoffmann, H. Fechtig, E. Grün, J. Kissel, Temporal fluctuations and anisotropy of the micrometeoroid flux in the earth-moon system measured by HEOS 2. Planet. Space Sci. 23, 985–991 (1975b).  https://doi.org/10.1016/0032-0633(75)90186-5 ADSCrossRefGoogle Scholar
  183. P. Hoppe, G. Kurat, J. Walter, M. Maurette, Trace elements and oxygen isotopes in a CAI-bearing micrometeorite from Antarctica, in Lunar and Planetary Science Conference, vol. 26 (1995) Google Scholar
  184. P. Horálek, L.L. Christensen, D. Nesvornỳ, R. Davies, Light phenomena over the eso observatories, III: zodiacal light. Messenger 164, 45–47 (2016) ADSGoogle Scholar
  185. M. Horányi et al., The student dust counter on the New Horizons mission. Space Sci. Rev. 140, 387–402 (2008) ADSCrossRefGoogle Scholar
  186. F. Horz, R.P. Bernhard, Compositional analysis and classification of projectile residues in LDEF impact craters. NASA STI/Recon technical report No. 93 (1992) Google Scholar
  187. F. Hörz, E. Schneider, D.E. Gault, J.B. Hartung, D.E. Brownlee, Catastrophic rupture of lunar rocks—a Monte Carlo simulation. Moon 13, 235–258 (1975).  https://doi.org/10.1007/BF00567517 ADSCrossRefGoogle Scholar
  188. W. Huang, X. Chu, C.S. Gardner, J.D. Carrillo-Sánchez, W. Feng, J.M.C. Plane, D. Nesvorný, Measurements of the vertical fluxes of atomic Fe and Na at the mesopause: Implications for the velocity of cosmic dust entering the atmosphere. Geophys. Res. Lett. 42, 169–175 (2015).  https://doi.org/10.1002/2014GL062390 ADSCrossRefGoogle Scholar
  189. D.H. Humes, Results of Pioneer 10 and 11 meteoroid experiments: interplanetary and near-Saturn. J. Geophys. Res. 85(A11), 5841–5852 (1980) ADSCrossRefGoogle Scholar
  190. G.R. Huss, The survival of presolar grains in solar system bodies, in American Institute of Physics Conference Series, vol. 402, ed. by T.J. Bernatowicz, E. Zinner (1997), pp. 721–748.  https://doi.org/10.1063/1.53338 CrossRefGoogle Scholar
  191. G.R. Huss, A.P. Meshik, J.B. Smith, C.M. Hohenberg, Presolar diamond, silicon carbide, and graphite in carbonaceous chondrites: implications for thermal processing in the solar nebula. Geochim. Cosmochim. Acta 67, 4823–4848 (2003).  https://doi.org/10.1016/j.gca.2003.07.019 ADSCrossRefGoogle Scholar
  192. G.R. Huss, A.E. Rubin, J.N. Grossman, Thermal Metamorphism in Chondrites (2006), pp. 567–586 Google Scholar
  193. M. Ishiguro, R. Nakamura, Y. Fujii, K. Morishige, H. Yano, H. Yasuda, S. Yokogawa, T. Mukai, First detection of visible zodiacal dust bands from ground-based observations. Astrophys. J. 511(1), 432 (1999) ADSCrossRefGoogle Scholar
  194. M. Ishiguro, H. Yang, F. Usui, J. Pyo, M. Ueno, T. Ootsubo, S.M. Kwon, T. Mukai, High-resolution imaging of the gegenschein and the geometric albedo of interplanetary dust. Astrophys. J. 767(1), 75 (2013) ADSCrossRefGoogle Scholar
  195. H.A. Ishii, J.P. Bradley, Z.R. Dai, M. Chi, A.T. Kearsley, M.J. Burchell, N.D. Browning, F. Molster, Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets. Science 319, 447 (2008).  https://doi.org/10.1126/science.1150683 ADSCrossRefGoogle Scholar
  196. I. Jakšová, V. Porubčan, J. Klačka, Structure and sources of the sporadic meteor background from video observations. Publ. Astron. Soc. Jpn. 67, 99 (2015).  https://doi.org/10.1093/pasj/psv068 ADSCrossRefGoogle Scholar
  197. D. James, M. Horányi, V. Hoxie, Polyvinylidene fluoride detector response to particle impacts. Rev. Sci. Instrum. 81(3), 034501 (2010).  https://doi.org/10.1063/1.3340880 ADSCrossRefGoogle Scholar
  198. D. Janches, S. Close, J.L. Hormaechea, N. Swarnalingam, A. Murphy, D. O’Connor, B. Vandepeer, B. Fuller, D.C. Fritts, C. Brunini, The Southern Argentina Agile MEteor Radar Orbital System (SAAMER-OS): an initial sporadic meteoroid orbital survey in the southern sky. Astrophys. J. 809, 36 (2015).  https://doi.org/10.1088/0004-637X/809/1/36 ADSCrossRefGoogle Scholar
  199. P. Jenniskens, Quantitative meteor spectroscopy: elemental abundances. Adv. Space Res. 39, 491–512 (2007).  https://doi.org/10.1016/j.asr.2007.03.040 ADSCrossRefGoogle Scholar
  200. P. Jenniskens, Meteoroid Streams and the Zodiacal Cloud (2015), pp. 281–295.  https://doi.org/10.2458/azu_uapress_9780816532131-ch015 CrossRefGoogle Scholar
  201. P. Jenniskens, Meteor showers in review. Planet. Space Sci. 143, 116–124 (2017).  https://doi.org/10.1016/j.pss.2017.01.008 ADSCrossRefGoogle Scholar
  202. P. Jenniskens, P. Gural, A. Berdeu, CAMSS: a spectroscopic survey of meteoroid elemental abundances. Meteoroids 2013, 117–124 (2014) ADSGoogle Scholar
  203. P. Jenniskens, Q. Nénon, J. Albers, P.S. Gural, B. Haberman, D. Holman, R. Morales, B.J. Grigsby, D. Samuels, C. Johannink, The established meteor showers as observed by CAMS. Icarus 266, 331–354 (2016a).  https://doi.org/10.1016/j.icarus.2015.09.013 ADSCrossRefGoogle Scholar
  204. P. Jenniskens, Q. Nénon, P.S. Gural, J. Albers, B. Haberman, B. Johnson, D. Holman, R. Morales, B.J. Grigsby, D. Samuels, C. Johannink, CAMS confirmation of previously reported meteor showers. Icarus 266, 355–370 (2016b).  https://doi.org/10.1016/j.icarus.2015.08.014 ADSCrossRefGoogle Scholar
  205. P. Jenniskens, Q. Nénon, P.S. Gural, J. Albers, B. Haberman, B. Johnson, R. Morales, B.J. Grigsby, D. Samuels, C. Johannink, CAMS newly detected meteor showers and the sporadic background. Icarus 266, 384–409 (2016c).  https://doi.org/10.1016/j.icarus.2015.11.009 ADSCrossRefGoogle Scholar
  206. D. Jewitt, L. Chizmadia, R. Grimm, D. Prialnik, Water in the small bodies of the solar system, in Protostars and Planets V (2007), pp. 863–878 Google Scholar
  207. J. Jones, Meteoroid engineering model—final report. Tech. rep., NASA/MSFC internal report SEE/CR-2004-400 (2004) Google Scholar
  208. J. Jones, P. Brown, Sporadic meteor radiant distributions - Orbital survey results. Mon. Not. R. Astron. Soc. 265, 524 (1993).  https://doi.org/10.1093/mnras/265.3.524 ADSCrossRefGoogle Scholar
  209. J. Jones, M. Campbell, S. Nikolova, Modelling of the sporadic meteoroid sources, in Meteoroids 2001 Conference, ed. by B. Warmbein. ESA Special Publication, vol. 495 (2001), pp. 575–580 Google Scholar
  210. T.J. Jopek, P.M. Jenniskens, The working group on meteor showers nomenclature: a history, current status and a call for contributions, in Meteoroids: the Smallest Solar System Bodies, ed. by W.J. Cooke, D.E. Moser, B.F. Hardin, D. Janches (2011), pp. 7–13 Google Scholar
  211. T.J. Jopek, Z. Kaňuchová, Current status of the IAU MDC Meteor Showers Database. Meteoroids 2013, 353–364 (2014) ADSGoogle Scholar
  212. T.J. Jopek, R. Rudawska, P. Bartczak, Meteoroid stream searching: the use of the vectorial elements. Earth Moon Planets 102, 73–78 (2008).  https://doi.org/10.1007/s11038-007-9197-8 ADSCrossRefGoogle Scholar
  213. A. Juhász, M. Horányi, Dynamics and distribution of nano-dust particles in the inner solar system. Geophys. Res. Lett. 40, 2500–2504 (2013).  https://doi.org/10.1002/grl.50535 ADSCrossRefGoogle Scholar
  214. L.P. Keller, K.L. Thomas, D.S. McKay, An interplanetary dust particle with links to CI chondrites. Geochim. Cosmochim. Acta 56, 1409–1412 (1992).  https://doi.org/10.1016/0016-7037(92)90072-Q ADSCrossRefGoogle Scholar
  215. L.P. Keller, K.L. Thomas, D.S. McKay, Carbon in primitive interplanetary dust particles, in Analysis of Interplanetary Dust Particles, ed. by E. Zolensky, T.L. Wilson, F.J.M. Rietmeijer, G.J. Flynn. American Institute of Physics Conference Series, vol. 310, (1994), p. 159.  https://doi.org/10.1063/1.46531 CrossRefGoogle Scholar
  216. L.P. Keller, S. Messenger, G.J. Flynn, S. Clemett, S. Wirick, C. Jacobsen, The nature of molecular cloud material in interplanetary dust. Geochim. Cosmochim. Acta 68, 2577–2589 (2004).  https://doi.org/10.1016/j.gca.2003.10.044 ADSCrossRefGoogle Scholar
  217. M.S. Kelley, C.E. Woodward, D.E. Harker, D.H. Wooden, R.D. Gehrz, H. Campins, M.S. Hanner, S.M. Lederer, D.J. Osip, J. Pittichová, E. Polomski, A Spitzer study of comets 2P/Encke, 67P/Churyumov-Gerasimenko, and C/2001 HT50 (LINEAR-NEAT). Astrophys. J. 651, 1256–1271 (2006).  https://doi.org/10.1086/507701. astro-ph/0607416 ADSCrossRefGoogle Scholar
