Advertisement

Space Science Reviews

, 215:24 | Cite as

Constraining Gas Motions in the Intra-Cluster Medium

  • Aurora SimionescuEmail author
  • John ZuHone
  • Irina Zhuravleva
  • Eugene Churazov
  • Massimo Gaspari
  • Daisuke Nagai
  • Norbert Werner
  • Elke Roediger
  • Rebecca Canning
  • Dominique Eckert
  • Liyi Gu
  • Frits Paerels
Article
Part of the following topical collections:
  1. Clusters of Galaxies: Physics and Cosmology

Abstract

The detailed velocity structure of the diffuse X-ray emitting intra-cluster medium (ICM) remains one of the last missing key ingredients in understanding the microphysical properties of these hot baryons and constraining our models of the growth and evolution of structure on the largest scales in the Universe. Direct measurements of the gas velocities from the widths and shifts of X-ray emission lines were recently provided for the central region of the Perseus Cluster of galaxies by Hitomi, and upcoming high-resolution X-ray microcalorimeters onboard XRISM and Athena are expected to extend these studies to many more systems. In the mean time, several other direct and indirect methods have been proposed for estimating the velocity structure in the ICM, ranging from resonant scattering to X-ray surface brightness fluctuation analysis, the kinematic Sunyaev-Zeldovich effect, or using optical line emitting nebulae in the brightest cluster galaxies as tracers of the motions of the ambient plasma. Here, we review and compare the existing estimates of the velocities of the hot baryons, as well as the various overlapping physical processes that drive motions in the ICM, and discuss the implications of these measurements for constraining the viscosity and identifying the source of turbulence in clusters of galaxies.

Keywords

Clusters of galaxies Intracluster medium X-ray spectroscopy Large-scale structure 

Notes

Acknowledgements

A.S. gratefully acknowledges support by the Women In Science Excel (WISE) programme of the Netherlands Organisation for Scientific Research (NWO). M.G. is supported by NASA through Einstein Postdoctoral Fellowship Award Number PF5-160137 issued by the Chandra X-ray Observatory Center, which is operated by the SAO for and on behalf of NASA under contract NAS8-03060. Support for this work was also provided by Chandra grant GO7-18121X. D.N. acknowledges Yale University for granting a triennial leave and the Max-Planck-Institut für Astrophysik for hospitality when this work was carried out. N.W. is supported by the Lendület LP2016-11 grant awarded by the Hungarian Academy of Sciences. E.R. acknowledges the support of STFC, through the University of Hull’s Consolidated Grant ST/R000840/1 and access to viper, the University of Hull High Performance Computing Facility.

References

  1. Z. Abdulla, J.E. Carlstrom, A.B. Mantz, D.P. Marrone, C.H. Greer, et al., Constraints on the thermal contents of the X-ray cavities of cluster MS 0735.6+7421 with Sunyaev-Zel’dovich effect observations (2018). Arxiv e-prints 1806.05050
  2. M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, et al., GeV gamma-ray flux upper limits from clusters of galaxies. Astrophys. J. Lett. 717, 71–78 (2010).  https://doi.org/10.1088/2041-8205/717/1/L71 ADSCrossRefGoogle Scholar
  3. M. Ackermann, M. Ajello, A. Albert, A. Allafort, W.B. Atwood, et al., Search for cosmic-ray-induced gamma-ray emission in galaxy clusters. Astrophys. J. 787, 18 (2014).  https://doi.org/10.1088/0004-637X/787/1/18 ADSCrossRefGoogle Scholar
  4. R. Adam, I. Bartalucci, G.W. Pratt, P. Ade, P. André, et al., Mapping the kinetic Sunyaev-Zel’dovich effect toward MACS J0717.5+3745 with NIKA. Astron. Astrophys. 598, 115 (2017).  https://doi.org/10.1051/0004-6361/201629182 CrossRefGoogle Scholar
  5. F. Akimoto, A. Furuzawa, Y. Tawara, K. Yamashita, Iron K-line analysis of clusters of galaxies with the resonance scattering effect. Adv. Space Res. 25, 603–606 (2000).  https://doi.org/10.1016/S0273-1177(99)00809-1 ADSCrossRefGoogle Scholar
  6. M.E. Anderson, R. Sunyaev, Searching for FUV line emission from 107 K gas in massive elliptical galaxies and galaxy clusters as a tracer of turbulent velocities. Mon. Not. R. Astron. Soc. 459, 2806–2821 (2016).  https://doi.org/10.1093/mnras/stw822 ADSCrossRefGoogle Scholar
  7. M.E. Anderson, R. Sunyaev, FUV line emission, gas kinematics, and discovery of [Fe XXI] \(\lambda \)1354.1 in the sightline toward a filament in M87. Astron. Astrophys. 617, 123 (2018).  https://doi.org/10.1051/0004-6361/201732510 ADSCrossRefGoogle Scholar
  8. K. Anton, S. Wagner, I. Appenzeller, Detection of the coronal forbidden line Fe X 6374 A in the cooling flow cluster A 1795. Astron. Astrophys. 246, 51–54 (1991) ADSGoogle Scholar
  9. P. Arévalo, E. Churazov, I. Zhuravleva, W.R. Forman, C. Jones, On the nature of X-ray surface brightness fluctuations in M87. Astrophys. J. 818, 14 (2016).  https://doi.org/10.3847/0004-637X/818/1/14 ADSCrossRefGoogle Scholar
  10. Y. Ascasibar, M. Markevitch, The origin of cold fronts in the cores of relaxed galaxy clusters. Astrophys. J. 650, 102–127 (2006).  https://doi.org/10.1086/506508 ADSCrossRefGoogle Scholar
  11. S.A. Balbus, Stability, instability, and “backward” transport in stratified fluids. Astrophys. J. 534, 420–427 (2000).  https://doi.org/10.1086/308732 ADSCrossRefGoogle Scholar
  12. S.A. Balbus, N. Soker, Theory of local thermal instability in spherical systems. Astrophys. J. 341, 611–630 (1989).  https://doi.org/10.1086/167521 ADSCrossRefGoogle Scholar
  13. S.A. Balbus, N. Soker, Resonant excitation of internal gravity waves in cluster cooling flows. Astrophys. J. 357, 353–366 (1990).  https://doi.org/10.1086/168926 ADSCrossRefGoogle Scholar
  14. C.J. Bambic, B.J. Morsony, C.S. Reynolds, Suppression of AGN-driven turbulence by magnetic fields in a magnetohydrodynamic model of the intracluster medium. Astrophys. J. 857, 84 (2018).  https://doi.org/10.3847/1538-4357/aab558 ADSCrossRefGoogle Scholar
  15. P. Barai, G. Murante, S. Borgani, M. Gaspari, G.L. Granato, et al., Kinetic AGN feedback effects on cluster cool cores simulated using SPH. Mon. Not. R. Astron. Soc. 461, 1548–1567 (2016).  https://doi.org/10.1093/mnras/stw1389 ADSCrossRefGoogle Scholar
  16. D. Barret, T. Lam Trong, J.-W. den Herder, L. Piro, M. Cappi, et al., The ATHENA X-ray integral field unit (X-IFU), in Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699 (2018), p. 106991.  https://doi.org/10.1117/12.2312409 CrossRefGoogle Scholar
  17. N. Battaglia, J.R. Bond, C. Pfrommer, J.L. Sievers, On the cluster physics of Sunyaev-Zel’dovich and X-ray surveys. I. The influence of feedback, non-thermal pressure, and cluster shapes on Y-M scaling relations. Astrophys. J. 758, 74 (2012).  https://doi.org/10.1088/0004-637X/758/2/74 ADSCrossRefGoogle Scholar
  18. M.C. Begelman, Impact of active galactic nuclei on the surrounding medium, in Gas and Galaxy Evolution, ed. by J.E. Hibbard, M. Rupen, J.H. van Gorkom. Astronomical Society of the Pacific Conference Series, vol. 240 (2001), p. 363 Google Scholar
  19. V. Biffi, S. Borgani, G. Murante, E. Rasia, S. Planelles, et al., On the nature of hydrostatic equilibrium in galaxy clusters. Astrophys. J. 827, 112 (2016).  https://doi.org/10.3847/0004-637X/827/2/112 ADSCrossRefGoogle Scholar
  20. M. Birkinshaw, The Sunyaev-Zel’dovich effect. Phys. Rep. 310, 97–195 (1999).  https://doi.org/10.1016/S0370-1573(98)00080-5 ADSCrossRefzbMATHGoogle Scholar
  21. L. Bîrzan, D.A. Rafferty, B.R. McNamara, M.W. Wise, P.E.J. Nulsen, A systematic study of radio-induced X-ray cavities in clusters, groups, and galaxies. Astrophys. J. 607, 800–809 (2004).  https://doi.org/10.1086/383519 ADSCrossRefGoogle Scholar
  22. E.L. Blanton, S.W. Randall, T.E. Clarke, C.L. Sarazin, B.R. McNamara, et al., A very deep Chandra observation of A2052: bubbles, shocks, and sloshing. Astrophys. J. 737, 99 (2011).  https://doi.org/10.1088/0004-637X/737/2/99 ADSCrossRefGoogle Scholar
  23. H. Boehringer, G.E. Morfill, On the dynamical role of cosmic rays in cooling flows in clusters of galaxies. Astrophys. J. 330, 609–619 (1988).  https://doi.org/10.1086/166497 ADSCrossRefGoogle Scholar
  24. H. Böhringer, W. Voges, A.C. Fabian, A.C. Edge, D.M. Neumann, A ROSAT HRI study of the interaction of the X-ray-emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 264, 25–28 (1993).  https://doi.org/10.1093/mnras/264.1.L25 ADSCrossRefGoogle Scholar
  25. A. Bonafede, M. Brüggen, D. Rafferty, I. Zhuravleva, C.J. Riseley, et al., LOFAR discovery of radio emission in MACS J0717.5+3745. Mon. Not. R. Astron. Soc. 478, 2927–2938 (2018).  https://doi.org/10.1093/mnras/sty1121 ADSCrossRefGoogle Scholar
  26. M.A. Bourne, D. Sijacki, AGN jet feedback on a moving mesh: cocoon inflation, gas flows and turbulence. Mon. Not. R. Astron. Soc. 472, 4707–4735 (2017).  https://doi.org/10.1093/mnras/stx2269 ADSCrossRefGoogle Scholar
  27. J.N. Bregman, A.C. Fabian, E.D. Miller, J.A. Irwin, On VI observations of galaxy clusters: evidence for modest cooling flows. Astrophys. J. 642, 746–751 (2006).  https://doi.org/10.1086/501112 ADSCrossRefGoogle Scholar
  28. M. Brüggen, C.R. Kaiser, Hot bubbles from active galactic nuclei as a heat source in cooling-flow clusters. Nature 418, 301–303 (2002).  https://doi.org/10.1038/nature00857 ADSCrossRefGoogle Scholar
  29. G.E. Bulbul, R.K. Smith, A. Foster, J. Cottam, M. Loewenstein, et al., High-resolution XMM-Newton spectroscopy of the cooling flow cluster A3112. Astrophys. J. 747, 32 (2012).  https://doi.org/10.1088/0004-637X/747/1/32 ADSCrossRefGoogle Scholar
  30. R.E.A. Canning, A.C. Fabian, R.M. Johnstone, J.S. Sanders, C.S. Crawford, et al., Detection of optical coronal emission from 106-K gas in the core of the Centaurus cluster. Mon. Not. R. Astron. Soc. 411, 411–421 (2011).  https://doi.org/10.1111/j.1365-2966.2010.17693.x ADSCrossRefGoogle Scholar
  31. M. Chatzikos, R.J.R. Williams, G.J. Ferland, R.E.A. Canning, A.C. Fabian, et al., Implications of coronal line emission in NGC 4696. Mon. Not. R. Astron. Soc. 446, 1234–1244 (2015).  https://doi.org/10.1093/mnras/stu2173 ADSCrossRefGoogle Scholar
  32. E. Churazov, W. Forman, C. Jones, H. Böhringer, Asymmetric, arc minute scale structures around NGC 1275. Astron. Astrophys. 356, 788–794 (2000) ADSGoogle Scholar
  33. E. Churazov, M. Brüggen, C.R. Kaiser, H. Böhringer, W. Forman, Evolution of buoyant bubbles in M87. Astrophys. J. 554, 261–273 (2001).  https://doi.org/10.1086/321357 ADSCrossRefGoogle Scholar
  34. E. Churazov, R. Sunyaev, W. Forman, H. Böhringer, Cooling flows as a calorimeter of active galactic nucleus mechanical power. Mon. Not. R. Astron. Soc. 332, 729–734 (2002).  https://doi.org/10.1046/j.1365-8711.2002.05332.x ADSCrossRefGoogle Scholar
  35. E. Churazov, W. Forman, C. Jones, H. Böhringer, XMM-Newton observations of the Perseus cluster. I. The temperature and surface brightness structure. Astrophys. J. 590, 225–237 (2003).  https://doi.org/10.1086/374923 ADSCrossRefGoogle Scholar
  36. E. Churazov, W. Forman, C. Jones, R. Sunyaev, H. Böhringer, XMM-Newton observations of the Perseus cluster-II. Evidence for gas motions in the core. Mon. Not. R. Astron. Soc. 347, 29–35 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07201.x ADSCrossRefGoogle Scholar
  37. E. Churazov, I. Zhuravleva, S. Sazonov, R. Sunyaev, Resonant scattering of X-ray emission lines in the hot intergalactic medium. Space Sci. Rev. 157, 193–209 (2010).  https://doi.org/10.1007/s11214-010-9685-4 ADSCrossRefGoogle Scholar
  38. E. Churazov, A. Vikhlinin, I. Zhuravleva, A. Schekochihin, I. Parrish, et al., X-ray surface brightness and gas density fluctuations in the Coma cluster. Mon. Not. R. Astron. Soc. 421, 1123–1135 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20372.x ADSCrossRefGoogle Scholar
  39. E. Churazov, P. Arevalo, W. Forman, C. Jones, A. Schekochihin, et al., Arithmetic with X-ray images of galaxy clusters: effective equation of state for small-scale perturbations in the ICM. Mon. Not. R. Astron. Soc. 463, 1057–1067 (2016).  https://doi.org/10.1093/mnras/stw2044 ADSCrossRefGoogle Scholar
  40. L. Ciotti, J.P. Ostriker, Cooling flows and quasars. II. Detailed models of feedback-modulated accretion flows. Astrophys. J. 551, 131–152 (2001).  https://doi.org/10.1086/320053 ADSCrossRefGoogle Scholar
  41. L.L. Cowie, Theoretical models of X-ray emission from rich clusters of galaxies, in X-Ray Astronomy with the Einstein Satellite, ed. by R. Giacconi. Astrophys. Space Sci. Library, vol. 87, 1981, pp. 227–240.  https://doi.org/10.1007/978-94-009-8459-2_13 CrossRefGoogle Scholar
  42. C.S. Crawford, S.W. Allen, H. Ebeling, A.C. Edge, A.C. Fabian, The ROSAT brightest cluster sample III. Optical spectra of the central cluster galaxies. Mon. Not. R. Astron. Soc. 306, 857–896 (1999).  https://doi.org/10.1046/j.1365-8711.1999.02583.x ADSCrossRefGoogle Scholar
  43. L.P. David, J. Lim, W. Forman, J. Vrtilek, F. Combes, et al., Molecular gas in the X-ray bright group NGC 5044 as revealed by ALMA. Astrophys. J. 792, 94 (2014).  https://doi.org/10.1088/0004-637X/792/2/94 ADSCrossRefGoogle Scholar
  44. S. De Grandi, D. Eckert, S. Molendi, M. Girardi, E. Roediger, et al., A textbook example of ram-pressure stripping in the Hydra A/A780 cluster. Astron. Astrophys. 592, 154 (2016).  https://doi.org/10.1051/0004-6361/201526641 CrossRefGoogle Scholar
  45. J. de Plaa, I. Zhuravleva, N. Werner, J.S. Kaastra, E. Churazov, et al., Estimating turbulent velocities in the elliptical galaxies NGC 5044 and NGC 5813. Astron. Astrophys. 539, 34 (2012).  https://doi.org/10.1051/0004-6361/201118404 CrossRefGoogle Scholar
  46. J. de Plaa, J.S. Kaastra, N. Werner, C. Pinto, P. Kosec, et al., CHEERS: the chemical evolution RGS sample. Astron. Astrophys. 607, 98 (2017).  https://doi.org/10.1051/0004-6361/201629926 CrossRefGoogle Scholar
  47. K. Dolag, F. Vazza, G. Brunetti, G. Tormen, Turbulent gas motions in galaxy cluster simulations: the role of smoothed particle hydrodynamics viscosity. Mon. Not. R. Astron. Soc. 364, 753–772 (2005) ADSCrossRefGoogle Scholar
  48. M. Donahue, J.T. Stocke, Coronal line emission in cluster cooling flows. Astrophys. J. 422, 459–466 (1994).  https://doi.org/10.1086/173741 ADSCrossRefGoogle Scholar
  49. J. Donnert, F. Vazza, M. Brüggen, J. ZuHone, Magnetic field amplification in galaxy clusters and its simulation. Space Sci. Rev. 214, 122 (2018).  https://doi.org/10.1007/s11214-018-0556-8 ADSCrossRefGoogle Scholar
  50. R.A. Dupke, J.N. Bregman, Detection of bulk motions in the intracluster medium of the Centaurus cluster. Astrophys. J. 562, 266–278 (2001a).  https://doi.org/10.1086/323433 ADSCrossRefGoogle Scholar
  51. R.A. Dupke, J.N. Bregman, Velocity gradients in the intracluster gas of the Perseus cluster. Astrophys. J. 547, 705–713 (2001b).  https://doi.org/10.1086/318393 ADSCrossRefGoogle Scholar
  52. R.A. Dupke, J.N. Bregman, Direct measurements of gas bulk flows in the intracluster medium of the Centaurus cluster with the Chandra satellite. Astrophys. J. 639, 781–787 (2006).  https://doi.org/10.1086/499343 ADSCrossRefGoogle Scholar
  53. R.A. Dupke, N. Mirabal, J.N. Bregman, A.E. Evrard, The merger in Abell 576: a line-of-sight bullet cluster? Astrophys. J. 668, 781–795 (2007a).  https://doi.org/10.1086/520708 ADSCrossRefGoogle Scholar
  54. R. Dupke, R.E. White III, J.N. Bregman, Different methods of forming cold fronts in nonmerging clusters. Astrophys. J. 671, 181–189 (2007b).  https://doi.org/10.1086/522194 ADSCrossRefGoogle Scholar
  55. D. Eckert, S. Molendi, M. Owers, M. Gaspari, T. Venturi, et al., The stripping of a galaxy group diving into the massive cluster A2142. Astron. Astrophys. 570, 119 (2014).  https://doi.org/10.1051/0004-6361/201424259 CrossRefGoogle Scholar
  56. D. Eckert, M. Gaspari, F. Vazza, F. Gastaldello, A. Tramacere, et al., On the connection between turbulent motions and particle acceleration in galaxy clusters. Astrophys. J. Lett. 843, 29 (2017a).  https://doi.org/10.3847/2041-8213/aa7c1a ADSCrossRefGoogle Scholar
  57. D. Eckert, M. Gaspari, M.S. Owers, E. Roediger, S. Molendi, et al., Deep Chandra observations of the stripped galaxy group falling into Abell 2142. Astron. Astrophys. 605, 25 (2017b).  https://doi.org/10.1051/0004-6361/201730555 CrossRefGoogle Scholar
  58. A.C. Edge, The detection of molecular gas in the central galaxies of cooling flow clusters. Mon. Not. R. Astron. Soc. 328, 762–782 (2001).  https://doi.org/10.1046/j.1365-8711.2001.04802.x ADSCrossRefGoogle Scholar
  59. S. Ehlert, N. Werner, A. Simionescu, S.W. Allen, J.D.P. Kenney, et al., Ripping apart at the seams: the network of stripped gas surrounding M86. Mon. Not. R. Astron. Soc. 430(3), 2401–2410 (2013).  https://doi.org/10.1093/mnras/stt060 ADSCrossRefGoogle Scholar
  60. S. Ettori, G.W. Pratt, J. de Plaa, D. Eckert, J. Nevalainen, et al., The hot and energetic Universe: the astrophysics of galaxy groups and clusters (2013). arXiv e-prints 1306.2322
  61. A.C. Fabian, Cooling flows in clusters of galaxies. Annu. Rev. Astron. Astrophys. 32, 277–318 (1994).  https://doi.org/10.1146/annurev.aa.32.090194.001425 ADSCrossRefGoogle Scholar
  62. A.C. Fabian, Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).  https://doi.org/10.1146/annurev-astro-081811-125521 ADSCrossRefGoogle Scholar
  63. A.C. Fabian, P.E.J. Nulsen, Subsonic accretion of cooling gas in clusters of galaxies. Mon. Not. R. Astron. Soc. 180, 479–484 (1977).  https://doi.org/10.1093/mnras/180.3.479 ADSCrossRefGoogle Scholar
  64. A.C. Fabian, J.S. Sanders, S.W. Allen, C.S. Crawford, K. Iwasawa, et al., A deep Chandra observation of the Perseus cluster: shocks and ripples. Mon. Not. R. Astron. Soc. 344, 43–47 (2003a).  https://doi.org/10.1046/j.1365-8711.2003.06902.x ADSCrossRefGoogle Scholar
  65. A.C. Fabian, J.S. Sanders, C.S. Crawford, C.J. Conselice, J.S. Gallagher, R.F.G. Wyse, The relationship between the optical H\(\upalpha \) filaments and the X-ray emission in the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 344, 48–52 (2003b).  https://doi.org/10.1046/j.1365-8711.2003.06856.x ADSCrossRefGoogle Scholar
  66. A.C. Fabian, J.S. Sanders, G.B. Taylor, S.W. Allen, C.S. Crawford, et al., A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006).  https://doi.org/10.1111/j.1365-2966.2005.09896.x ADSCrossRefGoogle Scholar
  67. A.C. Fabian, J.S. Sanders, S.W. Allen, R.E.A. Canning, E. Churazov, et al., A wide Chandra view of the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 418, 2154–2164 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19402.x ADSCrossRefGoogle Scholar
  68. A.C. Fabian, S.A. Walker, H.R. Russell, C. Pinto, J.S. Sanders, C.S. Reynolds, Do sound waves transport the AGN energy in the Perseus cluster? Mon. Not. R. Astron. Soc. 464, 1–5 (2017).  https://doi.org/10.1093/mnrasl/slw170 ADSCrossRefGoogle Scholar
  69. A. Finoguenov, H. Böhringer, Y.-Y. Zhang, XMM-Newton study of the two-dimensional structure of the REFLEX-DXL galaxy clusters. Astron. Astrophys. 442, 827–839 (2005).  https://doi.org/10.1051/0004-6361:20053306 ADSCrossRefGoogle Scholar