  218. M.S. Kelley, Y.R. Fernández, J. Licandro, C.M. Lisse, W.T. Reach, M.F. A’Hearn, J. Bauer, H. Campins, A. Fitzsimmons, O. Groussin, P.L. Lamy, S.C. Lowry, K.J. Meech, J. Pittichová, C. Snodgrass, I. Toth, H.A. Weaver, The persistent activity of Jupiter-family comets at 3–7 AU. Icarus 225, 475–494 (2013) ADSCrossRefGoogle Scholar
  219. P.J. Kellogg, K. Goetz, S.J. Monson, Dust impact signals on the wind spacecraft. J. Geophys. Res. Space Phys. 121, 966–991 (2016).  https://doi.org/10.1002/2015JA021124 ADSCrossRefGoogle Scholar
  220. J.F. Kerridge, Carbon, hydrogen and nitrogen in carbonaceous chondrites abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 1707–1714 (1985).  https://doi.org/10.1016/0016-7037(85)90141-3 ADSCrossRefGoogle Scholar
  221. D.J. Kessler, Meteoroid environment model-1970 [Interplanetary and planetary]. NASA SP-8038, NASA (1970) Google Scholar
  222. J.B. Kikwaya, M. Campbell-Brown, P.G. Brown, Bulk density of small meteoroids. Astron. Astrophys. 530, A113 (2011).  https://doi.org/10.1051/0004-6361/201116431 CrossRefGoogle Scholar
  223. H. Kimura, Light-scattering properties of fractal aggregates: numerical calculations by a superposition technique and the discrete-dipole approximation. J. Quant. Spectrosc. Radiat. Transf. 70(4), 581–594 (2001) ADSCrossRefGoogle Scholar
  224. H. Kimura, I. Mann, Radiation pressure on porous micrometeoroids, in Meteroids, ed. by W.J. Baggaley, V. Porubcan (1999), p. 283. 1998 Google Scholar
  225. H. Kimura, I. Mann, D.A. Biesecker, E.K. Jessberger, Dust grains in the comae and tails of sungrazing comets: modeling of their mineralogical and morphological properties. Icarus 159, 529–541 (2002a).  https://doi.org/10.1006/icar.2002.6940 ADSCrossRefGoogle Scholar
  226. H. Kimura, H. Okamoto, T. Mukai, Radiation pressure and the Poynting-Robertson effect for fluffy dust particles. Icarus 157, 349–361 (2002b).  https://doi.org/10.1006/icar.2002.6849 ADSCrossRefGoogle Scholar
  227. H. Kimura, L. Kolokolova, I. Mann, Optical properties of cometary dust-constraints from numerical studies on light scattering by aggregate particles. Astron. Astrophys. 407(1), L5–L8 (2003) ADSCrossRefGoogle Scholar
  228. H. Kimura, L. Kolokolova, I. Mann, Light scattering by cometary dust numerically simulated with aggregate particles consisting of identical spheres. Astron. Astrophys. 449(3), 1243–1254 (2006) ADSCrossRefGoogle Scholar
  229. J. Kissel, F.R. Krueger, The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1. Nature 326, 755–760 (1987).  https://doi.org/10.1038/326755a0 ADSCrossRefGoogle Scholar
  230. W. Klöck, F.J. Stadermann, Mineralogical and chemical relationships of interplanetary dust particles micrometeorites and meteorites, in Analysis of Interplanetary Dust Particles, ed. by E. Zolensky, T.L. Wilson, F.J.M. Rietmeijer, G.J. Flynn. American Institute of Physics Conference Series, vol. 310 (1994), p. 51.  https://doi.org/10.1063/1.46523 CrossRefGoogle Scholar
  231. H. Kobayashi, J. Kimura, S. Yamamoto, S. Watanabe, T. Yamamoto, Ice sublimation of dust particles and their detection in the outer solar system. Earth Planets Space 62, 57–61 (2010) ADSCrossRefGoogle Scholar
  232. H. Kobayashi, H. Kimura, S.Watanabe, T. Yamamoto, S. Müller, Sublimation temperature of circumstellar dust particles and its importance for dust ring formation. Earth Planets Space 63, 1067 (2011) ADSCrossRefGoogle Scholar
  233. L. Kolokolova, H. Kimura, Effects of electromagnetic interaction in the polarization of light scattered by cometary and other types of cosmic dust. Astron. Astrophys. 513, A40 (2010) ADSzbMATHCrossRefGoogle Scholar
  234. L. Kolokolova, J. Hough, A.C. Levasseur-Regourd, Polarimetry of stars and planetary systems (Cambridge University Press, Cambridge, 2015) CrossRefGoogle Scholar
  235. D. Koschny, E. Drolshagen, S. Drolshagen, J. Kretschmer, T. Ott, G. Drolshagen, B. Poppe, Flux densities of meteoroids derived from optical double-station observations. Planet. Space Sci. 143, 230–237 (2017).  https://doi.org/10.1016/j.pss.2016.12.007 ADSCrossRefGoogle Scholar
  236. Y. Kozai, Secular perturbations of asteroids with high inclination and eccentricity. Astron. J. 67, 591 (1962).  https://doi.org/10.1086/108790 ADSMathSciNetCrossRefGoogle Scholar
  237. L. Kresak, Cometary dust trails and meteor storms. Astron. Astrophys. 279, 646–660 (1993) ADSGoogle Scholar
  238. H. Krüger, E. Grün, D.P. Hamilton, M. Baguhl, S. Dermott, H. Fechtig, B.A. Gustafson, M.S. Hanner, M. Horányi, J. Kissel, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, R. Riemann, G. Schwehm, R. Srama, H.A. Zook, Three years of Galileo dust data, II: 1993–1995. Planet. Space Sci. 47, 85–106 (1998).  https://doi.org/10.1016/S0032-0633(98)00097-X. astro-ph/9809318 ADSCrossRefGoogle Scholar
  239. H. Krüger, N. Altobelli, B. Anweiler, S.F. Dermott, V. Dikarev, A.L. Graps, E. Grün, B.A. Gustafson, D.P. Hamilton, M.S. Hanner, M. Horányi, J. Kissel, M. Landgraf, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, H.A. Zook, Five years of Ulysses dust data: 2000. Planet. Space Sci. 54, 932–956 (2006).  https://doi.org/10.1016/j.pss.2006.04.015. 2004 ADSCrossRefGoogle Scholar
  240. H. Krüger, V. Dikarev, B. Anweiler, S.F. Dermott, A.L. Graps, E. Grün, B.A. Gustafson, D.P. Hamilton, M.S. Hanner, M. Horányi, J. Kissel, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, Three years of Ulysses dust data: 2005. Planet. Space Sci. 58, 951–964 (2010).  https://doi.org/10.1016/j.pss.2009.11.002. to 2007. 0908.1279 ADSCrossRefGoogle Scholar
  241. M.J. Kuchner, C.C. Stark, Collisional grooming models of the Kuiper belt dust cloud. Astron. J. 140, 1007–1019 (2010) ADSCrossRefGoogle Scholar
  242. G. Kurat, C. Koeberl, T. Presper, F. Brandstätter, M. Maurette, Petrology and geochemistry of Antarctic micrometeorites. Geochim. Cosmochim. Acta 58, 3879–3904 (1994).  https://doi.org/10.1016/0016-7037(94)90369-7 ADSCrossRefGoogle Scholar
  243. G. Kurat, P. Hoppe, C. Engrand, A chondrule micrometeorite from antarctica with vapor-fractionated trace-element abundances. Meteorit. Planet. Sci. Suppl. 31, A75–A76 (1996) Google Scholar
  244. W.S. Kurth, T.F. Averkamp, D.A. Gurnett, Z. Wang, Cassini RPWS observations of dust in Saturn’s E ring. Planet. Space Sci. 54, 988–998 (2006).  https://doi.org/10.1016/j.pss.2006.05.011 ADSCrossRefGoogle Scholar
  245. S. Kwon, S. Hong, J. Weinberg, An observational model of the zodiacal light brightness distribution. New Astron. 10(2), 91–107 (2004) ADSCrossRefGoogle Scholar
  246. H. Laakso, R. Grard, A. Pedersen, G. Schwehm, Impacts of large dust particles on the VEGA spacecraft. Adv. Space Res. 9, 269–272 (1989).  https://doi.org/10.1016/0273-1177(89)90273-1 ADSCrossRefGoogle Scholar
  247. H. Lai, C.T. Russell, H. Wei, T. Zhang, The evolution of co-orbiting material in the orbit of 2201 Oljato from 1980 to 2012 as deduced from Pioneer Venus Orbiter and Venus Express magnetic records. Meteorit. Planet. Sci. 49, 28–35 (2014).  https://doi.org/10.1111/maps.12102 ADSCrossRefGoogle Scholar
  248. M. Landgraf, Modellierung der dynamik und interpretation der in-situ-messung interstellaren staubs in der lokalen umgebung des sonnensystems. PhD thesis, Ruprecht-Karls-Universität Heidelberg (1998) Google Scholar
  249. M. Landgraf, Modeling the motion and distribution of interstellar dust inside the heliosphere. J. Geophys. Res. 105, 10,303–10,316 (2000) ADSCrossRefGoogle Scholar
  250. M. Landgraf, J.C. Liou, H.A. Zook, E. Grün, Origins of solar system dust beyond Jupiter. Astron. J. 123, 2857–2861 (2002) ADSCrossRefGoogle Scholar
  251. J. Lasue, A.C. Levasseur-Regourd, N. Fray, H. Cottin, Inferring the interplanetary dust properties-from remote observations and simulations. Astron. Astrophys. 473(2), 641–649 (2007) ADSCrossRefGoogle Scholar
  252. J. Lasue, A. Levasseur-Regourd, A. Lazarian, Interplanetary dust, in Polarimetry of Stars and Planetary Systems, ed. by Kolokolova et al. (2015) Google Scholar
  253. D.S. Lauretta (OSIRIS-Rex Team), An overview of the OSIRIS-REx asteroid sample return mission, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 43 (2012), p. 2491 Google Scholar