  70. W. Forman, C. Jones, E. Churazov, M. Markevitch, P. Nulsen, et al., Filaments, bubbles, and weak shocks in the gaseous atmosphere of M87. Astrophys. J. 665, 1057–1066 (2007).  https://doi.org/10.1086/519480 ADSCrossRefGoogle Scholar
  71. W. Forman, E. Churazov, C. Jones, S. Heinz, R. Kraft, A. Vikhlinin, Partitioning the outburst energy of a low Eddington accretion rate AGN at the center of an elliptical galaxy: the recent 12 myr history of the supermassive black hole in M87. Astrophys. J. 844, 122 (2017).  https://doi.org/10.3847/1538-4357/aa70e4 ADSCrossRefGoogle Scholar
  72. Y. Fujita, T.H. Reiprich, Can supermassive black holes sufficiently heat cool cores of galaxy clusters? Astrophys. J. 612, 797–804 (2004).  https://doi.org/10.1086/422800 ADSCrossRefGoogle Scholar
  73. J.A. Gaskin, R. Allured, S.R. Bandler, S. Basso, M.W. Bautz, et al., Lynx mission concept status, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10397 (2017), p. 103970.  https://doi.org/10.1117/12.2273911 CrossRefGoogle Scholar
  74. M. Gaspari, E. Churazov, Constraining turbulence and conduction in the hot ICM through density perturbations. Astron. Astrophys. 559, 78 (2013).  https://doi.org/10.1051/0004-6361/201322295 ADSCrossRefGoogle Scholar
  75. M. Gaspari, A. Sa̧dowski, Unifying the micro and macro properties of AGN feeding and feedback. Astrophys. J. 837, 149 (2017).  https://doi.org/10.3847/1538-4357/aa61a3 ADSCrossRefGoogle Scholar
  76. M. Gaspari, C. Melioli, F. Brighenti, A. D’Ercole, The dance of heating and cooling in galaxy clusters: three-dimensional simulations of self-regulated active galactic nuclei outflows. Mon. Not. R. Astron. Soc. 411, 349–372 (2011).  https://doi.org/10.1111/j.1365-2966.2010.17688.x ADSCrossRefGoogle Scholar
  77. M. Gaspari, M. Ruszkowski, P. Sharma, Cause and effect of feedback: multiphase gas in cluster cores heated by AGN jets. Astrophys. J. 746, 94 (2012a).  https://doi.org/10.1088/0004-637X/746/1/94 ADSCrossRefGoogle Scholar
  78. M. Gaspari, F. Brighenti, P. Temi, Mechanical AGN feedback: controlling the thermodynamical evolution of elliptical galaxies. Mon. Not. R. Astron. Soc. 424, 190–209 (2012b).  https://doi.org/10.1111/j.1365-2966.2012.21183.x ADSCrossRefGoogle Scholar
  79. M. Gaspari, M. Ruszkowski, S.P. Oh, Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 432, 3401–3422 (2013a).  https://doi.org/10.1093/mnras/stt692 ADSCrossRefGoogle Scholar
  80. M. Gaspari, F. Brighenti, M. Ruszkowski, Solving the cooling flow problem through mechanical AGN feedback. Astron. Nachr. 334, 394 (2013b).  https://doi.org/10.1002/asna.201211865 ADSCrossRefGoogle Scholar
  81. M. Gaspari, E. Churazov, D. Nagai, E.T. Lau, I. Zhuravleva, The relation between gas density and velocity power spectra in galaxy clusters: high-resolution hydrodynamic simulations and the role of conduction. Astron. Astrophys. 569, 67 (2014).  https://doi.org/10.1051/0004-6361/201424043 ADSCrossRefGoogle Scholar
  82. M. Gaspari, F. Brighenti, P. Temi, Chaotic cold accretion on to black holes in rotating atmospheres. Astron. Astrophys. 579, 62 (2015).  https://doi.org/10.1051/0004-6361/201526151 ADSCrossRefGoogle Scholar
  83. M. Gaspari, P. Temi, F. Brighenti, Raining on black holes and massive galaxies: the top-down multiphase condensation model. Mon. Not. R. Astron. Soc. 466, 677–704 (2017).  https://doi.org/10.1093/mnras/stw3108 ADSCrossRefGoogle Scholar
  84. M. Gaspari, M. McDonald, S.L. Hamer, F. Brighenti, P. Temi, et al., Shaken snow globes: kinematic tracers of the multiphase condensation cascade in massive galaxies, groups, and clusters. Astrophys. J. 854, 167 (2018).  https://doi.org/10.3847/1538-4357/aaaa1b ADSCrossRefGoogle Scholar
  85. F. Gastaldello, S. Molendi, Ni abundance in the core of the Perseus cluster: an answer to the significance of resonant scattering. Astrophys. J. 600, 670–680 (2004).  https://doi.org/10.1086/379970 ADSCrossRefGoogle Scholar
  86. M. Gendron-Marsolais, J. Hlavacek-Larrondo, T.B. Martin, L. Drissen, M. McDonald, et al., Revealing the velocity structure of the filamentary nebula in NGC 1275 in its entirety. Mon. Not. R. Astron. Soc. 479, 28–33 (2018).  https://doi.org/10.1093/mnrasl/sly084 ADSCrossRefGoogle Scholar
  87. M.R. Gilfanov, R.A. Sunyaev, E.M. Churazov, Radial brightness profiles of resonance X-ray lines in galaxy clusters. Sov. Astron. Lett. 13, 3–7 (1987) ADSGoogle Scholar
  88. M. Gitti, P.E.J. Nulsen, L.P. David, B.R. McNamara, M.W. Wise, A Chandra study of the large-scale shock and cool filaments in Hydra A: evidence for substantial gas dredge-up by the central outburst. Astrophys. J. 732, 13 (2011).  https://doi.org/10.1088/0004-637X/732/1/13 ADSCrossRefGoogle Scholar
  89. C.M. Graney, C.L. Sarazin, Optical coronal emission lines from equilibrium and cooling plasmas. Astrophys. J. 364, 561–567 (1990).  https://doi.org/10.1086/169438 ADSCrossRefGoogle Scholar
  90. L. Gu, H. Xu, J. Gu, Y. Wang, Z. Zhang, et al., A Chandra study of temperature substructures in intermediate-redshift galaxy clusters. Astrophys. J. 700, 1161–1172 (2009).  https://doi.org/10.1088/0004-637X/700/2/1161 ADSCrossRefGoogle Scholar
  91. L. Gu, I. Zhuravleva, E. Churazov, F. Paerels, J. Kaastra, H. Yamaguchi, X-ray spectroscopy of galaxy clusters: beyond the CIE modeling. Space Sci. Rev. 214, 108 (2018).  https://doi.org/10.1007/s11214-018-0544-z ADSCrossRefGoogle Scholar
  92. S.F. Gull, K.J.E. Northover, Bubble model of extragalactic radio sources. Nature 244, 80–83 (1973).  https://doi.org/10.1038/244080a0 ADSCrossRefGoogle Scholar
  93. E.J. Hallman, M. Markevitch, Chandra observation of the merging cluster A168: a late stage in the evolution of a cold front. Astrophys. J. Lett. 610, 81–84 (2004).  https://doi.org/10.1086/423449 ADSCrossRefGoogle Scholar
  94. S.L. Hamer, A.C. Edge, A.M. Swinbank, R.J. Wilman, F. Combes, et al., Optical emission line nebulae in galaxy cluster cores 1: the morphological, kinematic and spectral properties of the sample. Mon. Not. R. Astron. Soc. 460, 1758–1789 (2016).  https://doi.org/10.1093/mnras/stw1054 ADSCrossRefGoogle Scholar
  95. N.A. Hatch, C.S. Crawford, A.C. Fabian, R.M. Johnstone, Detections of molecular hydrogen in the outer filaments of NGC1275. Mon. Not. R. Astron. Soc. 358, 765–773 (2005).  https://doi.org/10.1111/j.1365-2966.2005.08787.x ADSCrossRefGoogle Scholar
  96. T.M. Heckman, S.A. Baum, W.J.M. van Breugel, P. McCarthy, Dynamical, physical, and chemical properties of emission-line nebulae in cooling flows. Astrophys. J. 338, 48–77 (1989).  https://doi.org/10.1086/167181 ADSCrossRefGoogle Scholar
  97. S. Heinz, C.S. Reynolds, M.C. Begelman, X-ray signatures of evolving radio galaxies. Astrophys. J. 501, 126–136 (1998).  https://doi.org/10.1086/305807 ADSCrossRefGoogle Scholar
  98. S. Heinz, M. Brüggen, B. Morsony, Prospects of high-resolution X-ray spectroscopy for active galactic nucleus feedback in galaxy clusters. Astrophys. J. 708, 462–468 (2010).  https://doi.org/10.1088/0004-637X/708/1/462 ADSCrossRefGoogle Scholar
  99. Hitomi Collaboration, The quiescent intracluster medium in the core of the Perseus cluster. Nature 535, 117–121 (2016).  https://doi.org/10.1038/nature18627 ADSCrossRefGoogle Scholar
  100. Hitomi Collaboration, Atmospheric gas dynamics in the Perseus cluster observed with Hitomi. Publ. Astron. Soc. Jpn. 70, 9 (2018a).  https://doi.org/10.1093/pasj/psx138 ADSCrossRefGoogle Scholar
  101. Hitomi Collaboration, Measurements of resonant scattering in the Perseus cluster core with Hitomi SXS. Publ. Astron. Soc. Jpn. 70, 10 (2018b).  https://doi.org/10.1093/pasj/psx127 ADSCrossRefGoogle Scholar
  102. J. Hlavacek-Larrondo, A.C. Fabian, A.C. Edge, H. Ebeling, J.S. Sanders, et al., Extreme AGN feedback in the MAssive cluster survey: a detailed study of X-ray cavities at z>0.3. Mon. Not. R. Astron. Soc. 421, 1360–1384 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20405.x ADSCrossRefGoogle Scholar
  103. F. Hofmann, J.S. Sanders, K. Nandra, N. Clerc, M. Gaspari, Thermodynamic perturbations in the X-ray halo of 33 clusters of galaxies observed with Chandra ACIS. Astron. Astrophys. 585, 130 (2016).  https://doi.org/10.1051/0004-6361/201526925 ADSCrossRefGoogle Scholar
  104. E.M. Hu, L.L. Cowie, Z. Wang, Long-slit spectroscopy of gas in the cores of X-ray luminous clusters. Astrophys. J. Suppl. Ser. 59, 447–498 (1985).  https://doi.org/10.1086/191081 ADSCrossRefGoogle Scholar
  105. B. Huber, C. Tchernin, D. Eckert, C. Farnier, A. Manalaysay, et al., Probing the cosmic-ray content of galaxy clusters by stacking Fermi-LAT count maps. Astron. Astrophys. 560, 64 (2013).  https://doi.org/10.1051/0004-6361/201321947 ADSCrossRefGoogle Scholar
  106. L. Iapichino, W. Schmidt, J.C. Niemeyer, J. Merklein, Turbulence production and turbulent pressure support in the intergalactic medium. Mon. Not. R. Astron. Soc. 414, 2297–2308 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18550.x ADSCrossRefGoogle Scholar
  107. Y. Ichinohe, N. Werner, A. Simionescu, S.W. Allen, R.E.A. Canning, et al., The growth of the galaxy cluster Abell 85: mergers, shocks, stripping and seeding of clumping. Mon. Not. R. Astron. Soc. 448, 2971–2986 (2015).  https://doi.org/10.1093/mnras/stv217 ADSCrossRefGoogle Scholar
  108. Y. Ichinohe, A. Simionescu, N. Werner, T. Takahashi, An azimuthally resolved study of the cold front in Abell 3667. Mon. Not. R. Astron. Soc. 467, 3662–3676 (2017).  https://doi.org/10.1093/mnras/stx280 ADSCrossRefGoogle Scholar
  109. Y. Ichinohe, A. Simionescu, N. Werner, A.C. Fabian, T. Takahashi, Substructures associated with the sloshing cold front in the Perseus cluster. Mon. Not. R. Astron. Soc. 483, 1744–1753 (2019).  https://doi.org/10.1093/mnras/sty3257 ADSCrossRefGoogle Scholar
  110. N.A. Inogamov, R.A. Sunyaev, Turbulence in clusters of galaxies and X-ray line profiles. Astron. Lett. 29, 791–824 (2003) ADSCrossRefGoogle Scholar
  111. J.S. Kaastra, R. Lieu, J.P.D. Mittaz, J.A.M. Bleeker, R. Mewe, et al., High- and low-energy nonthermal X-ray emission from the Abell 2199 cluster of galaxies. Astrophys. J. Lett. 519, 119–122 (1999).  https://doi.org/10.1086/312112 ADSCrossRefGoogle Scholar
  112. S.M. Kahn, J.R. Peterson, F.B.S. Paerels, H. Xu, J.S. Kaastra, et al., High resolution X-ray spectroscopic constraints on cooling flow models of clusters of galaxies and gaseous haloes around elliptical galaxies, in Matter and Energy in Clusters of Galaxies, ed. by S. Bowyer, C.-Y. Hwang. Astronomical Society of the Pacific Conference Series, vol. 301 (2003), p. 23 Google Scholar
  113. H. Kawahara, E.D. Reese, T. Kitayama, S. Sasaki, Y. Suto, Extracting galaxy cluster gas inhomogeneity from X-ray surface brightness: a statistical approach and application to Abell 3667. Astrophys. J. 687, 936–950 (2008).  https://doi.org/10.1086/591930 ADSCrossRefGoogle Scholar
  114. R. Khatri, M. Gaspari, Thermal SZ fluctuations in the ICM: probing turbulence and thermodynamics in Coma cluster with Planck. Mon. Not. R. Astron. Soc. 463, 655–669 (2016).  https://doi.org/10.1093/mnras/stw2027 ADSCrossRefGoogle Scholar
  115. C.C. Kirkpatrick, B.R. McNamara, Hot outflows in galaxy clusters. Mon. Not. R. Astron. Soc. 452, 4361–4376 (2015).  https://doi.org/10.1093/mnras/stv1574 ADSCrossRefGoogle Scholar
  116. C.C. Kirkpatrick, M. Gitti, K.W. Cavagnolo, B.R. McNamara, L.P. David, et al., Direct evidence for outflow of metal-enriched gas along the radio jets of Hydra A. Astrophys. J. Lett. 707, 69–72 (2009).  https://doi.org/10.1088/0004-637X/707/1/L69 ADSCrossRefGoogle Scholar
  117. C.C. Kirkpatrick, B.R. McNamara, K.W. Cavagnolo, Anisotropic metal-enriched outflows driven by active galactic nuclei in clusters of galaxies. Astrophys. J. Lett. 731, 23 (2011).  https://doi.org/10.1088/2041-8205/731/2/L23 ADSCrossRefGoogle Scholar
  118. T. Kitayama, M. Bautz, M. Markevitch, K. Matsushita, S. Allen, et al., ASTRO-H white paper—clusters of galaxies and related science (2014). arXiv e-prints 1412.1176
  119. J. Kormendy, L.C. Ho, Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).  https://doi.org/10.1146/annurev-astro-082708-101811 ADSCrossRefGoogle Scholar
  120. R.P. Kraft, W.R. Forman, C. Jones, P.E.J. Nulsen, M.J. Hardcastle, et al., THE GAS DYNAMICS OF NGC 4472 REVEALED BY XMM-NEWTON. Astrophys. J. 727(1), 41 (2011).  https://doi.org/10.1088/0004-637X/727/1/41 ADSCrossRefGoogle Scholar
  121. R. Kraft, E. Roediger, M. Machacek, W.R. Forman, P.E.J. Nulsen, et al., Stripped elliptical galaxies as probes of ICM physics: III. Deep Chandra observation of NGC 4552-measuring the viscosity of the intracluster medium. Astrophys. J. 848, 27 (2017).  https://doi.org/10.3847/1538-4357/aa8a6e ADSCrossRefGoogle Scholar
  122. A.V. Kravtsov, S. Borgani, Formation of galaxy clusters. Annu. Rev. Astron. Astrophys. 50, 353–409 (2012).  https://doi.org/10.1146/annurev-astro-081811-125502 ADSCrossRefGoogle Scholar
  123. M.W. Kunz, A.A. Schekochihin, S.C. Cowley, J.J. Binney, J.S. Sanders, A thermally stable heating mechanism for the intracluster medium: turbulence, magnetic fields and plasma instabilities. Mon. Not. R. Astron. Soc. 410, 2446–2457 (2011).  https://doi.org/10.1111/j.1365-2966.2010.17621.x ADSCrossRefGoogle Scholar
  124. E.T. Lau, A.V. Kravtsov, D. Nagai, Residual gas motions in the intracluster medium and bias in hydrostatic measurements of mass profiles of clusters. Astrophys. J. 705, 1129–1138 (2009).  https://doi.org/10.1088/0004-637X/705/2/1129 ADSCrossRefGoogle Scholar
  125. E.T. Lau, M. Gaspari, D. Nagai, P. Coppi, Physical origins of gas motions in galaxy cluster cores: interpreting Hitomi observations of the Perseus cluster. Astrophys. J. 849, 54 (2017).  https://doi.org/10.3847/1538-4357/aa8c00 ADSCrossRefGoogle Scholar
  126. Y. Li, G.L. Bryan, Modeling active galactic nucleus feedback in cool-core clusters: the formation of cold clumps. Astrophys. J. 789, 153 (2014).  https://doi.org/10.1088/0004-637X/789/2/153 ADSCrossRefGoogle Scholar
  127. Y. Li, M. Ruszkowski, G.L. Bryan, AGN heating in simulated cool-core clusters. Astrophys. J. 847, 106 (2017).  https://doi.org/10.3847/1538-4357/aa88c1 ADSCrossRefGoogle Scholar
  128. M. Loewenstein, E.G. Zweibel, M.C. Begelman, Cosmic-ray heating of cooling flows—a critical analysis. Astrophys. J. 377, 392–402 (1991).  https://doi.org/10.1086/170369 ADSCrossRefGoogle Scholar
  129. N. Lyskova, E. Churazov, C. Zhang, W. Forman, C. Jones, et al., Close-up view of an ongoing merger between the NGC 4839 group and the Coma cluster—a post-merger scenario (2018). arXiv e-prints 1811.07944
  130. M. Lyutikov, Dissipation in intercluster plasma. Astrophys. J. Lett. 668, 1–4 (2007).  https://doi.org/10.1086/522696 ADSCrossRefGoogle Scholar
  131. M. Machacek, A. Dosaj, W. Forman, C. Jones, M. Markevitch, et al., Infall of the elliptical galaxy NGC 1404 into the Fornax cluster. Astrophys. J. 621, 663–672 (2005).  https://doi.org/10.1086/427548 ADSCrossRefGoogle Scholar
  132. A. Malagoli, R. Rosner, G. Bodo, On the thermal instability of galactic and cluster halos. Astrophys. J. 319, 632–636 (1987).  https://doi.org/10.1086/165483 ADSCrossRefGoogle Scholar
  133. M. Markevitch, A. Vikhlinin, Shocks and cold fronts in galaxy clusters. Phys. Rep. 443, 1–53 (2007).  https://doi.org/10.1016/j.physrep.2007.01.001 ADSCrossRefGoogle Scholar
  134. M. Markevitch, T.J. Ponman, P.E.J. Nulsen, M.W. Bautz, D.J. Burke, et al., Chandra observation of Abell 2142: survival of dense subcluster cores in a merger. Astrophys. J. 541, 542–549 (2000).  https://doi.org/10.1086/309470 ADSCrossRefGoogle Scholar
  135. M. Markevitch, A. Vikhlinin, P. Mazzotta, Nonhydrostatic gas in the core of the relaxed galaxy cluster A1795. Astrophys. J. Lett. 562, 153–156 (2001).  https://doi.org/10.1086/337973 ADSCrossRefGoogle Scholar
  136. M. Markevitch, A.H. Gonzalez, L. David, A. Vikhlinin, S. Murray, et al., A textbook example of a bow shock in the merging galaxy cluster 1E 0657-56. Astrophys. J. Lett. 567, 27–31 (2002).  https://doi.org/10.1086/339619 ADSCrossRefGoogle Scholar
  137. W.G. Mathews, J.N. Bregman, Radiative accretion flow onto giant galaxies in clusters. Astrophys. J. 224, 308–319 (1978).  https://doi.org/10.1086/156379 ADSCrossRefGoogle Scholar
  138. W.G. Mathews, D.A. Buote, F. Brighenti, Spatial diffusion of X-ray emission lines in the M87 cooling flow; evidence for absorption. Astrophys. J. Lett. 550, 31–34 (2001).  https://doi.org/10.1086/319497 ADSCrossRefGoogle Scholar
  139. P. Mazzotta, A.C. Edge, M. Markevitch, A Chandra study of the complex structure in the core of 2A 0335+096. Astrophys. J. 596, 190–203 (2003).  https://doi.org/10.1086/377633 ADSCrossRefGoogle Scholar
  140. M. McCourt, P. Sharma, E. Quataert, I.J. Parrish, Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes. Mon. Not. R. Astron. Soc. 419, 3319–3337 (2012).  https://doi.org/10.1111/j.1365-2966.2011.19972.x ADSCrossRefGoogle Scholar
  141. M. McDonald, L.H. Wei, S. Veilleux, Cold molecular gas along the cooling X-ray filament in A1795. Astrophys. J. Lett. 755, 24 (2012).  https://doi.org/10.1088/2041-8205/755/2/L24 ADSCrossRefGoogle Scholar
  142. M. McDonald, S.W. Allen, M. Bayliss, B.A. Benson, L.E. Bleem, et al., The remarkable similarity of massive galaxy clusters from \(z\sim 0\) to \(z\sim 1.9\). Astrophys. J. 843, 28 (2017).  https://doi.org/10.3847/1538-4357/aa7740 ADSCrossRefGoogle Scholar
  143. B.R. McNamara, P.E.J. Nulsen, Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14(5), 055023 (2012).  https://doi.org/10.1088/1367-2630/14/5/055023 ADSCrossRefGoogle Scholar
  144. B.R. McNamara, M. Wise, P.E.J. Nulsen, L.P. David, C.L. Sarazin, et al., Chandra X-ray observations of the Hydra A cluster: an interaction between the radio source and the X-ray-emitting gas. Astrophys. J. Lett. 534, 135–138 (2000).  https://doi.org/10.1086/312662 ADSCrossRefGoogle Scholar
  145. B.R. McNamara, P.E.J. Nulsen, M.W. Wise, D.A. Rafferty, C. Carilli, et al., The heating of gas in a galaxy cluster by X-ray cavities and large-scale shock fronts. Nature 433, 45–47 (2005).  https://doi.org/10.1038/nature03202 ADSCrossRefGoogle Scholar
  146. B.R. McNamara, H.R. Russell, P.E.J. Nulsen, A.C. Edge, N.W. Murray, et al., A 1010 solar mass flow of molecular gas in the A1835 brightest cluster galaxy. Astrophys. J. 785, 44 (2014).  https://doi.org/10.1088/0004-637X/785/1/44 ADSCrossRefGoogle Scholar
  147. B.R. McNamara, H.R. Russell, P.E.J. Nulsen, M.T. Hogan, A.C. Fabian, et al., A mechanism for stimulating AGN feedback by lifting gas in massive galaxies. Astrophys. J. 830, 79 (2016).  https://doi.org/10.3847/0004-637X/830/2/79 ADSCrossRefGoogle Scholar
  148. J. Merten, D. Coe, R. Dupke, R. Massey, A. Zitrin, et al., Creation of cosmic structure in the complex galaxy cluster merger Abell 2744. Mon. Not. R. Astron. Soc. 417, 333–347 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19266.x ADSCrossRefGoogle Scholar
  149. F. Miniati, The matryoshka run: a Eulerian refinement strategy to study the statistics of turbulence in virialized cosmic structures. Astrophys. J. 782, 21 (2014).  https://doi.org/10.1088/0004-637X/782/1/21 ADSCrossRefGoogle Scholar