  254. M.E. Lawler, D.E. Brownlee, CHON as a component of dust from comet Halley. Nature 359, 810–812 (1992).  https://doi.org/10.1038/359810a0 ADSCrossRefGoogle Scholar
  255. A. Lazarian, B. Andersson, T. Hoang, Grain alignment: role of radiative torques and paramagnetic relaxation, in Polarimetry of Stars and Planetary Systems, ed. by Kolokolova et al. (2015) Google Scholar
  256. C. Leinert, Zodiacal light—a measure of the interplanetary environment. Space Sci. Rev. 18(3), 281–339 (1975) ADSCrossRefGoogle Scholar
  257. C. Leinert, E. Grün, Interplanetary dust, in Physics of the Inner Heliosphere I, ed. by R. Schwenn, E. Marsch (Springer, Berlin, 1990), pp. 207–275 CrossRefGoogle Scholar
  258. C. Leinert, S. Roser, J. Buitrago, How to maintain the spatial distribution of interplanetary dust. Astron. Astrophys. 118, 345–357 (1983a) ADSzbMATHGoogle Scholar
  259. C. Leinert, S. Roser, J. Buitrago, How to maintain the spatial distribution of interplanetary dust. Astron. Astrophys. 118, 345–357 (1983b) ADSzbMATHGoogle Scholar
  260. C. Leinert, S. Bowyer, L. Haikala, M. Hanner, M. Hauser, A.C. Levasseur-Regourd, I. Mann, K. Mattila, W. Reach, W. Schlosser et al., The 1997 reference of diffuse night sky brightness. Astron. Astrophys. Suppl. Ser. 127(1), 1–99 (1998) ADSCrossRefGoogle Scholar
  261. A.C. Levasseur, J. Blamont, Satellite observations of intensity variations of the zodiacal light. Nature 246(5427), 26–28 (1973) ADSCrossRefGoogle Scholar
  262. A. Levasseur-Regourd, J. Renard, R. Dumont, Dust optical properties: a comparison between cometary and interplanetary grains. Adv. Space Res. 11(12), 175–182 (1991) ADSCrossRefGoogle Scholar
  263. A. Levasseur-Regourd, M. Cabane, J. Worms, V. Haudebourg, Physical properties of dust in the solar system: relevance of a computational approach and of measurements under microgravity conditions. Adv. Space Res. 20(8), 1585–1594 (1997) ADSCrossRefGoogle Scholar
  264. A.C. Levasseur-Regourd, Optical and thermal properties of zodiacal dust, in IAU Colloq. 150: Physics, Chemistry, and Dynamics of Interplanetary Dust, vol. 104, ed. by B.A.S. Gustafson, M.S. Hanner (Astron. Soc. of the Pacific Press, San Francisco, 1996a), p. 301 Google Scholar
  265. A.C. Levasseur-Regourd, Physical properties of dust grains deduced by optical probing techniques. Adv. Space Res. 17(12), 117–122 (1996b) ADSCrossRefGoogle Scholar
  266. A.C. Levasseur-Regourd, R. Dumont, Absolute photometry of zodiacal light. Astron. Astrophys. 84, 277–279 (1980) ADSGoogle Scholar
  267. A.C. Levasseur-Regourd, E. Hadamcik, J. Renard, Evidence for two classes of comets from their polarimetric properties at large phase angles. Astron. Astrophys. 313, 327–333 (1996) ADSGoogle Scholar
  268. A.C. Levasseur-Regourd, I. Mann, R. Dumont, M.S. Hanner, Optical and thermal properties of interplanetary dust, in Interplanetary Dust, ed. by E. Grün, B.A.S. Gustafson, S.F. Dermott, H. Fechtig (Springer, Berlin, 2001), pp. 57–94 CrossRefGoogle Scholar
  269. A.C. Levasseur-Regourd, T. Mukai, J. Lasue, Y. Okada, Physical properties of cometary and interplanetary dust. Planet. Space Sci. 55(9), 1010–1020 (2007) ADSCrossRefGoogle Scholar
  270. A.C. Levasseur-Regourd, J. Agarwal, H. Cottin, C. Engrand, G. Flynn, M. Fulle, T. Gombosi, Y. Langevin, J. Lasue, T. Mannel, S. Merounane, O. Poch, N. Thomas, A. Westphal, Cometary dust. Space Sci. Rev. 214, 64 (2018).  https://doi.org/10.1007/s11214-018-0496-3 ADSCrossRefGoogle Scholar
  271. L.F. Lim, L.R. Nittler, Elemental composition of 433 eros: new calibration of the NEAR-Shoemaker XRS data. Icarus 200, 129–146 (2009).  https://doi.org/10.1016/j.icarus.2008.09.018 ADSCrossRefGoogle Scholar
  272. J.C. Liou, H.A. Zook, Evolution of interplanetary dust particles in mean motion resonances with planets. Icarus 128(2), 354–367 (1997) ADSCrossRefGoogle Scholar
  273. J.C. Liou, H.A. Zook, Signatures of the giant planets imprinted on the Edgeworth-Kuiper belt dust disk. Astron. J. 118, 580–590 (1999) ADSCrossRefGoogle Scholar
  274. J.C. Liou, H.A. Zook, S.F. Dermott, Kuiper belt dust grains as a source of interplanetary dust particles. Icarus 124, 429–440 (1996a).  https://doi.org/10.1006/icar.1996.0220 ADSCrossRefGoogle Scholar
  275. S.G. Love, D.E. Brownlee, A direct measurement of the terrestrial mass accretion rate of cosmic dust. Science 262, 550–553 (1993).  https://doi.org/10.1126/science.262.5133.550 ADSCrossRefGoogle Scholar
  276. K. Lumme, J. Rahola, J. Hovenier, Light scattering by dense clusters of spheres. Icarus 126(2), 455–469 (1997) ADSCrossRefGoogle Scholar
  277. D.M. Malaspina, L.B. Wilson, A database of interplanetary and interstellar dust detected by the Wind spacecraft. J. Geophys. Res. Space Phys. 121, 9369–9377 (2016).  https://doi.org/10.1002/2016JA023209 ADSCrossRefGoogle Scholar
  278. D.M. Malaspina, M. Horányi, A. Zaslavsky, K. Goetz, L.B. Wilson, K. Kersten, Interplanetary and interstellar dust observed by the Wind/WAVES electric field instrument. Geophys. Res. Lett. 41, 266–272 (2014).  https://doi.org/10.1002/2013GL058786 ADSCrossRefGoogle Scholar
  279. D.M. Malaspina, L.E. O’Brien, F. Thayer, Z. Sternovsky, A. Collette, Revisiting STEREO interplanetary and interstellar dust flux and mass estimates. J. Geophys. Res. Space Phys. 120, 6085–6100 (2015).  https://doi.org/10.1002/2015JA021352 ADSCrossRefGoogle Scholar
  280. I. Mann, Interstellar grains in the solar system: requirements for an analysis. Space Sci. Rev. 78(1), 259–264 (1996) ADSCrossRefGoogle Scholar
  281. I. Mann, H. Okamoto, T. Mukai, H. Kimura, Y. Kitada, Fractal aggregate analogues for near solar dust properties. Astron. Astrophys. 291, 1011–1018 (1994) ADSGoogle Scholar
  282. I. Mann, H. Kimura, D.A. Biesecker, B.T. Tsurutani, E. Grün, R.B. McKibben, J.C. Liou, R.M. MacQueen, T. Mukai, M. Guhathakurta et al., Dust near the sun. Space Sci. Rev. 110(3), 269–305 (2004) ADSCrossRefGoogle Scholar
  283. G. Matrajt, S. Taylor, G. Flynn, D. Brownlee, D. Joswiak, A nuclear microprobe study of the distribution and concentration of carbon and nitrogen in Murchison and Tagish lake meteorites, Antarctic micrometeorites, and IDPs: implications for astrobiology. Meteorit. Planet. Sci. 38, 1585–1600 (2003).  https://doi.org/10.1111/j.1945-5100.2003.tb00003.x ADSCrossRefGoogle Scholar
  284. G. Matrajt, S. Pizzarello, S. Taylor, D. Brownlee, Concentration and variability of the AIB amino acid in polar micrometeorites: implications for the exogenous delivery of amino acids to the primitive Earth. Meteorit. Planet. Sci. 39, 1849–1858 (2004).  https://doi.org/10.1111/j.1945-5100.2004.tb00080.x ADSCrossRefGoogle Scholar
  285. M. Maurette, Cometary micrometeorites in planetology, exobiology, and early climatology, in Comets and the Origin and Evolution of Life, ed. by P.J. Thomas, R.D. Hicks, C.F. Chyba, C.P. McKay (2006), p. 69.  https://doi.org/10.1007/3-540-33088-7_3 CrossRefGoogle Scholar
  286. M. Maurette, C. Hammer, N. Reeh, D.E. Brownlee, H.H. Thomsen, Placers of cosmic dust in the blue ice lakes of Greenland. Science 233, 869–872 (1986).  https://doi.org/10.1126/science.233.4766.869 ADSCrossRefGoogle Scholar
  287. M. Maurette, C. Jehanno, E. Robin, C. Hammer, Characteristics and mass distribution of extraterrestrial dust from the Greenland ice CAP. Nature 328, 699–702 (1987).  https://doi.org/10.1038/328699a0 ADSCrossRefGoogle Scholar
  288. M. Maurette, C. Olinger, M.C. Michel-Levy, G. Kurat, M. Pourchet, F. Brandstatter, M. Bourot-Denise, A collection of diverse micrometeorites recovered from 100 tonnes of Antarctic blue ice. Nature 351, 44–47 (1991).  https://doi.org/10.1038/351044a0 ADSCrossRefGoogle Scholar
  289. M. Maurette, C. Engrand, A. Brack, G. Kurat, S. Leach, M. Perreau, Carbonaceous phases in Antarctic micrometeorites and their mineralogical environment. Their contribution to the possible role of micrometeorites as “chondritic chemical reactors” in atmospheres, waters and/or ices, in Lunar and Planetary Science Conference, vol. 26 (1995) Google Scholar
  290. M. Maurette, J. Duprat, C. Engrand, M. Gounelle, G. Kurat, G. Matrajt, A. Toppani, Accretion of neon, organics, CO2, nitrogen and water from large interplanetary dust particles on the early Earth. Planet. Space Sci. 48, 1117–1137 (2000).  https://doi.org/10.1016/S0032-0633(00)00086-6 ADSCrossRefGoogle Scholar