  150. R. Mittal, C.P. O’Dea, G. Ferland, J.B.R. Oonk, A.C. Edge, et al., Herschel observations of the Centaurus cluster—the dynamics of cold gas in a cool core. Mon. Not. R. Astron. Soc. 418, 2386–2402 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19634.x ADSCrossRefGoogle Scholar
  151. R. Mittal, J.B.R. Oonk, G.J. Ferland, A.C. Edge, C.P. O’Dea, et al., Herschel observations of extended atomic gas in the core of the Perseus cluster. Mon. Not. R. Astron. Soc. 426, 2957–2977 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21891.x ADSCrossRefGoogle Scholar
  152. T. Mroczkowski, S. Dicker, J. Sayers, E.D. Reese, B. Mason, et al., A multi-wavelength study of the Sunyaev–Zel’dovich effect in the triple-merger cluster MACS J0717.5+3745 with MUSTANG and Bolocam. Astrophys. J. 761, 47 (2012).  https://doi.org/10.1088/0004-637X/761/1/47 ADSCrossRefGoogle Scholar
  153. T. Mroczkowski, D. Nagai, K. Basu, J. Chluba, J. Sayers, et al., Astrophysics with the spatially and spectrally resolved Sunyaev-Zeldovich effects: a millimetre/submillimetre probe of the warm and hot Universe (2018). arXiv e-prints 1811.02310
  154. D. Nagai, A. Vikhlinin, A.V. Kravtsov, Testing X-ray measurements of galaxy clusters with cosmological simulations. Astrophys. J. 655, 98–108 (2007).  https://doi.org/10.1086/509868 ADSCrossRefGoogle Scholar
  155. D. Nagai, E.T. Lau, C. Avestruz, K. Nelson, D.H. Rudd, Predicting merger-induced gas motions in \(\varLambda \)CDM galaxy clusters. Astrophys. J. 777, 137 (2013).  https://doi.org/10.1088/0004-637X/777/2/137 ADSCrossRefGoogle Scholar
  156. K. Nandra, D. Barret, X. Barcons, A. Fabian, J.-W. den Herder, et al., The hot and energetic Universe: a white paper presenting the science theme motivating the Athena + mission (2013). arXiv e-prints 1306.2307
  157. K. Nelson, D.H. Rudd, L. Shaw, D. Nagai, Evolution of the merger-induced hydrostatic mass bias in galaxy clusters. Astrophys. J. 751, 121 (2012).  https://doi.org/10.1088/0004-637X/751/2/121 ADSCrossRefGoogle Scholar
  158. K. Nelson, E.T. Lau, D. Nagai, D.H. Rudd, L. Yu, Weighing galaxy clusters with gas. II. On the origin of hydrostatic mass bias in \(\varLambda \)CDM galaxy clusters. Astrophys. J. 782, 107 (2014a).  https://doi.org/10.1088/0004-637X/782/2/107 ADSCrossRefGoogle Scholar
  159. K. Nelson, E.T. Lau, D. Nagai, Hydrodynamic simulation of non-thermal pressure profiles of galaxy clusters. Astrophys. J. 792, 25 (2014b).  https://doi.org/10.1088/0004-637X/792/1/25 ADSCrossRefGoogle Scholar
  160. D.M. Neumann, M. Arnaud, R. Gastaud, N. Aghanim, D. Lumb, et al., The NGC 4839 group falling into the Coma cluster observed by XMM-Newton. Astron. Astrophys. 365(1), 74–79 (2001).  https://doi.org/10.1051/0004-6361:20000182 ADSCrossRefGoogle Scholar
  161. M.L. Norman, G.L. Bryan, Cluster turbulence, in The Radio Galaxy Messier 87, ed. by H.-J. Röser, K. Meisenheimer. Lecture Notes in Physics, Berlin Springer Verlag, vol. 530 (1999), p. 106.  https://doi.org/10.1007/BFb0106425 CrossRefGoogle Scholar
  162. A. Ogorzalek, I. Zhuravleva, S.W. Allen, C. Pinto, N. Werner, et al., Improved measurements of turbulence in the hot gaseous atmospheres of nearby giant elliptical galaxies. Mon. Not. R. Astron. Soc. 472, 1659–1676 (2017).  https://doi.org/10.1093/mnras/stx2030 ADSCrossRefGoogle Scholar
  163. T.B. O’Hara, J.J. Mohr, M.A. Guerrero, A Chandra study of the effects of a major merger on the structure of A2319. Astrophys. J. 604, 604–613 (2004).  https://doi.org/10.1086/382063 ADSCrossRefGoogle Scholar
  164. H. Omma, J. Binney, Structural stability of cooling flows. Mon. Not. R. Astron. Soc. 350, 13–16 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07809.x ADSCrossRefGoogle Scholar
  165. N. Ota, H. Yoshida, Search for gas bulk motions in eight nearby clusters of galaxies with Suzaku. Publ. Astron. Soc. Jpn. 68, 19 (2016).  https://doi.org/10.1093/pasj/psv128 ADSCrossRefGoogle Scholar
  166. N. Ota, Y. Fukazawa, A.C. Fabian, T. Kanemaru, M. Kawaharada, et al., Suzaku observations of the Centaurus cluster: absence of bulk motions in the intracluster medium. Publ. Astron. Soc. Jpn. 59, 351–359 (2007).  https://doi.org/10.1093/pasj/59.sp1.S351 CrossRefGoogle Scholar
  167. N. Ota, D. Nagai, E.T. Lau, Constraining hydrostatic mass bias of galaxy clusters with high-resolution X-ray spectroscopy. Publ. Astron. Soc. Jpn. 70, 51 (2018).  https://doi.org/10.1093/pasj/psy040 ADSCrossRefGoogle Scholar
  168. M.S. Owers, S.W. Randall, P.E.J. Nulsen, W.J. Couch, L.P. David, J.C. Kempner, The dissection of Abell 2744: a rich cluster growing through major and minor mergers. Astrophys. J. 728, 27 (2011).  https://doi.org/10.1088/0004-637X/728/1/27 ADSCrossRefGoogle Scholar
  169. M. Ozawa, H. Uchiyama, H. Matsumoto, H. Nakajima, K. Koyama, et al., Energy-scale calibration of the Suzaku X-ray imaging spectrometer using the checker flag charge-injection technique in orbit. Publ. Astron. Soc. Jpn. 61, 1–7 (2009).  https://doi.org/10.1093/pasj/61.sp1.S1 CrossRefGoogle Scholar
  170. I.J. Parrish, J.M. Stone, Nonlinear evolution of the magnetothermal instability in two dimensions. Astrophys. J. 633, 334–348 (2005).  https://doi.org/10.1086/444589 ADSCrossRefGoogle Scholar
  171. I.J. Parrish, M. McCourt, E. Quataert, P. Sharma, Turbulent pressure support in the outer parts of galaxy clusters. Mon. Not. R. Astron. Soc. 419, 29–33 (2012).  https://doi.org/10.1111/j.1745-3933.2011.01171.x ADSCrossRefGoogle Scholar
  172. R. Paterno-Mahler, E.L. Blanton, S.W. Randall, T.E. Clarke, Deep Chandra observations of the extended gas sloshing spiral in A2029. Astrophys. J. 773, 114 (2013).  https://doi.org/10.1088/0004-637X/773/2/114 ADSCrossRefGoogle Scholar
  173. J.R. Peterson, A.C. Fabian, X-ray spectroscopy of cooling clusters. Phys. Rep. 427, 1–39 (2006).  https://doi.org/10.1016/j.physrep.2005.12.007 ADSCrossRefGoogle Scholar
  174. C. Pinto, A.C. Fabian, N. Werner, P. Kosec, J. Ahoranta, et al., Discovery of O VII line emitting gas in elliptical galaxies. Astron. Astrophys. 572, 8 (2014).  https://doi.org/10.1051/0004-6361/201425270 ADSCrossRefGoogle Scholar
  175. C. Pinto, J.S. Sanders, N. Werner, J. de Plaa, A.C. Fabian, et al., Chemical enrichment RGS cluster sample (CHEERS): constraints on turbulence. Astron. Astrophys. 575, 38 (2015).  https://doi.org/10.1051/0004-6361/201425278 CrossRefGoogle Scholar
  176. F. Pizzolato, N. Soker, On the nature of feedback heating in cooling flow clusters. Astrophys. J. 632, 821–830 (2005).  https://doi.org/10.1086/444344 ADSCrossRefGoogle Scholar
  177. D. Prasad, P. Sharma, A. Babul, AGN jet-driven stochastic cold accretion in cluster cores. Mon. Not. R. Astron. Soc. 471, 1531–1542 (2017).  https://doi.org/10.1093/mnras/stx1698 ADSCrossRefGoogle Scholar
  178. G.W. Pratt, et al., Space Sci. Rev. (2019, this issue).  https://doi.org/10.1007/s11214-019-0591-0 CrossRefGoogle Scholar
  179. D.A. Prokhorov, E.M. Churazov, Counting gamma rays in the directions of galaxy clusters. Astron. Astrophys. 567, 93 (2014).  https://doi.org/10.1051/0004-6361/201322454 ADSCrossRefGoogle Scholar
  180. F.A. Pulido, B.R. McNamara, A.C. Edge, M.T. Hogan, A.N. Vantyghem, et al., The origin of molecular clouds in central galaxies. Astrophys. J. 853, 177 (2018).  https://doi.org/10.3847/1538-4357/aaa54b ADSCrossRefGoogle Scholar
  181. E. Quataert, Buoyancy instabilities in weakly magnetized low-collisionality plasmas. Astrophys. J. 673, 758–762 (2008).  https://doi.org/10.1086/525248 ADSCrossRefGoogle Scholar
  182. S.W. Randall, C. Jones, M. Markevitch, E.L. Blanton, P.E.J. Nulsen, W.R. Forman, Gas sloshing and bubbles in the galaxy group NGC 5098. Astrophys. J. 700, 1404–1414 (2009).  https://doi.org/10.1088/0004-637X/700/2/1404 ADSCrossRefGoogle Scholar
  183. S.W. Randall, P.E.J. Nulsen, C. Jones, W.R. Forman, E. Bulbul, et al., A very deep Chandra observation of the galaxy group NGC 5813: AGN shocks, feedback, and outburst history. Astrophys. J. 805, 112 (2015).  https://doi.org/10.1088/0004-637X/805/2/112 ADSCrossRefGoogle Scholar
  184. E. Rasia, S. Ettori, L. Moscardini, P. Mazzotta, S. Borgani, et al., Systematics in the X-ray cluster mass estimators. Mon. Not. R. Astron. Soc. 369, 2013–2024 (2006) ADSCrossRefGoogle Scholar
  185. P. Rebusco, E. Churazov, R. Sunyaev, H. Böhringer, W. Forman, Width of X-ray lines as a diagnostic of gas motions in cooling flows. Mon. Not. R. Astron. Soc. 384, 1511–1518 (2008).  https://doi.org/10.1111/j.1365-2966.2007.12770.x ADSCrossRefGoogle Scholar
  186. Y. Revaz, F. Combes, P. Salomé, Formation of cold filaments in cooling flow clusters. Astron. Astrophys. 477, 33–36 (2008).  https://doi.org/10.1051/0004-6361:20078915 ADSCrossRefGoogle Scholar
  187. C.S. Reynolds, S. Heinz, M.C. Begelman, The hydrodynamics of dead radio galaxies. Mon. Not. R. Astron. Soc. 332, 271–282 (2002).  https://doi.org/10.1046/j.1365-8711.2002.04724.x ADSCrossRefGoogle Scholar
  188. C.S. Reynolds, S.A. Balbus, A.A. Schekochihin, Inefficient driving of bulk turbulence by active galactic nuclei in a hydrodynamic model of the intracluster medium. Astrophys. J. 815, 41 (2015).  https://doi.org/10.1088/0004-637X/815/1/41 ADSCrossRefGoogle Scholar
  189. E. Roediger, M. Brüggen, A. Simionescu, H. Böhringer, E. Churazov, W.R. Forman, Gas sloshing, cold front formation, and metal redistribution: the Virgo cluster as a quantitative test case. Mon. Not. R. Astron. Soc. 413, 2057–2077 (2011) ADSCrossRefGoogle Scholar