  291. N. McBride, S.F. Green, J.A.M. McDonnell, Meteoroids and small sized debris in low earth orbit and at 1 Au: results of recent modelling. Adv. Space Res. 23, 73–82 (1999).  https://doi.org/10.1016/S0273-1177(98)00232-4 ADSCrossRefGoogle Scholar
  292. K.D. McKeegan, Ion microprobe measurements of H, C, O, Mg, and SI isotopic abundances in individual interplanetary dust particles. PhD thesis, Washington Univ., Seattle (1987a) Google Scholar
  293. K.D. McKeegan, Oxygen isotopes in refractory stratospheric dust particles—proof of extraterrestial origin. Science 237, 1468–1471 (1987b).  https://doi.org/10.1126/science.237.4821.1468 ADSCrossRefGoogle Scholar
  294. K.D. McKeegan, R.M. Walker, E. Zinner, Ion microprobe isotopic measurements of individual interplanetary dust particles. Geochim. Cosmochim. Acta 49, 1971–1987 (1985).  https://doi.org/10.1016/0016-7037(85)90091-2 ADSCrossRefGoogle Scholar
  295. H. McNamara, J. Jones, B. Kauffman, R. Suggs, W. Cooke, S. Smith, Meteoroid engineering model (MEM): a meteoroid model for the inner solar system. Earth Moon Planets 95, 123–139 (2004).  https://doi.org/10.1007/s11038-005-9044-8 ADSCrossRefGoogle Scholar
  296. A. Meibom, B.E. Clark, Invited review: evidence for the insignificance of ordinary chondritic material in the asteroid belt. Meteorit. Planet. Sci. 34, 7–24 (1999) ADSCrossRefGoogle Scholar
  297. D.D. Meisel, D. Janches, J.D. Mathews, Extrasolar micrometeors radiating from the vicinity of the local interstellar bubble. Astrophys. J. 567, 323–341 (2002).  https://doi.org/10.1086/322317 ADSCrossRefGoogle Scholar
  298. S. Messenger, Identification of molecular-cloud material in interplanetary dust particles. Nature 404, 968–971 (2000).  https://doi.org/10.1038/35010053 ADSCrossRefGoogle Scholar
  299. S. Messenger, L.P. Keller, F.J. Stadermann, R.M. Walker, E. Zinner, Samples of stars beyond the solar system: silicate grains in interplanetary dust. Science 300, 105–108 (2003).  https://doi.org/10.1126/science.1080576 ADSCrossRefGoogle Scholar
  300. N. Meyer-Vernet, P. Couturier, S. Hoang, C. Perche, J.L. Steinberg, J. Fainberg, C. Meetre, Plasma diagnosis from thermal noise and limits on dust flux or mass in comet Giacobini-Zinner. Science 232, 370–374 (1986).  https://doi.org/10.1126/science.232.4748.370 ADSCrossRefGoogle Scholar
  301. N. Meyer-Vernet, A. Lecacheux, M.L. Kaiser, D.A. Gurnett, Detecting nanoparticles at radio frequencies: jovian dust stream impacts on Cassini/RPWS. Geophys. Res. Lett. 36, L03103 (2009a).  https://doi.org/10.1029/2008GL036752 ADSCrossRefGoogle Scholar
  302. N. Meyer-Vernet, M. Maksimovic, A. Czechowski, I. Mann, I. Zouganelis, K. Goetz, M.L. Kaiser, O.C. St Cyr, J.L. Bougeret, S.D. Bale, Dust detection by the wave instrument on STEREO: nanoparticles picked up by the solar wind? Sol. Phys. 256, 463–474 (2009b).  https://doi.org/10.1007/s11207-009-9349-2. arXiv:0903.4141 ADSCrossRefGoogle Scholar
  303. M.I. Mishchenko, L.D. Travis, A.A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge University Press, Cambridge, 2002) Google Scholar
  304. A.V. Moorhead, Performance of D-criteria in isolating meteor showers from the sporadic background in an optical data set. Mon. Not. R. Astron. Soc. 455, 4329–4338 (2016).  https://doi.org/10.1093/mnras/stv2610 ADSCrossRefGoogle Scholar
  305. A.V. Moorhead, Deconvoluting measurement uncertainty from the meteor speed distribution. Meteorit. Planet. Sci. 1, 1–7 (2018).  https://doi.org/10.1111/maps.13066 CrossRefGoogle Scholar
  306. A.V. Moorhead, H.M. Koehler, W.J. Cooke, NASA meteoroid engineering model release 2.0. NASA/TM-2015-218214 (2015) Google Scholar
  307. A.V. Moorhead, R.C. Blaauw, D.E. Moser, M.D. Campbell-Brown, P.G. Brown, W.J. Cooke, A two-population sporadic meteoroid bulk density distribution and its implications for environment models. Mon. Not. R. Astron. Soc. 472, 3833–3841 (2017a).  https://doi.org/10.1093/mnras/stx2175 ADSCrossRefGoogle Scholar
  308. A.V. Moorhead, P.G. Brown, M.D. Campbell-Brown, D. Heynen, W.J. Cooke, Fully correcting the meteor speed distribution for radar observing biases. Planet. Space Sci. 143, 209–217 (2017).  https://doi.org/10.1016/j.pss.2017.02.002 ADSCrossRefGoogle Scholar
  309. A. Moro-Martín, R. Malhotra, A study of the dynamics of dust from the Kuiper belt: spatial distribution and spectral energy distribution. Astron. J. 124, 2305–2321 (2002) ADSCrossRefGoogle Scholar
  310. A. Moro-Martín, R. Malhotra, Dynamical models of Kuiper belt dust in the inner and outer solar system. Astrophys. J. 125, 2255–2265 (2003) ADSGoogle Scholar
  311. D.A. Morrison, U.S. Clanton, Properties of microcraters and cosmic dust of less than 1000 A dimensions, in Lunar and Planetary Science Conference Proceedings, vol. 10, ed. by N.W. Hinners (1979), pp. 1649–1663 Google Scholar
  312. S. Mostefaoui, G.W. Lugmair, P. Hoppe, A. El Goresy, Evidence for live 60Fe in meteorites. New Astron. Rev. 48, 155–159 (2004).  https://doi.org/10.1016/j.newar.2003.11.022 ADSCrossRefGoogle Scholar
  313. C.E. Moyano-Cambero, E. Pellicer, J.M. Trigo-Rodríguez, I.P. Williams, J. Blum, P. Michel, M. Küppers, M. Martínez-Jiménez, I. Lloro, J. Sort, Nanoindenting the Chelyabinsk meteorite to learn about impact deflection effects in asteroids. Astrophys. J. 835, 157 (2017).  https://doi.org/10.3847/1538-4357/835/2/157. 1612.07131 ADSCrossRefGoogle Scholar
  314. T. Mukai, G. Schwehm, Interaction of grains with the solar energetic particles. Astron. Astrophys. 95, 373–382 (1981) ADSGoogle Scholar
  315. T. Mukai, A.M. Nakamura, J. Blum, R.E. Johnson, O. Havnes, Physical Processes on Interplanetary Dust (2001), p. 445 CrossRefGoogle Scholar
  316. R. Musci, R.J. Weryk, P. Brown, M.D. Campbell-Brown, P.A. Wiegert, An optical survey for millimeter-sized interstellar meteoroids. Astrophys. J. 745, 161 (2012).  https://doi.org/10.1088/0004-637X/745/2/161. 1110.5882 ADSCrossRefGoogle Scholar
  317. R. Nakamura, H. Okamoto, Optical properties of fluffy aggregates as analogue of interplanetary dust particles. Adv. Space Res. 23(7), 1209–1212 (1999) ADSCrossRefGoogle Scholar
  318. T. Nakamura, T. Noguchi, T. Yada, Y. Nakamuta, N. Takaoka, Bulk mineralogy of individual micrometeorites determined by X-ray diffraction analysis and transmission electron microscopy. Geochim. Cosmochim. Acta 65, 4385–4397 (2001).  https://doi.org/10.1016/S0016-7037(01)00722-0 ADSCrossRefGoogle Scholar
  319. T. Nakamura, T. Noguchi, Y. Ozono, T. Osawa, K. Nagao, Mineralogy of ultracarbonaceous large micrometeorites. Meteorit. Planet. Sci. Suppl. 40, 5046 (2005) ADSGoogle Scholar
  320. T. Nakamura, T. Noguchi, A. Tsuchiyama, T. Ushikubo, N.T. Kita, J.W. Valley, M.E. Zolensky, Y. Kakazu, K. Sakamoto, E. Mashio, K. Uesugi, T. Nakano, Chondrulelike objects in short-period comet 81P/Wild 2. Science 321, 1664 (2008).  https://doi.org/10.1126/science.1160995 ADSCrossRefGoogle Scholar
  321. T. Nakamura, T. Noguchi, M. Tanaka, M.E. Zolensky, M. Kimura, A. Nakato, T. Ogami, H. Ishida, A. Tsuchiyama, T. Yada, K. Shirai, R. Okazaki, A. Fujimura, Y. Ishibashi, M. Abe, T. Okada, M. Ueno, T. Mukai, Mineralogy and major element abundance of the dust particles recovered from Muses-C Regio on the asteroid Itokawa, in Lunar and Planetary Science Conference, vol. 42 (2011a), p. 1766 Google Scholar
  322. T. Nakamura, T. Noguchi, M. Tanaka, M.E. Zolensky, M. Kimura, A. Tsuchiyama, A. Nakato, T. Ogami, H. Ishida, M. Uesugi, T. Yada, K. Shirai, A. Fujimura, R. Okazaki, S.A. Sandford, Y. Ishibashi, M. Abe, T. Okada, M. Ueno, T. Mukai, M. Yoshikawa, J. Kawaguchi, Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113 (2011b).  https://doi.org/10.1126/science.1207758 ADSCrossRefGoogle Scholar
  323. K. Nakamura-Messenger, S. Messenger, L.P. Keller, S.J. Clemett, M.E. Zolensky, Organic globules in the Tagish lake meteorite: remnants of the protosolar disk. Science 314, 1439–1442 (2006).  https://doi.org/10.1126/science.1132175 ADSCrossRefGoogle Scholar
  324. R.J. Naumann, The near-earth meteoroid environment. NASA technical note NASA TN D-3717 (1966) Google Scholar