  190. E. Roediger, R.P. Kraft, M.E. Machacek, W.R. Forman, P.E.J. Nulsen, et al., Irregular sloshing cold fronts in the nearby merging groups NGC 7618 and UGC 12491: evidence for Kelvin-Helmholtz instabilities. Astrophys. J. 754, 147 (2012a).  https://doi.org/10.1088/0004-637X/754/2/147 ADSCrossRefGoogle Scholar
  191. E. Roediger, L. Lovisari, R. Dupke, S. Ghizzardi, M. Brüggen, et al., Gas sloshing, cold fronts, Kelvin-Helmholtz instabilities and the merger history of the cluster of galaxies Abell 496. Mon. Not. R. Astron. Soc. 420, 3632–3648 (2012b).  https://doi.org/10.1111/j.1365-2966.2011.20287.x ADSCrossRefGoogle Scholar
  192. E. Roediger, R.P. Kraft, P. Nulsen, E. Churazov, W. Forman, et al., Viscous Kelvin-Helmholtz instabilities in highly ionized plasmas. Mon. Not. R. Astron. Soc. 436, 1721–1740 (2013).  https://doi.org/10.1093/mnras/stt1691 ADSCrossRefGoogle Scholar
  193. E. Roediger, R.P. Kraft, P.E.J. Nulsen, W.R. Forman, M. Machacek, et al., Stripped elliptical galaxies as probes of ICM physics: I. Tails, wakes, and flow patterns in and around stripped ellipticals. Astrophys. J. 806, 103 (2015a).  https://doi.org/10.1088/0004-637X/806/1/103 ADSCrossRefGoogle Scholar
  194. E. Roediger, R.P. Kraft, P.E.J. Nulsen, W.R. Forman, M. Machacek, et al., STRIPPED ELLIPTICAL GALAXIES AS PROBES OF ICM PHYSICS. II. STIRRED, BUT MIXED? VISCOUS AND INVISCID GAS STRIPPING OF THE VIRGO ELLIPTICAL M89. Astrophys. J. 806(1), 104 (2015b).  https://doi.org/10.1088/0004-637X/806/1/104 ADSCrossRefGoogle Scholar
  195. M. Roncarelli, M. Gaspari, S. Ettori, V. Biffi, F. Brighenti, et al., Measuring turbulence and gas motions in galaxy clusters via synthetic Athena X-IFU observations. Astron. Astrophys. 618, 39 (2018).  https://doi.org/10.1051/0004-6361/201833371 CrossRefGoogle Scholar
  196. M. Rossetti, D. Eckert, S. De Grandi, F. Gastaldello, S. Ghizzardi, et al., Abell 2142 at large scales: an extreme case for sloshing? Astron. Astrophys. 556, 44 (2013).  https://doi.org/10.1051/0004-6361/201321319 CrossRefGoogle Scholar
  197. H.R. Russell, B.R. McNamara, A.C. Fabian, P.E.J. Nulsen, A.C. Edge, et al., ALMA observations of cold molecular gas filaments trailing rising radio bubbles in PKS 0745-191. Mon. Not. R. Astron. Soc. 458, 3134–3149 (2016).  https://doi.org/10.1093/mnras/stw409 ADSCrossRefGoogle Scholar
  198. H.R. Russell, M. McDonald, B.R. McNamara, A.C. Fabian, P.E.J. Nulsen, et al., Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster. Astrophys. J. 836, 130 (2017a).  https://doi.org/10.3847/1538-4357/836/1/130 ADSCrossRefGoogle Scholar
  199. H.R. Russell, B.R. McNamara, A.C. Fabian, P.E.J. Nulsen, F. Combes, et al., Close entrainment of massive molecular gas flows by radio bubbles in the central galaxy of Abell 1795. Mon. Not. R. Astron. Soc. 472, 4024–4037 (2017b).  https://doi.org/10.1093/mnras/stx2255 ADSCrossRefGoogle Scholar
  200. M. Ruszkowski, S.P. Oh, Shaken and stirred: conduction and turbulence in clusters of galaxies. Astrophys. J. 713, 1332–1342 (2010).  https://doi.org/10.1088/0004-637X/713/2/1332 ADSCrossRefGoogle Scholar
  201. M. Ruszkowski, S.P. Oh, Galaxy motions, turbulence and conduction in clusters of galaxies. Mon. Not. R. Astron. Soc. 414, 1493–1507 (2011).  https://doi.org/10.1111/j.1365-2966.2011.18482.x ADSCrossRefGoogle Scholar
  202. M. Ruszkowski, M. Brüggen, M.C. Begelman, Cluster heating by viscous dissipation of sound waves. Astrophys. J. 611, 158–163 (2004).  https://doi.org/10.1086/422158 ADSCrossRefGoogle Scholar
  203. M. Ruszkowski, H.-Y.K. Yang, C.S. Reynolds, Cosmic-ray feedback heating of the intracluster medium. Astrophys. J. 844, 13 (2017a).  https://doi.org/10.3847/1538-4357/aa79f8 ADSCrossRefGoogle Scholar
  204. M. Ruszkowski, H.-Y.K. Yang, E. Zweibel, Global simulations of galactic winds including cosmic-ray streaming. Astrophys. J. 834, 208 (2017b).  https://doi.org/10.3847/1538-4357/834/2/208 ADSCrossRefGoogle Scholar
  205. D. Ryu, H. Kang, E. Hallman, T.W. Jones, Cosmological shock waves and their role in the large-scale structure of the universe. Astrophys. J. 593, 599–610 (2003).  https://doi.org/10.1086/376723 ADSCrossRefGoogle Scholar
  206. A. Sa̧dowski, M. Gaspari, Kinetic and radiative power from optically thin accretion flows. Mon. Not. R. Astron. Soc. 468, 1398–1404 (2017).  https://doi.org/10.1093/mnras/stx543 ADSCrossRefGoogle Scholar
  207. I. Sakelliou, J.R. Peterson, T. Tamura, F.B.S. Paerels, J.S. Kaastra, et al., High resolution soft X-ray spectroscopy of M 87 with the reflection grating spectrometers on XMM-Newton. Astron. Astrophys. 391, 903–909 (2002).  https://doi.org/10.1051/0004-6361:20020900 ADSCrossRefGoogle Scholar
  208. P. Salomé, F. Combes, A.C. Edge, C. Crawford, M. Erlund, et al., Cold molecular gas in the Perseus cluster core. Association with X-ray cavity, H\(\upalpha \) filaments and cooling flow. Astron. Astrophys. 454, 437–445 (2006).  https://doi.org/10.1051/0004-6361:20054745 ADSCrossRefGoogle Scholar
  209. P. Salomé, F. Combes, Y. Revaz, D. Downes, A.C. Edge, A.C. Fabian, A very extended molecular web around NGC 1275. Astron. Astrophys. 531, 85 (2011).  https://doi.org/10.1051/0004-6361/200811333 ADSCrossRefGoogle Scholar
  210. J.S. Sanders, A.C. Fabian, Resonance scattering, absorption and off-centre abundance peaks in clusters of galaxies. Mon. Not. R. Astron. Soc. 370, 63–73 (2006).  https://doi.org/10.1111/j.1365-2966.2006.10497.x ADSCrossRefGoogle Scholar
  211. J.S. Sanders, A.C. Fabian, Deep Chandra and XMM-Newton X-ray observations of AWM 7 I. investigating X-ray surface brightness fluctuations. Mon. Not. R. Astron. Soc. 421, 726–742 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20348.x ADSCrossRefGoogle Scholar
  212. J.S. Sanders, A.C. Fabian, Velocity width measurements of the coolest X-ray emitting material in the cores of clusters, groups and elliptical galaxies. Mon. Not. R. Astron. Soc. 429, 2727–2738 (2013).  https://doi.org/10.1093/mnras/sts543 ADSCrossRefGoogle Scholar
  213. J.S. Sanders, A.C. Fabian, R.K. Smith, J.R. Peterson, A direct limit on the turbulent velocity of the intracluster medium in the core of Abell 1835 from XMM-Newton. Mon. Not. R. Astron. Soc. 402, 11–15 (2010a).  https://doi.org/10.1111/j.1745-3933.2009.00789.x ADSCrossRefGoogle Scholar
  214. J.S. Sanders, A.C. Fabian, K.A. Frank, J.R. Peterson, H.R. Russell, Deep high-resolution X-ray spectra from cool-core clusters. Mon. Not. R. Astron. Soc. 402, 127–144 (2010b).  https://doi.org/10.1111/j.1365-2966.2009.15902.x ADSCrossRefGoogle Scholar
  215. C.L. Sarazin, C.M. Graney, Optical coronal emission lines from cooling flows in elliptical galaxies and galaxy clusters. Astrophys. J. 375, 532–543 (1991).  https://doi.org/10.1086/170215 ADSCrossRefGoogle Scholar
  216. J. Sayers, T. Mroczkowski, M. Zemcov, P.M. Korngut, J. Bock, et al., A measurement of the kinetic Sunyaev-Zel’dovich signal toward MACS J0717.5+3745. Astrophys. J. 778, 52 (2013).  https://doi.org/10.1088/0004-637X/778/1/52 ADSCrossRefGoogle Scholar
  217. A.A. Schekochihin, S.C. Cowley, Turbulence, magnetic fields, and plasma physics in clusters of galaxies. Phys. Plasmas 13(5), 056501 (2006).  https://doi.org/10.1063/1.2179053 ADSCrossRefGoogle Scholar
  218. A.A. Schekochihin, S.C. Cowley, R.M. Kulsrud, G.W. Hammett, P. Sharma, Plasma instabilities and magnetic field growth in clusters of galaxies. Astrophys. J. 629, 139–142 (2005).  https://doi.org/10.1086/431202 ADSCrossRefGoogle Scholar
  219. A.A. Schekochihin, S.C. Cowley, F. Rincon, M.S. Rosin, Magnetofluid dynamics of magnetized cosmic plasma: firehose and gyrothermal instabilities. Mon. Not. R. Astron. Soc. 405, 291–300 (2010).  https://doi.org/10.1111/j.1365-2966.2010.16493.x ADSCrossRefGoogle Scholar
  220. P. Schuecker, A. Finoguenov, F. Miniati, H. Böhringer, U.G. Briel, Probing turbulence in the Coma galaxy cluster. Astron. Astrophys. 426, 387–397 (2004).  https://doi.org/10.1051/0004-6361:20041039 ADSCrossRefGoogle Scholar
  221. C. Shang, S.P. Oh, Probing gas motions in the intra-cluster medium: a mixture model approach. Mon. Not. R. Astron. Soc. 426, 3435–3454 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21897.x ADSCrossRefGoogle Scholar
  222. C. Shang, S.P. Oh, Disentangling resonant scattering and gas motions in galaxy cluster emission line profiles. Mon. Not. R. Astron. Soc. 433, 1172–1184 (2013).  https://doi.org/10.1093/mnras/stt790 ADSCrossRefGoogle Scholar
  223. P. Sharma, M. McCourt, E. Quataert, I.J. Parrish, Thermal instability and the feedback regulation of hot haloes in clusters, groups and galaxies. Mon. Not. R. Astron. Soc. 420, 3174–3194 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20246.x ADSCrossRefGoogle Scholar
  224. A. Sheardown, E. Roediger, Y. Su, R.P. Kraft, T. Fish, et al., The recent growth history of the Fornax cluster derived from simultaneous sloshing and gas stripping: simulating the infall of NGC 1404. Astrophys. J. 865, 118 (2018).  https://doi.org/10.3847/1538-4357/aadc0f ADSCrossRefGoogle Scholar
  225. A. Sheardown et al., Astrophys. J. (2019, submitted) Google Scholar
  226. X. Shi, E. Komatsu, K. Nelson, D. Nagai, Analytical model for non-thermal pressure in galaxy clusters II. comparison with cosmological hydrodynamics simulation. Mon. Not. R. Astron. Soc. 448, 1020–1029 (2015).  https://doi.org/10.1093/mnras/stv036 ADSCrossRefGoogle Scholar
  227. X. Shi, E. Komatsu, D. Nagai, E.T. Lau, Analytical model for non-thermal pressure in galaxy clusters III. removing the hydrostatic mass bias. Mon. Not. R. Astron. Soc. 455, 2936–2944 (2016).  https://doi.org/10.1093/mnras/stv2504 ADSCrossRefGoogle Scholar
  228. X. Shi, D. Nagai, E.T. Lau, Multiscale analysis of turbulence evolution in the density-stratified intracluster medium. Mon. Not. R. Astron. Soc. 481, 1075–1082 (2018).  https://doi.org/10.1093/mnras/sty2340 ADSCrossRefGoogle Scholar
  229. R. Shibata, M. Ishida, N.Y. Yamasaki, T. Ohashi, K. Matsushita, et al., Distributions of the temperature and metal abundance in the Virgo cluster of galaxies, in X-Ray Astronomy 2000, ed. by R. Giacconi, S. Serio, L. Stella. Astronomical Society of the Pacific Conference Series, vol. 234 (2001), p. 357 Google Scholar
  230. D. Sijacki, V. Springel, Hydrodynamical simulations of cluster formation with central AGN heating. Mon. Not. R. Astron. Soc. 366, 397–416 (2006).  https://doi.org/10.1111/j.1365-2966.2005.09860.x ADSCrossRefGoogle Scholar
  231. J. Silk, M.J. Rees, Quasars and galaxy formation. Astron. Astrophys. 331, 1–4 (1998) ADSGoogle Scholar
  232. A. Simionescu, N. Werner, A. Finoguenov, H. Böhringer, M. Brüggen, Metal-rich multi-phase gas in M 87. AGN-driven metal transport, magnetic-field supported multi-temperature gas, and constraints on non-thermal emission observed with XMM-Newton. Astron. Astrophys. 482, 97–112 (2008).  https://doi.org/10.1051/0004-6361:20078749 ADSCrossRefGoogle Scholar
  233. A. Simionescu, N. Werner, H. Böhringer, J.S. Kaastra, A. Finoguenov, et al., Chemical enrichment in the cluster of galaxies Hydra A. Astron. Astrophys. 493, 409–424 (2009).  https://doi.org/10.1051/0004-6361:200810225 ADSCrossRefGoogle Scholar
  234. A. Simionescu, N. Werner, O. Urban, S.W. Allen, A.C. Fabian, et al., Large-scale motions in the Perseus galaxy cluster. Astrophys. J. 757, 182 (2012).  https://doi.org/10.1088/0004-637X/757/2/182 ADSCrossRefGoogle Scholar
  235. A. Simionescu, N. Werner, A. Mantz, S.W. Allen, O. Urban, Witnessing the growth of the nearest galaxy cluster: thermodynamics of the Virgo cluster outskirts. Mon. Not. R. Astron. Soc. 469, 1476–1495 (2017).  https://doi.org/10.1093/mnras/stx919 ADSCrossRefGoogle Scholar
  236. A. Simionescu, G. Tremblay, N. Werner, R.E.A. Canning, S.W. Allen, J.B.R. Oonk, ALMA observation of the disruption of molecular gas in M87. Mon. Not. R. Astron. Soc. 475, 3004–3009 (2018).  https://doi.org/10.1093/mnras/sty047 ADSCrossRefGoogle Scholar
  237. W.B. Sparks, J.E. Pringle, M. Donahue, R. Carswell, M. Voit, et al., Discovery of C IV emission filaments in M87. Astrophys. J. Lett. 704, 20–24 (2009).  https://doi.org/10.1088/0004-637X/704/1/L20 ADSCrossRefGoogle Scholar
  238. Y. Su, R.P. Kraft, P.E.J. Nulsen, E. Roediger, W.R. Forman, et al., Capturing the 3D motion of an infalling galaxy via fluid dynamics. Astrophys. J. 835, 19 (2017a).  https://doi.org/10.3847/1538-4357/835/1/19 ADSCrossRefGoogle Scholar
  239. Y. Su, R.P. Kraft, E. Roediger, P.E.J. Nulsen, W.R. Forman, et al., Deep Chandra observations of NGC 1404: cluster plasma physics revealed by an infalling early-type galaxy. Astrophys. J. 834, 74 (2017b).  https://doi.org/10.3847/1538-4357/834/1/74 ADSCrossRefGoogle Scholar
  240. C. Sugawara, M. Takizawa, K. Nakazawa, Suzaku observation of the radio halo cluster Abell 2319: gas dynamics and hard X-ray properties. Publ. Astron. Soc. Jpn. 61, 1293–1303 (2009).  https://doi.org/10.1093/pasj/61.6.1293 ADSCrossRefGoogle Scholar
  241. M. Sun, M. Donahue, E. Roediger, P.E.J. Nulsen, G.M. Voit, et al., Spectacular X-ray tails, intracluster star formation, and ULXs in A3627. Astrophys. J. 708, 946–964 (2010).  https://doi.org/10.1088/0004-637X/708/2/946 ADSCrossRefGoogle Scholar
  242. R.A. Sunyaev, E.M. Churazov, Millimeter-wavelength lines of heavy elements predicted from the hot gas in supernova remnants and galaxy clusters. Pisma Astron. Zh. 10, 483–493 (1984) ADSGoogle Scholar
  243. R.A. Sunyaev, I.B. Zeldovich, The velocity of clusters of galaxies relative to the microwave background—the possibility of its measurement. Mon. Not. R. Astron. Soc. 190, 413–420 (1980).  https://doi.org/10.1093/mnras/190.3.413 ADSCrossRefGoogle Scholar
  244. T. Tamura, K. Hayashida, S. Ueda, M. Nagai, Discovery of gas bulk motion in the galaxy cluster Abell 2256 with Suzaku. Publ. Astron. Soc. Jpn. 63, 1009–1017 (2011).  https://doi.org/10.1093/pasj/63.sp3.S1009 ADSCrossRefGoogle Scholar
  245. T. Tamura, N.Y. Yamasaki, R. Iizuka, Y. Fukazawa, K. Hayashida, et al., Gas bulk motion in the Perseus cluster measured with Suzaku. Astrophys. J. 782, 38 (2014).  https://doi.org/10.1088/0004-637X/782/1/38 ADSCrossRefGoogle Scholar
  246. T. Tanaka, H. Kunieda, M. Hudaverdi, A. Furuzawa, Y. Tawara, Non-uniform temperature distribution in the galaxy clusters 2A 0335+096 and Abell 496 observed by XMM-Newton. Publ. Astron. Soc. Jpn. 58, 703–718 (2006).  https://doi.org/10.1093/pasj/58.4.703 ADSCrossRefGoogle Scholar
  247. X. Tang, E. Churazov, Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters. Mon. Not. R. Astron. Soc. 468, 3516–3532 (2017).  https://doi.org/10.1093/mnras/stx590 ADSCrossRefGoogle Scholar
  248. M. Tashiro, H. Maejima, K. Toda, R. Kelley, L. Reichenthal, et al., Concept of the X-ray Astronomy Recovery mission, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699, 2018, p. 1069922.  https://doi.org/10.1117/12.2309455 CrossRefGoogle Scholar
  249. P. Temi, A. Amblard, M. Gitti, F. Brighenti, M. Gaspari, et al., ALMA observations of molecular clouds in three group-centered elliptical galaxies: NGC 5846, NGC 4636, and NGC 5044. Astrophys. J. 858, 17 (2018).  https://doi.org/10.3847/1538-4357/aab9b0 ADSCrossRefGoogle Scholar
  250. G.R. Tremblay, C.P. O’Dea, S.A. Baum, R. Mittal, M.A. McDonald, et al., Far-ultraviolet morphology of star-forming filaments in cool core brightest cluster galaxies. Mon. Not. R. Astron. Soc. 451, 3768–3800 (2015).  https://doi.org/10.1093/mnras/stv1151 ADSCrossRefGoogle Scholar
  251. G.R. Tremblay, F. Combes, J.B.R. Oonk, H.R. Russell, M.A. McDonald, et al., A galaxy-scale fountain of cold molecular gas pumped by a black hole. Astrophys. J. 865, 13 (2018).  https://doi.org/10.3847/1538-4357/aad6dd ADSCrossRefGoogle Scholar
  252. M. Valentini, F. Brighenti, AGN-stimulated cooling of hot gas in elliptical galaxies. Mon. Not. R. Astron. Soc. 448, 1979–1998 (2015).  https://doi.org/10.1093/mnras/stv090 ADSCrossRefGoogle Scholar
  253. M. van Dyke, An Album of Fluid Motion (Parabolic Press, Stanford, 1982) Google Scholar
  254. R.J. van Weeren, F. de Gasperin, H. Akamatsu, M. Brüggen, L. Feretti, et al., Diffuse radio emission from galaxy clusters (2019). arXiv e-prints 1901.04496
  255. A.N. Vantyghem, B.R. McNamara, H.R. Russell, M.T. Hogan, A.C. Edge, et al., Molecular gas along a bright H\(\upalpha \) filament in 2A 0335+096 revealed by ALMA. Astrophys. J. 832, 148 (2016).  https://doi.org/10.3847/0004-637X/832/2/148 ADSCrossRefGoogle Scholar
  256. F. Vazza, G. Brunetti, A. Kritsuk, R. Wagner, C. Gheller, M. Norman, Turbulent motions and shocks waves in galaxy clusters simulated with adaptive mesh refinement. Astron. Astrophys. 504, 33–43 (2009).  https://doi.org/10.1051/0004-6361/200912535 ADSCrossRefGoogle Scholar
  257. F. Vazza, G. Brunetti, C. Gheller, R. Brunino, M. Brüggen, Massive and refined. II. The statistical properties of turbulent motions in massive galaxy clusters with high spatial resolution. Astron. Astrophys. 529, 17 (2011).  https://doi.org/10.1051/0004-6361/201016015 ADSCrossRefGoogle Scholar
  258. J.C. Vernaleo, C.S. Reynolds, AGN feedback and cooling flows: problems with simple hydrodynamic models. Astrophys. J. 645, 83–94 (2006).  https://doi.org/10.1086/504029 ADSCrossRefGoogle Scholar
  259. R. Vijayaraghavan, C. Sarazin, The evaporation and survival of cluster galaxies’ coronae. II. The effectiveness of anisotropic thermal conduction and survival of stripped galactic tails. Astrophys. J. 848, 63 (2017a).  https://doi.org/10.3847/1538-4357/aa8bb3 ADSCrossRefGoogle Scholar
  260. R. Vijayaraghavan, C. Sarazin, The evaporation and survival of cluster galaxy coronae. I. The effectiveness of isotropic thermal conduction including saturation. Astrophys. J. 841, 22 (2017b).  https://doi.org/10.3847/1538-4357/aa706d ADSCrossRefGoogle Scholar
  261. A. Vikhlinin, M. Markevitch, S.S. Murray, A moving cold front in the intergalactic medium of A3667. Astrophys. J. 551, 160–171 (2001a).  https://doi.org/10.1086/320078 ADSCrossRefGoogle Scholar
  262. A. Vikhlinin, M. Markevitch, S.S. Murray, Chandra estimate of the magnetic field strength near the cold front in A3667. Astrophys. J. Lett. 549, 47–50 (2001b).  https://doi.org/10.1086/319126 ADSCrossRefGoogle Scholar
  263. G.M. Voit, A role for turbulence in circumgalactic precipitation. Astrophys. J. 868, 102 (2018).  https://doi.org/10.3847/1538-4357/aae8e2 ADSCrossRefGoogle Scholar
  264. G.M. Voit, M. Donahue, J.D. Slavin, Emission lines from condensing intracluster gas. Astrophys. J. Suppl. Ser. 95, 87–105 (1994).  https://doi.org/10.1086/192095 ADSCrossRefGoogle Scholar
  265. G.M. Voit, M. Donahue, G.L. Bryan, M. McDonald, Regulation of star formation in giant galaxies by precipitation, feedback and conduction. Nature 519, 203–206 (2015).  https://doi.org/10.1038/nature14167 ADSCrossRefGoogle Scholar
  266. S.A. Walker, A.C. Fabian, J.S. Sanders, Large-scale gas sloshing out to half the virial radius in the strongest cool core REXCESS galaxy cluster, RXJ2014.8-2430. Mon. Not. R. Astron. Soc. 441, 31–35 (2014).  https://doi.org/10.1093/mnrasl/slu040 ADSCrossRefGoogle Scholar