  325. L. Neslušan, M. Hajduková, Separation and confirmation of showers. Astron. Astrophys. 598, A40 (2017).  https://doi.org/10.1051/0004-6361/201629659 ADSCrossRefGoogle Scholar
  326. D. Nesvorný, P. Jenniskens, H.F. Levison, W.F. Bottke, D. Vokrouhlický, M. Gounelle, Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816–836 (2010).  https://doi.org/10.1088/0004-637X/713/2/816. arXiv:0909.4322 ADSCrossRefGoogle Scholar
  327. D. Nesvorný, D. Janches, D. Vokrouhlický, P. Pokorný, W.F. Bottke, P. Jenniskens, Dynamical model for the zodiacal cloud and sporadic meteors. Astrophys. J. 743(2), 129 (2011a) ADSCrossRefGoogle Scholar
  328. D. Nesvorný, D. Vokrouhlický, P. Pokorný, D. Janches, Dynamics of dust particles released from Oort cloud comets and their contribution to radar meteors. Astrophys. J. 743, 37 (2011b).  https://doi.org/10.1088/0004-637X/743/1/37. arXiv:1109.2981 ADSCrossRefGoogle Scholar
  329. F.M. Neubauer, K.H. Glassmeier, A.J. Coates, R. Goldstein, M.H. Acuna, Hypervelocity dust particle impacts observed by the Giotto magnetometer and plasma experiments. Geophys. Res. Lett. 17, 1809–1812 (1990).  https://doi.org/10.1029/GL017i011p01809 ADSCrossRefGoogle Scholar
  330. T. Noguchi, T. Nakamura, W. Nozaki, Mineralogy of phyllosilicate-rich micrometeorites and comparison with Tagish lake and Sayama meteorites. Earth Planet. Sci. Lett. 202, 229–246 (2002).  https://doi.org/10.1016/S0012-821X(02)00777-X ADSCrossRefGoogle Scholar
  331. T. Noguchi, H. Yabuta, S. Itoh, N. Sakamoto, T. Mitsunari, A. Okubo, R. Okazaki, T. Nakamura, S. Tachibana, K. Terada, M. Ebihara, N. Imae, M. Kimura, H. Nagahara, Variation of mineralogy and organic material during the early stages of aqueous activity recorded in Antarctic micrometeorites. Geochim. Cosmochim. Acta 208, 119–144 (2017).  https://doi.org/10.1016/j.gca.2017.03.034 ADSCrossRefGoogle Scholar
  332. K.I. Öberg, H. Linnartz, R. Visser, E.F. van Dishoeck, Photodesorption of ices, II: H2O and D2O. Astrophys. J. 693, 1209–1218 (2009) ADSCrossRefGoogle Scholar
  333. R.C. Ogliore, A.J. Westphal, Z. Gainsforth, A.L. Butterworth, S.C. Fakra, M.A. Marcus, Nebular mixing constrained by the stardust samples. Meteorit. Planet. Sci. 44, 1675–1681 (2009).  https://doi.org/10.1111/j.1945-5100.2009.tb01198.x ADSCrossRefGoogle Scholar
  334. B.M. Pedersen, N. Meyer-Vernet, M.G. Aubier, P. Zarka, Dust distribution around Neptune—grain impacts near the ring plane measured by the Voyager planetary radio astronomy experiment. J. Geophys. Res. Space Phys. 96, 19 (1991).  https://doi.org/10.1029/91JA01601 CrossRefGoogle Scholar
  335. S. Pizzarello, Y. Huang, L. Becker, R.J. Poreda, R.A. Nieman, G. Cooper, M. Williams, The organic content of the Tagish lake meteorite. Science 293, 2236–2239 (2001).  https://doi.org/10.1126/science.1062614 ADSCrossRefGoogle Scholar
  336. J.M.C. Plane, Cosmic dust in the earth’s atmosphere. Chem. Soc. Rev. 41, 6507–6518 (2012).  https://doi.org/10.1039/c2cs35132c ADSCrossRefGoogle Scholar
  337. J.M.C. Plane, W. Feng, E. Dawkins, M.P. Chipperfield, J. Höffner, D. Janches, D.R. Marsh, Resolving the strange behavior of extraterrestrial potassium in the upper atmosphere. Geophys. Res. Lett. 41, 4753–4760 (2014).  https://doi.org/10.1002/2014GL060334 ADSCrossRefGoogle Scholar
  338. J.M.C. Plane, G.J. Flynn, A. Maattanen, J.E. Moores, A.R. Poppe, J.D. Carrillo-Sanchez, C. Listowski, Impacts of cosmic dust on planetary atmospheres and surfaces. Space. Sci. Rev. 214, 23 (2018) ADSCrossRefGoogle Scholar
  339. P. Pokorný, P.G. Brown, A reproducible method to determine the meteoroid mass index. Astron. Astrophys. 592, A150 (2016).  https://doi.org/10.1051/0004-6361/201628134. arXiv:1605.04437 ADSCrossRefGoogle Scholar
  340. P. Pokorný, D. Vokrouhlický, D. Nesvorný, M. Campbell-Brown, P. Brown, Dynamical model for the toroidal sporadic meteors. Astrophys. J. 789, 25 (2014).  https://doi.org/10.1088/0004-637X/789/1/25 ADSCrossRefGoogle Scholar
  341. P. Pokorný, D. Janches, P.G. Brown, J.L. Hormaechea, An orbital meteoroid stream survey using the Southern Argentina Agile MEteor Radar (SAAMER) based on a wavelet approach. Icarus 290, 162–182 (2017).  https://doi.org/10.1016/j.icarus.2017.02.025 ADSCrossRefGoogle Scholar
  342. A.R. Poppe, Interplanetary dust influx to the Pluto-Charon system. Icarus 246, 352–359 (2015) ADSCrossRefGoogle Scholar
  343. A.R. Poppe, An improved model for interplanetary dust fluxes in the outer solar system. Icarus 264, 369–386 (2016).  https://doi.org/10.1016/j.icarus.2015.10.001 ADSCrossRefGoogle Scholar
  344. A. Poppe, B. Jacobsmeyer, D. James, M. Horányi, Simulation of polyvinylidene fluoride detector response to hypervelocity particle impact. Nucl. Instrum. Methods 622(3), 583–587 (2010a) ADSCrossRefGoogle Scholar
  345. A. Poppe, D. James, B. Jacobsmeyer, M. Horányi, First results from the Venetia Burney Student Dust Counter on the New Horizons mission. Geophys. Res. Lett. 37, L11101 (2010b) ADSCrossRefGoogle Scholar
  346. A. Poppe, D. James, M. Horányi, Measurements of the terrestrial dust influx variability by the cosmic dust experiment. Planet. Space Sci. 59, 319–326 (2011) ADSCrossRefGoogle Scholar
  347. W.T. Reach, P. Morris, F. Boulanger, K. Okumura, The mid-infrared spectrum of the zodiacal and exozodiacal light. Icarus 164(2), 384–403 (2003) ADSCrossRefGoogle Scholar
  348. W.T. Reach, M.S. Kelley, M.V. Sykes, A survey of debris trails from short-period comets. Icarus 191(1), 298–322 (2007) ADSCrossRefGoogle Scholar
  349. L. Remusat, Y. Guan, Y. Wang, J.M. Eiler, Accretion and preservation of D-rich organic particles in carbonaceous chondrites: evidence for important transport in the early solar system nebula. Astron. Astrophys. 713, 1048–1058 (2010).  https://doi.org/10.1088/0004-637X/713/2/1048 ADSCrossRefGoogle Scholar
  350. J. Renard, A. Levasseur-Regourd, R. Dumont, Properties of interplanetary dust from infrared and optical observations, II: brightness, polarization, temperature, albedo and their dependence on the elevation above the ecliptic. Astron. Astrophys. 304, 602 (1995) ADSGoogle Scholar
  351. H.P. Robertson, Dynamical effects of radiation in the solar system. Mon. Not. R. Astron. Soc. 97, 423 (1937).  https://doi.org/10.1093/mnras/97.6.423 ADSCrossRefzbMATHGoogle Scholar
  352. P. Rochette, L. Folco, C. Suavet, M. van Ginneken, J. Gattacceca, N. Perchiazzi, R. Braucher, R.P. Harvey, Micrometeorites from the transantarctic mountains. Proc. Natl. Acad. Sci. 105, 18,206–18,211 (2008).  https://doi.org/10.1073/pnas.0806049105 CrossRefGoogle Scholar
  353. L. Rotelli, J.M. Trigo-Rodríguez, C.E. Moyano-Cambero, E. Carota, L. Botta, E. di Mauro, R. Saladino, The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Nat. Sci. Rep. 6, 38888 (2016).  https://doi.org/10.1038/srep38888 ADSCrossRefGoogle Scholar
  354. M. Rowan-Robinson, B. May, An improved model for the infrared emission from the zodiacal dust cloud: cometary, asteroidal and interstellar dust. Mon. Not. R. Astron. Soc. 429, 2894 (2013) ADSCrossRefGoogle Scholar
  355. A.E. Rubin, J.M. Trigo-Rodríguez, H. Huber, J.T. Wasson, Progressive aqueous alteration of CM carbonaceous chondrites. Geochim. Cosmochim. Acta 71, 2361–2382 (2007).  https://doi.org/10.1016/j.gca.2007.02.008 ADSCrossRefGoogle Scholar
  356. D.P. Rubincam, Asteroid orbit evolution due to thermal drag. J. Geophys. Res. 100, 1585–1594 (1995).  https://doi.org/10.1029/94JE02411 ADSCrossRefGoogle Scholar
  357. R. Rudawska, P. Matlovič, J. Tóth, L. Kornoš, Independent identification of meteor showers in EDMOND database. Planet. Space Sci. 118, 38–47 (2015).  https://doi.org/10.1016/j.pss.2015.07.011. arXiv:1406.6598 ADSCrossRefGoogle Scholar
  358. R. Rudawska, J. Tóth, D. Kalmančok, P. Zigo, P. Matlovič, Meteor spectra from AMOS video system. Planet. Space Sci. 123, 25–32 (2016).  https://doi.org/10.1016/j.pss.2015.11.018 ADSCrossRefGoogle Scholar
  359. S.S. Russell, G.R. Huss, A.J. Fahey, R.C. Greenwood, R. Hutchison, G.J. Wasserburg, An isotopic and petrologic study of calcium-aluminum-rich inclusions from CO3 meteorites. Geochim. Cosmochim. Acta 62, 689–714 (1998).  https://doi.org/10.1016/S0016-7037(97)00374-8 ADSCrossRefGoogle Scholar