  267. S.A. Walker, J.S. Sanders, A.C. Fabian, Constraining gas motions in the Centaurus cluster using X-ray surface brightness fluctuations and metal diffusion. Mon. Not. R. Astron. Soc. 453, 3699–3705 (2015).  https://doi.org/10.1093/mnras/stv1929 ADSCrossRefGoogle Scholar
  268. S.A. Walker, J. Hlavacek-Larrondo, M. Gendron-Marsolais, A.C. Fabian, H. Intema, et al., Is there a giant Kelvin-Helmholtz instability in the sloshing cold front of the Perseus cluster? Mon. Not. R. Astron. Soc. 468, 2506–2516 (2017).  https://doi.org/10.1093/mnras/stx640 ADSCrossRefGoogle Scholar
  269. S.A. Walker, J. ZuHone, A. Fabian, J. Sanders, The split in the ancient cold front in the Perseus cluster. Nat. Astron. 2, 292–296 (2018a).  https://doi.org/10.1038/s41550-018-0401-8 ADSCrossRefGoogle Scholar
  270. S.A. Walker, J.S. Sanders, A.C. Fabian, What fraction of the density fluctuations in the Perseus cluster core is due to gas sloshing rather than AGN feedback? Mon. Not. R. Astron. Soc. 481, 1718–1725 (2018b).  https://doi.org/10.1093/mnras/sty2390 ADSCrossRefGoogle Scholar
  271. S. Walker, A. Simionescu, D. Nagai, N. Okabe, D. Eckert, et al., The physics of galaxy cluster outskirts. Space Sci. Rev. 215, 7 (2019).  https://doi.org/10.1007/s11214-018-0572-8 ADSCrossRefGoogle Scholar
  272. N. Werner, I. Zhuravleva, E. Churazov, A. Simionescu, S.W. Allen, et al., Constraints on turbulent pressure in the X-ray haloes of giant elliptical galaxies from resonant scattering. Mon. Not. R. Astron. Soc. 398, 23–32 (2009).  https://doi.org/10.1111/j.1365-2966.2009.14860.x ADSCrossRefGoogle Scholar
  273. N. Werner, J.B.R. Oonk, M. Sun, P.E.J. Nulsen, S.W. Allen, et al., The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback. Mon. Not. R. Astron. Soc. 439, 2291–2306 (2014).  https://doi.org/10.1093/mnras/stu006 ADSCrossRefGoogle Scholar
  274. N. Werner, J.A. ZuHone, I. Zhuravleva, Y. Ichinohe, A. Simionescu, et al., Deep Chandra observation and numerical studies of the nearest cluster cold front in the sky. Mon. Not. R. Astron. Soc. 455, 846–858 (2016).  https://doi.org/10.1093/mnras/stv2358 ADSCrossRefGoogle Scholar
  275. N. Werner, B.R. McNamara, E. Churazov, E. Scannapieco, Hot atmospheres, cold gas, AGN feedback and the evolution of early type galaxies: a topical perspective. Space Sci. Rev. 215, 5 (2019).  https://doi.org/10.1007/s11214-018-0571-9 ADSCrossRefGoogle Scholar
  276. J. Wiener, C. Pfrommer, S.P. Oh, Cosmic ray-driven galactic winds: streaming or diffusion? Mon. Not. R. Astron. Soc. 467, 906–921 (2017).  https://doi.org/10.1093/mnras/stx127 ADSCrossRefGoogle Scholar
  277. J. Wilms, T. Brand, D. Barret, T. Beuchert, J.-W. den Herder, et al., ATHENA end-to-end simulations, in Space Telescopes and Instrumentation 2014: Ultraviolet to Gamma Ray. Proc. SPIE, vol. 9144, 2014, p. 91445.  https://doi.org/10.1117/12.2056347 CrossRefGoogle Scholar
  278. R.A. Wood, C. Jones, M.E. Machacek, W.R. Forman, A. Bogdan, et al., The infall of the Virgo elliptical galaxy M60 toward M87 and the gaseous structures produced by Kelvin-Helmholtz instabilities. Astrophys. J. 847(1) (2017).  https://doi.org/10.3847/1538-4357/aa8723
  279. H. Xu, S.M. Kahn, J.R. Peterson, E. Behar, F.B.S. Paerels, et al., High-resolution observations of the elliptical galaxy NGC 4636 with the reflection grating spectrometer on board XMM-Newton. Astrophys. J. 579, 600–606 (2002).  https://doi.org/10.1086/342828 ADSCrossRefGoogle Scholar
  280. L. Yan, J.G. Cohen, Search for coronal emission lines in cooling flow clusters with the Keck 10 meter telescope. Astrophys. J. 454, 44 (1995).  https://doi.org/10.1086/176462 ADSCrossRefGoogle Scholar
  281. C. Zhang, E. Churazov, A.A. Schekochihin, Generation of internal waves by buoyant bubbles in galaxy clusters and heating of intracluster medium. Mon. Not. R. Astron. Soc. 478, 4785–4798 (2018).  https://doi.org/10.1093/mnras/sty1269 ADSCrossRefGoogle Scholar
  282. I.V. Zhuravleva, E.M. Churazov, S.Y. Sazonov, R.A. Sunyaev, K. Dolag, Resonant scattering in galaxy clusters for anisotropic gas motions on various spatial scales. Astron. Lett. 37, 141–153 (2011).  https://doi.org/10.1134/S1063773711010087 ADSCrossRefGoogle Scholar
  283. I. Zhuravleva, E. Churazov, A. Kravtsov, R. Sunyaev, Constraints on the ICM velocity power spectrum from the X-ray lines width and shift. Mon. Not. R. Astron. Soc. 422, 2712–2724 (2012).  https://doi.org/10.1111/j.1365-2966.2012.20844.x ADSCrossRefGoogle Scholar
  284. I. Zhuravleva, E. Churazov, A. Kravtsov, E.T. Lau, D. Nagai, R. Sunyaev, Quantifying properties of ICM inhomogeneities. Mon. Not. R. Astron. Soc. 428, 3274–3287 (2013a).  https://doi.org/10.1093/mnras/sts275 ADSCrossRefGoogle Scholar
  285. I. Zhuravleva, E. Churazov, R. Sunyaev, S. Sazonov, S.W. Allen, et al., Resonant scattering in the Perseus cluster: spectral model for constraining gas motions with Astro-H. Mon. Not. R. Astron. Soc. 435, 3111–3121 (2013b).  https://doi.org/10.1093/mnras/stt1506 ADSCrossRefGoogle Scholar
  286. I. Zhuravleva, E.M. Churazov, A.A. Schekochihin, E.T. Lau, D. Nagai, et al., The relation between gas density and velocity power spectra in galaxy clusters: qualitative treatment and cosmological simulations. Astrophys. J. Lett. 788, 13 (2014a).  https://doi.org/10.1088/2041-8205/788/1/L13 ADSCrossRefGoogle Scholar
  287. I. Zhuravleva, E. Churazov, A.A. Schekochihin, S.W. Allen, P. Arévalo, et al., Turbulent heating in galaxy clusters brightest in X-rays. Nature 515, 85–87 (2014b).  https://doi.org/10.1038/nature13830 ADSCrossRefGoogle Scholar
  288. I. Zhuravleva, E. Churazov, P. Arévalo, A.A. Schekochihin, S.W. Allen, et al., Gas density fluctuations in the Perseus cluster: clumping factor and velocity power spectrum. Mon. Not. R. Astron. Soc. 450, 4184–4197 (2015).  https://doi.org/10.1093/mnras/stv900 ADSCrossRefGoogle Scholar
  289. I. Zhuravleva, E. Churazov, P. Arévalo, A.A. Schekochihin, W.R. Forman, et al., The nature and energetics of AGN-driven perturbations in the hot gas in the Perseus cluster. Mon. Not. R. Astron. Soc. 458, 2902–2915 (2016).  https://doi.org/10.1093/mnras/stw520 ADSCrossRefGoogle Scholar
  290. I. Zhuravleva, S.W. Allen, A. Mantz, N. Werner, Gas perturbations in the cool cores of galaxy clusters: effective equation of state, velocity power spectra, and turbulent heating. Astrophys. J. 865, 53 (2018).  https://doi.org/10.3847/1538-4357/aadae3 ADSCrossRefGoogle Scholar
  291. E. Zinger, A. Dekel, Y. Birnboim, D. Nagai, E. Lau, A.V. Kravtsov, Cold fronts and shocks formed by gas streams in galaxy clusters. Mon. Not. R. Astron. Soc. 476, 56–70 (2018).  https://doi.org/10.1093/mnras/sty136 ADSCrossRefGoogle Scholar
  292. J.A. Zuhone, E. Roediger, Cold fronts: probes of plasma astrophysics in galaxy clusters. J. Plasma Phys. 82(3), 535820301 (2016).  https://doi.org/10.1017/S0022377816000544 CrossRefGoogle Scholar
  293. J.A. ZuHone, M. Markevitch, M. Ruszkowski, D. Lee, Cold fronts and gas sloshing in galaxy clusters with anisotropic thermal conduction. Astrophys. J. 762, 69 (2013).  https://doi.org/10.1088/0004-637X/762/2/69 ADSCrossRefGoogle Scholar
  294. J.A. ZuHone, E.D. Miller, A. Simionescu, M.W. Bautz, Simulating Astro-H observations of sloshing gas motions in the cores of galaxy clusters. Astrophys. J. 821, 6 (2016).  https://doi.org/10.3847/0004-637X/821/1/6 ADSCrossRefGoogle Scholar
  295. J.A. ZuHone, E.D. Miller, E. Bulbul, I. Zhuravleva, What do the Hitomi observations tell us about the turbulent velocities in the Perseus cluster? Probing the velocity field with mock observations. Astrophys. J. 853, 180 (2018).  https://doi.org/10.3847/1538-4357/aaa4b3 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Aurora Simionescu
    • 1
    • 2
    Email author
  • John ZuHone
    • 3
  • Irina Zhuravleva
    • 4
    • 5
    • 6
  • Eugene Churazov
    • 7
    • 8
  • Massimo Gaspari
    • 9
  • Daisuke Nagai
    • 10
    • 11
  • Norbert Werner
    • 12
    • 13
    • 14
  • Elke Roediger
    • 15
  • Rebecca Canning
    • 5
    • 6
  • Dominique Eckert
    • 16
    • 17
  • Liyi Gu
    • 1
    • 18
  • Frits Paerels
    • 19
  1. 1.SRON, Netherlands Institute for Space ResearchUtrechtThe Netherlands
  2. 2.Institute of Space and Astronautical Science (ISAS)JAXASagamiharaJapan
  3. 3.Harvard-Smithsonian Center for AstrophysicsCambridgeUSA
  4. 4.Department of Astronomy & AstrophysicsUniversity of ChicagoChicagoUSA
  5. 5.Kavli Institute for Particle Astrophysics and CosmologyStanford UniversityStanfordUSA
  6. 6.Department of PhysicsStanford UniversityStanfordUSA
  7. 7.Max Planck Institute for AstrophysicsGarchingGermany
  8. 8.Space Research Institute (IKI)MoscowRussia
  9. 9.Einstein and Spitzer Fellow, Department of Astrophysical SciencesPrinceton UniversityPrincetonUSA
  10. 10.Department of PhysicsYale UniversityNew HavenUSA
  11. 11.Yale Center for Astronomy and AstrophysicsNew HavenUSA
  12. 12.MTA-Eötvös Loránd University Lendület Hot Universe Research GroupBudapestHungary
  13. 13.Department of Theoretical Physics and Astrophysics, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  14. 14.School of ScienceHiroshima UniversityHigashi-HiroshimaJapan
  15. 15.E.A. Milne Centre for Astrophysics, Department of Physics and MathematicsUniversity of HullHullUK
  16. 16.Max-Planck-Institut für extraterrestrische PhysikGarchingGermany
  17. 17.Department of AstronomyUniversity of GenevaVersoixSwitzerland
  18. 18.RIKEN High Energy Astrophysics LaboratoryWakoJapan
  19. 19.Columbia Astrophysics Laboratory and Department of AstronomyColumbia UniversityNew YorkUSA

Personalised recommendations