  360. G.O. Ryabova, Modeling of meteoroid streams: the velocity of ejection of meteoroids from comets (a review). Sol. Syst. Res. 47, 219–238 (2013).  https://doi.org/10.1134/S0038094613030052 ADSCrossRefGoogle Scholar
  361. L.S. Schramm, D.E. Brownlee, M.M. Wheelock, Major element composition of stratospheric micrometeorites. Meteoritics 24, 99–112 (1989) ADSCrossRefGoogle Scholar
  362. E.R.D. Scott, R.H. Jones, Disentangling nebular and asteroidal features of CO3 carbonaceous chondrite meteorites. Geochim. Cosmochim. Acta 54, 2485–2502 (1990).  https://doi.org/10.1016/0016-7037(90)90235-D ADSCrossRefGoogle Scholar
  363. E.R.D. Scott, A.N. Krot, Chondrites and their components. Treatise Geochem. 1, 711 (2003).  https://doi.org/10.1016/B0-08-043751-6/01145-2 CrossRefGoogle Scholar
  364. Z. Sekanina, Activity of comet Hale-Bopp (1995 O1) beyond 6 AU from the Sun. Astron. Astrophys. 314, 957–965 (1996) ADSGoogle Scholar
  365. A. Sekhar, D.J. Asher, Resonant behavior of comet Halley and the Orionid stream. Meteorit. Planet. Sci. 49, 52–62 (2014).  https://doi.org/10.1111/maps.12117. arXiv:1303.2928 ADSCrossRefGoogle Scholar
  366. A. Shu, S. Bugiel, E. Grün, J. Hillier, M. Horányi, T. Munsat, R. Srama, Cratering studies in polyvinylidene fluoride (PVDF) thin films. Planet. Space Sci. 89, 29–35 (2013) ADSCrossRefGoogle Scholar
  367. F.H. Shu, H. Shang, A.E. Glassgold, T. Lee, X-rays and fluctuating X-winds from protostars. Science 277, 1475–1479 (1997).  https://doi.org/10.1126/science.277.5331.1475 ADSCrossRefGoogle Scholar
  368. J.I. Simon, I.D. Hutcheon, S.B. Simon, J.E.P. Matzel, E.C. Ramon, P.K. Weber, L. Grossman, D.J. DePaolo, Oxygen isotope variations at the margin of a CAI records circulation within the solar nebula. Science 331, 1175 (2011).  https://doi.org/10.1126/science.1197970 ADSCrossRefGoogle Scholar
  369. J.A. Simpson, A.J. Tuzzolino, Polarized polymer films as electronic pulse detectors of cosmic dust particles. Nucl. Instrum. Methods Phys. Res., Sect. A 236, 187–202 (1985) ADSCrossRefGoogle Scholar
  370. J.A. Simpson, A.J. Tuzzolino, Cosmic dust investigations, II: instruments for measurement of particle trajectory, velocity and mass. Nucl. Instrum. Methods Phys. Res., Sect. A 279, 625–639 (1989) ADSCrossRefGoogle Scholar
  371. J.A. Simpson, D. Rabinowitz, A.J. Tuzzolino, Cosmic dust investigations, I: PVDF detector signal dependence on mass and velocity for penetrating particles. Nucl. Instrum. Methods Phys. Res., Sect. A 279, 611–624 (1989) ADSCrossRefGoogle Scholar
  372. R.B. Southworth, G.S. Hawkins, Statistics of meteor streams. Smithson. Contrib. Astrophys. 7, 261 (1963) ADSGoogle Scholar
  373. R. Srama et al., The Cassini cosmic dust analyzer. Space Sci. Rev. 114, 465–518 (2004) ADSCrossRefGoogle Scholar
  374. O.C. St Cyr, M.L. Kaiser, N. Meyer-Vernet, R.A. Howard, R.A. Harrison, S.D. Bale, W.T. Thompson, K. Goetz, M. Maksimovic, J. Bougeret, D. Wang, S. Crothers, STEREO SECCHI and S/WAVES observations of spacecraft debris caused by micron-size interplanetary dust impacts. Sol. Phys. 256, 475–488 (2009).  https://doi.org/10.1007/s11207-009-9362-5 ADSCrossRefGoogle Scholar
  375. C.C. Stark, M.J. Kuchner, A new algorithm for self-consistent three-dimensional modeling of collisions in dust debris disks. Astrophys. J. 707, 543–553 (2009) ADSCrossRefGoogle Scholar
  376. P. Staubach, E. Grün, R. Jehn, The meteoroid environment near earth. Adv. Space Res. 19, 301–308 (1997).  https://doi.org/10.1016/S0273-1177(97)00017-3 ADSCrossRefGoogle Scholar
  377. J. Staude, T. Schmidt, Circular polarisation measurements of the zodiacal light. Astron. Astrophys. 20, 163 (1972) ADSGoogle Scholar
  378. D.I. Steel, W.G. Elford, Collisions in the solar system, III: meteoroid survival times. Mon. Not. R. Astron. Soc. 218, 185–199 (1986).  https://doi.org/10.1093/mnras/218.2.185 ADSCrossRefGoogle Scholar
  379. S.A. Stern, Collisional time scales in the Kuiper disk and their implications. Astron. J. 110, 2 (1995) CrossRefGoogle Scholar
  380. S.A. Stern, Signatures of collisions in the Kuiper disk. Astron. Astrophys. 310, 999–1010 (1996) ADSGoogle Scholar
  381. S.A. Stern, The New Horizons Pluto Kuiper belt mission: an overview with historical context. Space Sci. Rev. 140, 3–21 (2008) ADSCrossRefGoogle Scholar
  382. E. Stokan, M.D. Campbell-Brown, A particle-based model for ablation and wake formation in faint meteors. Mon. Not. R. Astron. Soc. 447, 1580–1597 (2015).  https://doi.org/10.1093/mnras/stu2552 ADSCrossRefGoogle Scholar
  383. P. Strub, H. Krüger, V.J. Sterken, Sixteen years of Ulysses interstellar dust measurements in the solar system, II: fluctuations in the dust flow from the data. Astrophys. J. 812, 140 (2015).  https://doi.org/10.1088/0004-637X/812/2/140. arXiv:1508.03242 ADSCrossRefGoogle Scholar
  384. C. Suavet, A. Alexandre, I.A. Franchi, J. Gattacceca, C. Sonzogni, R.C. Greenwood, L. Folco, P. Rochette, Identification of the parent bodies of micrometeorites with high-precision oxygen isotope ratios. Earth Planet. Sci. Lett. 293, 313–320 (2010).  https://doi.org/10.1016/j.epsl.2010.02.046 ADSCrossRefGoogle Scholar
  385. D. Subasinghe, M.D. Campbell-Brown, E. Stokan, Physical characteristics of faint meteors by light curve and high-resolution observations, and the implications for parent bodies. Mon. Not. R. Astron. Soc. 457, 1289–1298 (2016).  https://doi.org/10.1093/mnras/stw019 ADSCrossRefGoogle Scholar
  386. R.M. Suggs, D.E. Moser, W.J. Cooke, R.J. Suggs, The flux of kilogram-sized meteoroids from lunar impact monitoring. Icarus 238, 23 (2014) ADSCrossRefGoogle Scholar
  387. J.R. Szalay, M. Horányi, Annual variation and synodic modulation of the sporadic meteoroid flux to the Moon. Geophys. Res. Lett. 42, 10 (2015).  https://doi.org/10.1002/2015GL066908 CrossRefGoogle Scholar
  388. J.R. Szalay, M. Piquette, M. Horányi, The student dust counter: status report at 23 AU. Earth Planets Space 65, 1145–1149 (2013) ADSCrossRefGoogle Scholar
  389. A.D. Taylor, W.J. Baggaley, D.I. Steel, Discovery of interstellar dust entering the Earth’s atmosphere. Nature 380, 323–325 (1996).  https://doi.org/10.1038/380323a0 ADSCrossRefGoogle Scholar
  390. S. Taylor, J.H. Lever, R.P. Harvey, Accretion rate of cosmic spherules measured at the South pole. Nature 392, 899–903 (1998).  https://doi.org/10.1038/31894 ADSCrossRefGoogle Scholar
  391. S. Taylor, J.H. Lever, R.P. Harvey, Numbers, types, and compositions of an unbiased collection of cosmic spherules. Meteorit. Planet. Sci. 35, 651–666 (2000).  https://doi.org/10.1111/j.1945-5100.2000.tb01450.x ADSCrossRefGoogle Scholar
  392. E. Thomas, M. Horányi, D. Janches, T. Munsat, J. Simolka, Z. Sternovsky, Measurements of the ionization coefficient of simulated iron micrometeoroids. Geophys. Res. Lett. 43, 3645–3652 (2016).  https://doi.org/10.1002/2016GL068854 ADSCrossRefGoogle Scholar
  393. K.L. Thomas, G.E. Blanford, L.P. Keller, W. Klock, D.S. McKay, Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. Geochim. Cosmochim. Acta 57, 1551–1566 (1993).  https://doi.org/10.1016/0016-7037(93)90012-L ADSCrossRefGoogle Scholar
  394. J.I. Thorpe, C. Parvini, J.M. Trigo-Rodríguez, Detection and measurement of micrometeoroids with LISA Pathfinder. Astron. Astrophys. 586, A107 (2016).  https://doi.org/10.1051/0004-6361/201527658 ADSCrossRefGoogle Scholar
  395. F. Topputo, D.A. Dei Tos, A. Cipriano, Orbit design of LUMIO, a lunar meteoroid impact observer, in 42nd COSPAR Scientific Assembly, COSPAR Meeting, vol. 42 (2018), pp. 1–28 Google Scholar
  396. M. Trieloff, E.K. Jessberger, I. Herrwerth, J. Hopp, C. Fiéni, M. Ghélis, M. Bourot-Denise, P. Pellas, Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature 422, 502–506 (2003).  https://doi.org/10.1038/nature01499 ADSCrossRefGoogle Scholar
  397. J.M. Trigo-Rodríguez, Aqueous alteration in chondritic asteroids and comets from the study of carbonaceous chondrites, in European Mineralogical Union Notes in Mineralogy, vol. 15 (2015), pp. 67–87 Google Scholar
  398. J.M. Trigo-Rodríguez, J. Blum, The role of collisional compaction in primitive asteroids and comets, in European Planetary Science Congress (2008), p. 29 Google Scholar
  399. J.M. Trigo-Rodriguez, J. Blum, Tensile strength as an indicator of the degree of primitiveness of undifferentiated bodies. Planet. Space Sci. 57, 243–249 (2009).  https://doi.org/10.1016/j.pss.2008.02.011 ADSCrossRefGoogle Scholar
  400. J.M. Trigo-Rodriguez, J. Llorca, J. Borovicka, J. Fabregat, Chemical abundances determined from meteor spectra, I: ratios of the main chemical elements. Meteorit. Planet. Sci. 38, 1283–1294 (2003).  https://doi.org/10.1111/j.1945-5100.2003.tb00313.x ADSCrossRefGoogle Scholar
  401. J.M. Trigo-Rodríguez, J. Llorca, J. Fabregat, Chemical abundances determined from meteor spectra, II: evidence for enlarged sodium abundances in meteoroids. Mon. Not. R. Astron. Soc. 348, 802–810 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07389.x ADSCrossRefGoogle Scholar
  402. J.M. Trigo-Rodríguez, C.E. Moyano-Cambero, J. Llorca, S. Fornasier, M.A. Barucci, I. Belskaya, Z. Martins, A.S. Rivkin, E. Dotto, J.M. Madiedo, A.A. Jacinto, UV to far-IR reflectance spectra of carbonaceous chondrites, I: implications for remote characterization of dark primitive asteroids targeted by sample-return missions. Mon. Not. R. Astron. Soc. 437, 227–240 (2014).  https://doi.org/10.1093/mnras/stt1873. arXiv:1310.1742 ADSCrossRefGoogle Scholar
  403. J.M. Trigo-Rodríguez, R. Saladino, E. Di Mauro, L. Rotelli, C.E. Moyano-Cambero, E. Carota, L. Botta, The catalytic role of chondritic meteorites in the prebiotic enrichment of earth and other planetary-rich surfaces, under high meteoritic flux, in Lunar and Planetary Science Conference. Lunar and Planetary Inst. Technical Report, vol. 48 (2017), p. 1161 Google Scholar
  404. D. Tsintikidis, D.A. Gurnett, W.S. Kurth, L.J. Granroth, Micron-sized particles detected in the vicinity of Jupiter by the Voyager plasma wave instruments. Geophys. Res. Lett. 23, 997–1000 (1996).  https://doi.org/10.1029/96GL00961 ADSCrossRefGoogle Scholar
  405. Y. Tsuda, M. Yoshikawa, M. Abe, H. Minamino, S. Nakazawa, System design of the Hayabusa 2 asteroid sample return mission to 1999 JU3. Acta Astronaut. 91, 356–362 (2013).  https://doi.org/10.1016/j.actaastro.2013.06.028 ADSCrossRefGoogle Scholar
  406. B.T. Tsurutani, D.R. Clay, L.D. Zhang, B. Dasgupta, D. Brinza, M. Henry, A. Mendis, S. Moses, K.H. Glassmeier, G. Musmann, I. Richter, Dust impacts at comet P/Borrelly. Geophys. Res. Lett. 30(22), 2134 (2003).  https://doi.org/10.1029/2003GL017580 ADSCrossRefGoogle Scholar
  407. A.J. Tuzzolino, Two-dimensional position-sensing PVDF dust detectors for measurements of dust particle trajectory, velocity and mass. Nucl. Instrum. Methods Phys. Res., Sect. A 301 (1991) ADSCrossRefGoogle Scholar
  408. A.J. Tuzzolino, PVDF copolymer dust detectors: particle response and penetration characteristics. Nucl. Instrum. Methods Phys. Res., Sect. A 316, 223–237 (1992) ADSCrossRefGoogle Scholar
  409. A.J. Tuzzolino, T.E. Economou, R.B. McKibben, J.A. Simpson, J.A.M. McDonnell, M.J. Burchell, B.A.M. Vaughan, P. Tsou, M.S. Hanner, B.C. Clark, D.E. Brownlee, Dust flux monitor instrument for the stardust mission to comet Wild 2. J. Geophys. Res. 108, E10 (2003) CrossRefGoogle Scholar
  410. A.J. Tuzzolino, T.E. Economou, B.C. Clark, P. Tsou, D.E. Brownlee, S.F. Green, J.A.M. McDonnell, N. McBride, M.T.S.H. Colwell, Dust measurements in the coma of comet 81P/Wild 2 by the dust flux monitor instrument. Science 304, 1776–1780 (2004).  https://doi.org/10.1126/science.1098759 ADSCrossRefGoogle Scholar
  411. A.J. Tuzzolino et al., The Space Dust (SPADUS) instrument aboard the Earth-orbiting ARGOS spacecraft, I: instrument description. Planet. Space Sci. 49, 689–703 (2001a) ADSCrossRefGoogle Scholar
  412. A.J. Tuzzolino et al., The Space Dust (SPADUS) instrument aboard the Earth-orbiting ARGOS spacecraft, II: results form the first 16 months of flight. Planet. Space Sci. 49, 705–729 (2001b) ADSCrossRefGoogle Scholar
  413. A.J. Tuzzolino et al., Dust measurements in the coma of comet 81P/Wild 2 by the dust flux monitor instrument. Science 304, 1776–1780 (2004) ADSCrossRefGoogle Scholar
  414. G.B. Valsecchi, T.J. Jopek, C. Froeschle, Meteoroid stream identification: a new approach, I: theory. Mon. Not. R. Astron. Soc. 304, 743–750 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02264.x ADSCrossRefGoogle Scholar
  415. M. van Ginneken, J. Gattacceca, P. Rochette, C. Sonzogni, A. Alexandre, V. Vidal, M.J. Genge, The parent body controls on cosmic spherule texture: evidence from the oxygen isotopic compositions of large micrometeorites. Geochim. Cosmochim. Acta 212, 196–210 (2017).  https://doi.org/10.1016/j.gca.2017.05.008 ADSCrossRefGoogle Scholar
  416. J. Vaubaillon, F. Colas, Demonstration of gaps due to Jupiter in meteoroid streams. What happened with the 2003 Pi-Puppids? Astron. Astrophys. 431, 1139–1144 (2005).  https://doi.org/10.1051/0004-6361:20041391 ADSCrossRefGoogle Scholar
  417. J. Vaubaillon, F. Colas, L. Jorda, A new method to predict meteor showers, I: description of the model. Astron. Astrophys. 439, 751–760 (2005).  https://doi.org/10.1051/0004-6361:20041544 ADSCrossRefGoogle Scholar
  418. J. Vaubaillon, P. Lamy, L. Jorda, On the mechanisms leading to orphan meteoroid streams. Mon. Not. R. Astron. Soc. 370, 1841–1848 (2006).  https://doi.org/10.1111/j.1365-2966.2006.10606.x ADSCrossRefGoogle Scholar
  419. P. Vernazza, M. Marsset, P. Beck, R.P. Binzel, M. Birlan, R. Brunetto, F.E. Demeo, Z. Djouadi, C. Dumas, S. Merouane, O. Mousis, B. Zanda, Interplanetary dust particles as samples of icy asteroids. Astrophys. J. 806, 204 (2015).  https://doi.org/10.1088/0004-637X/806/2/204 ADSCrossRefGoogle Scholar
  420. D. Vinković, Radiation-pressure mixing of large dust grains in protoplanetary disks. Nature 459, 227 (2009) ADSCrossRefGoogle Scholar
  421. C. Vitense, A.V. Krivov, H. Kobayashi, T. Löhne, An improved model of the Edgeworth-Kuiper debris disk. Astron. Astrophys. 540, A30 (2012).  https://doi.org/10.1051/0004-6361/201118551. arXiv:1202.2257 ADSCrossRefGoogle Scholar
  422. C. Vitense, A.V. Krivov, T. Löhne, Will New Horizons see dust clumps in the Edgeworth-Kuiper belt? Astron. J. 147 (2014) ADSCrossRefGoogle Scholar
  423. V. Vojáček, J. Borovička, P. Koten, P. Spurný, R. Štork, Catalogue of representative meteor spectra. Astron. Astrophys. 580, A67 (2015).  https://doi.org/10.1051/0004-6361/201425047 ADSCrossRefGoogle Scholar
  424. D. Vokrouhlický, P. Farinella, Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies. Nature 407, 606–608 (2000).  https://doi.org/10.1038/35036528 ADSCrossRefGoogle Scholar
  425. J. Walter, F. Brandstaetter, G. Kurat, C. Koeberl, M. Maurette, Cosmic spherules, micrometeorites, and chondrules, in Lunar and Planetary Science Conference, vol. 26 (1995) Google Scholar
  426. A. Wehry, I. Mann, Identification of beta -meteoroids from measurements of the dust detector onboard the ULYSSES spacecraft. Astron. Astrophys. 341, 296–303 (1999) ADSGoogle Scholar
  427. A. Wehry, H. Krüger, E. Grün, Analysis of Ulysses data: Radiation pressure effects on dust particles. Astron. Astrophys. 419, 1169–1174 (2004).  https://doi.org/10.1051/0004-6361:20035613 ADSCrossRefGoogle Scholar
  428. S.J. Weidenschilling, A.A. Jackson, Orbital resonances and Poynting-Robertson drag. Icarus 104, 244–254 (1993).  https://doi.org/10.1006/icar.1993.1099 ADSCrossRefGoogle Scholar
  429. J. Weinberg, J. Sparrow, Zodiacal Light as an Indicator of Interplanetary Dust (Wiley, Chichester, 1978), pp. 75–122 Google Scholar
  430. M.K. Weisberg, T.J. McCoy, A.N. Krot, Systematics and Evaluation of Meteorite Classification (2006), pp. 19–52 Google Scholar
  431. A.A. Weiss, J.W. Smith, A southern hemisphere survey of the radiants of sporadic meteors. Mon. Not. R. Astron. Soc. 121, 5 (1960).  https://doi.org/10.1093/mnras/121.1.5 ADSCrossRefGoogle Scholar
  432. R.J. Weryk, P. Brown, A search for interstellar meteoroids using the Canadian Meteor Orbit Radar (CMOR). Earth Moon Planets 95, 221–227 (2004).  https://doi.org/10.1007/s11038-005-9034-x ADSCrossRefGoogle Scholar
  433. R.J. Weryk, P.G. Brown, Simultaneous radar and video meteors, II: photometry and ionisation. Planet. Space Sci. 81, 32–47 (2013).  https://doi.org/10.1016/j.pss.2013.03.012 ADSCrossRefGoogle Scholar
  434. M.S. Westley, R.A. Baragiola, R.E. Johnson, G.A. Baratta, Photodesorption from low-temperature water ice in interstellar and circumsolar grains. Nature 373, 405–407 (1995) ADSCrossRefGoogle Scholar
  435. A.J. Westphal, S.C. Fakra, Z. Gainsforth, M.A. Marcus, R.C. Ogliore, A.L. Butterworth, Mixing fraction of inner solar system material in comet 81P/Wild2. Astrophys. J. 694, 18–28 (2009).  https://doi.org/10.1088/0004-637X/694/1/18 ADSCrossRefGoogle Scholar
  436. A.J. Westphal, R.M. Stroud, H.A. Bechtel, F.E. Brenker, A.L. Butterworth, G.J. Flynn, D.R. Frank, Z. Gainsforth, J.K. Hillier, F. Postberg, A.S. Simionovici, V.J. Sterken, L.R. Nittler, C. Allen, D. Anderson, A. Ansari, S. Bajt, R.K. Bastien, N. Bassim, J. Bridges, D.E. Brownlee, M. Burchell, M. Burghammer, H. Changela, P. Cloetens, A.M. Davis, R. Doll, C. Floss, E. Grün, P.R. Heck, P. Hoppe, B. Hudson, J. Huth, A. Kearsley, A.J. King, B. Lai, J. Leitner, L. Lemelle, A. Leonard, H. Leroux, R. Lettieri, W. Marchant, R. Ogliore, W.J. Ong, M.C. Price, S.A. Sandford, J.A.S. Tresseras, S. Schmitz, T. Schoonjans, K. Schreiber, Evidence for interstellar origin of seven dust particles collected by the stardust spacecraft. Science 345(6198), 786–791 (2014).  https://doi.org/10.1126/science.1252496. ADSCrossRefGoogle Scholar
  437. F.L. Whipple, The theory of micro-meteorites, part I: in an isothermal atmosphere. Proc. Natl. Acad. Sci. 36, 687–695 (1950).  https://doi.org/10.1073/pnas.36.12.687 ADSCrossRefGoogle Scholar
  438. F.L. Whipple, A comet model, III: the zodiacal light. Astrophys. J. 121, 750 (1955) ADSCrossRefGoogle Scholar
  439. F.L. Whipple, On maintaining the meteoritic complex. SAO Spec. Rep. 239, 1 (1967) ADSGoogle Scholar
  440. P. Wiegert, J. Vaubaillon, M. Campbell-Brown, A dynamical model of the sporadic meteoroid complex. Icarus 201, 295–310 (2009).  https://doi.org/10.1016/j.icarus.2008.12.030 ADSCrossRefGoogle Scholar
  441. P.A. Wiegert, Hyperbolic meteors: interstellar or generated locally via the gravitational slingshot effect? Icarus 242, 112–121 (2014).  https://doi.org/10.1016/j.icarus.2014.06.031. 1404.2159 ADSCrossRefGoogle Scholar
  442. M.J. Willis, M.J. Burchell, T.J. Ahrens, H. Krüger, E. Grün, Decreased values of cosmic dust number density estimates in the solar system. Icarus 176, 440–452 (2005).  https://doi.org/10.1016/j.icarus.2005.02.018 ADSCrossRefGoogle Scholar
  443. R.D. Wolstencroft, J.C. Kemp, Circular polarization of the nightsky radiation. Astrophys. J. 177, L137 (1972) ADSCrossRefGoogle Scholar
  444. D.H. Wooden, H.M. Butner, D.E. Harker, C.E. Woodward, Mg-rich silicate crystals in comet Hale-Bopp: ISM relics or solar nebula condensates? Icarus 143, 126–137 (2000).  https://doi.org/10.1006/icar.1999.6240 ADSCrossRefGoogle Scholar
  445. P.J. Wozniakiewicz, Grain sorting in cometary dust from the outer solar nebula. Astrophys. J. Lett. 760, L23 (2012).  https://doi.org/10.1088/2041-8205/760/2/L23 ADSCrossRefGoogle Scholar
  446. M.C. Wyatt, The insignificance of P-R drag in detectable extrasolar planetesimal belts. Astron. Astrophys. 433, 1007–1012 (2005).  https://doi.org/10.1051/0004-6361:20042073. astro-ph/0501038 ADSCrossRefGoogle Scholar
  447. S.P. Wyatt, F.L. Whipple, The Poynting-Robertson effect on meteor orbits. Astrophys. J. 111, 134–141 (1950).  https://doi.org/10.1086/145244 ADSCrossRefGoogle Scholar
  448. E.M. Xilouris, A.Z. Bonanos, I. Bellas-Velidis, P. Boumis, A. Dapergolas, A. Maroussis, A. Liakos, I. Alikakos, V. Charmandaris, G. Dimou, A. Fytsilis, M. Kelley, D. Koschny, V. Navarro, K. Tsiganis, K. Tsinganos, NELIOTA: the wide-field, high-cadence, lunar monitoring system at the prime focus of the Kryoneri telescope. Astron. Astrophys. 619, A141 (2018).  https://doi.org/10.1051/0004-6361/201833499. arXiv:1809.00495 ADSCrossRefGoogle Scholar
  449. T. Yada, H. Kojima, The collection of micrometeorites in the Yamato meteorite ice field of Antarctica in 1998. Antarct. Meteor. Res. 13, 9 (2000) ADSGoogle Scholar
  450. S. Yamamoto, T. Mukai, Dust production by impacts of interstellar dust on Edgeworth-Kuiper belt objects. Astron. Astrophys. 329, 785–791 (1998) ADSGoogle Scholar
  451. H. Yang, M. Ishiguro, Origin of interplanetary dust through optical properties of zodiacal light. Astrophys. J. 813(2), 87 (2015) ADSCrossRefGoogle Scholar
  452. Q.Z. Ye, M.T. Hui, P.G. Brown, M.D. Campbell-Brown, P. Pokorný, P.A. Wiegert, X. Gao, When comets get old: a synthesis of comet and meteor observations of the low activity comet 209P/LINEAR. Icarus 264, 48–61 (2016).  https://doi.org/10.1016/j.icarus.2015.09.003. arXiv:1509.00560 ADSCrossRefGoogle Scholar
  453. A. Zaslavsky, N. Meyer-Vernet, I. Mann, A. Czechowski, K. Issautier, G. Le Chat, F. Pantellini, K. Goetz, M. Maksimovic, S.D. Bale, J.C. Kasper, Interplanetary dust detection by radio antennas: mass calibration and fluxes measured by STEREO/WAVES. J. Geophys. Res. Space Phys. 117(A16), A05102 (2012).  https://doi.org/10.1029/2011JA017480 ADSCrossRefGoogle Scholar
  454. K. Zhang, G.A. Blake, E.A. Bergin, Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. Astrophys. J. Lett. 806, L7 (2015).  https://doi.org/10.1088/2041-8205/806/1/L7. 1505.00882 ADSCrossRefGoogle Scholar
  455. E. Zinner, K.D. McKeegan, R.M. Walker, Laboratory measurements of D/H ratios in interplanetary dust. Nature 305, 119–121 (1983).  https://doi.org/10.1038/305119a0 ADSCrossRefGoogle Scholar
  456. E.K. Zinner, Presolar grains. Treatise Geochem. 1, 711 (2003).  https://doi.org/10.1016/B0-08-043751-6/01144-0 CrossRefGoogle Scholar
  457. M.E. Zolensky, Refractory interplanetary dust particles. Science 237, 1466–1468 (1987).  https://doi.org/10.1126/science.237.4821.1466 ADSCrossRefGoogle Scholar
  458. M.E. Zolensky, T.J. Zega, H. Yano, S. Wirick, A.J. Westphal, M.K. Weisberg, I. Weber, J.L. Warren, M.A. Velbel, A. Tsuchiyama, P. Tsou, A. Toppani, N. Tomioka, K. Tomeoka, N. Teslich, M. Taheri, J. Susini, R. Stroud, T. Stephan, F.J. Stadermann, C.J. Snead, S.B. Simon, A. Simionovici, T.H. See, F. Robert, F.J.M. Rietmeijer, W. Rao, M.C. Perronnet, D.A. Papanastassiou, K. Okudaira, K. Ohsumi, I. Ohnishi, K. Nakamura-Messenger, T. Nakamura, S. Mostefaoui, T. Mikouchi, A. Meibom, G. Matrajt, M.A. Marcus, H. Leroux, L. Lemelle, L. Le, A. Lanzirotti, F. Langenhorst, A.N. Krot, L.P. Keller, A.T. Kearsley, D. Joswiak, D. Jacob, H. Ishii, R. Harvey, K. Hagiya, L. Grossman, J.N. Grossman, G.A. Graham, M. Gounelle, P. Gillet, M.J. Genge, G. Flynn, T. Ferroir, S. Fallon, D.S. Ebel, Z.R. Dai, P. Cordier, B. Clark, M. Chi, A.L. Butterworth, D.E. Brownlee, J.C. Bridges, S. Brennan, A. Brearley, J.P. Bradley, P. Bleuet, P.A. Bland, R. Bastien, Mineralogy and petrology of comet 81P/Wild 2 nucleus samples. Science 314, 1735 (2006).  https://doi.org/10.1126/science.1135842 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Detlef Koschny
    • 1
    • 2
    Email author
  • Rachel H. Soja
    • 3
  • Cecile Engrand
    • 4
  • George J. Flynn
    • 5
  • Jérémie Lasue
    • 6
  • Anny-Chantal Levasseur-Regourd
    • 7
  • David Malaspina
    • 8
  • Tomoki Nakamura
    • 9
  • Andrew R. Poppe
    • 10
  • Veerle J. Sterken
    • 11
    • 12
  • Josep M. Trigo-Rodríguez
    • 13
  1. 1.SCI-SEuropean Space AgencyNoordwijk ZHThe Netherlands
  2. 2.Lehrstuhl für RaumfahrttechnikTechnische Universität MünchenGarchingGermany
  3. 3.Institut für RaumfahrtsystemeUniversität StuttgartStuttgartGermany
  4. 4.CSNSM CNRS/Univ. Paris SudUniv. Paris-SaclayOrsay CampusFrance
  5. 5.Dept of PhysicsState University of New York at PlattsburghPlattsburghUSA
  6. 6.IRAP, Université de ToulouseCNRS, UPSToulouseFrance
  7. 7.LATMOS, Sorbonne Univ.CNRS, UVSQParisFrance
  8. 8.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  9. 9.Tohoku UniversitySendai, MiyagiJapan
  10. 10.Space Sciences LaboratoryUniversity of California at BerkeleyBerkeleyUSA
  11. 11.Institute of Applied PhysicsUniversity of BernBernSwitzerland
  12. 12.Astronomical InstitututeUniversity of BernBernSwitzerland
  13. 13.Institute of Space Sciences (CSIC-IEEC)Cerdanyola del Vallès (Barcelona)Spain

Personalised recommendations