Advertisement

Space Science Reviews

, 215:22 | Cite as

Image and Data Processing for InSight Lander Operations and Science

  • H. AbarcaEmail author
  • R. Deen
  • G. Hollins
  • P. Zamani
  • J. Maki
  • A. Tinio
  • O. Pariser
  • F. Ayoub
  • N. Toole
  • S. Algermissen
  • T. Soliman
  • Y. Lu
  • M. Golombek
  • F. CalefIII
  • K. Grimes
  • C. De Cesare
  • C. Sorice
Article
  • 295 Downloads
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

The Instrument Site Selection and deployment for the upcoming Mars InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Lander is highly dependent on image products, particularly mosaics, created from the Instrument Deployment Camera (IDC) and Instrument Context Camera (ICC). When data are downlinked, the Multimission Image Processing Lab (MIPL) at JPL will process image and instrument data to aid in the deployment and monitoring of these instruments. MIPL’s functions include raw telemetry processing, stereo correlation, mosaic generation, terrain mesh generation, radiometric correction, pointing correction (bundle adjustment), and the creation of products such as instrument deployment maps, surface normal products, slope products, XYZ point clouds, and roughness map layers. A software pipeline performs systematic, automated execution of the programs that create these products on every image and stereo pair received, while the pointing correction and most mosaics are hand-generated by the MIPL team members for testing and surface operations. Several mission operations software packages are used to view, query, and analyze the processed images and mosaics for placing the main science instruments for the mission.

Keywords

Image processing Data processing Stereo processing Pointing correction MIPL VICAR Marsviewer Remote sensing Mars InSight Lander Cameras NASA Planetary exploration Instrument deployment 

Notes

Acknowledgements

This work was supported by the InSight Project at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. The authors would like to thank Cecilia Cheng, Ashitey Trebi-Ollennu, Steven Myint, Omair Khan, Philip Bailey, Khaled Ali, and Won Kim for their contributions to the work described in this paper. This paper is InSight Contribution Number 75.

References

  1. C. Acton, S. Slavney, R.E. Arvidson, L.R. Gaddis, M. Gordon, S. Lavoie, The planetary data system. Lunar Planet. Inf. Bull. 150, 2–11 (2017) Google Scholar
  2. S. Agarawal, K. Mierle, et al. (web) (2018). http://ceres-solver.org
  3. D. Alexander, R. Deen, Mars Science Laboratory Project Software Interface Specification (SIS); Camera & LIBS Experiment Data Record (EDR) and Reduced Data Record (RDR) Data Products, version 4.0. JPL Doc. D-38107, data set MSL-M-NAVCAM-2-EDR-V1.0, NASA Planetary Data System (2017) Google Scholar
  4. D.A. Alexander et al., Processing of Mars Exploration Rover imagery for science and operations planning. J. Geophys. Res. 111, E02S02 (2006).  https://doi.org/10.1029/2005JE002462 CrossRefGoogle Scholar
  5. W.B. Banerdt et al., The InSight mission for 2018, in 48th Lunar and Planet. Sci. Conf., Abstract 1896 (2017) Google Scholar
  6. F.J. Calef, H.E. Gengl, T. Soliman, S.P. Abercrombie, M.W. Powell, MMGIS: a multi-mission geographic information system for in situ Mars operations, in 48th Lunar and Planetary Science Conference (2017), #2541 Google Scholar
  7. CCSDS, Standard Formatted Data Units—Structure and Construction Rules. Recommendation for Space Data System Standards (No 2). CCSDS 620.0-B-2. Blue Book (1992). https://public.ccsds.org/Pubs/622x0b1.pdf
  8. C. Cheng, R. Patel, E. Sayfi, H. Lee, Multi-mission automated instrument product generation implemented capabilities, in IEEE Aerospace Conference, Big Sky, Montana, March 2008 (2008a) Google Scholar
  9. C. Cheng et al., Using a multi-mission automated system for product generation, in SpaceOps 2008, Heidelberg, Germany, May (2008b) Google Scholar
  10. CIE, Commission internationale de l’eclairage proceedings, 1931 (Cambridge University Press, Cambridge, 1932) Google Scholar
  11. P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, G. Ranzuglia, MeshLab: an open-source mesh processing tool, in Sixth Eurographics Italian Chapter Conference (2008), pp. 129–136 Google Scholar
  12. R.G. Deen, Cost savings through multimission code reuse for Mars image products, in 5th Int’l Symposium on Reducing the Cost of Spacecraft Ground Systems and Operations (RCSGSO), Deep Space Comm. and Nav. Syst. Cent. of Excellence (DESCANSO), Pasadena, California, 2003 (2003) Google Scholar
  13. R.G. Deen, J.J. Lorre, Seeing in three dimensions: correlation and triangulation of Mars Exploration Rover imagery, in International Conference on Systems, Man, and Cybernetics, Inst. of Electr. and Electron. Eng., Waikoloa, Hawaii, 2005 (2005) Google Scholar
  14. R. Deen, A. Chen, K. Capraro, H. Gengl, S. Algermissen, N. Ruoff, O. Pariser, Pointing correction for Mars surface mosaics, in 2nd Planetary Data Workshop, Abstract #7055, Flagstaff, AZ (2015a) Google Scholar
  15. R.G. Deen, S.C. Mayer, E.M. Sayfe, C. Radulescu, S.R. Levoe, VICAR open source release, in 2nd Planetary Data Workshop, Abstract #7059, Flagstaff, AZ (2015b) Google Scholar
  16. R. Deen, P. Zamani, H. Abarca, J. Maki, InSight software interface specification: Camera Experiment Data Record (EDR) and Reduced Data Record (RDR) data products, in NASA Planetary Data System (2018, in press) Google Scholar
  17. W.M. Folkner et al., The rotation and interior structure experiment on the InSight mission to Mars. Space Sci. Rev. 214(5), 100 (2018) ADSCrossRefGoogle Scholar
  18. B.A. Galler, M.J. Fisher, An improved equivalence algorithm. Commun. ACM 7(5), 301–303 (1964) (cf. p. 56) CrossRefGoogle Scholar
  19. D.B. Gennery, Generalized camera calibration including fish-eye lenses. Int. J. Comput. Vis. 68(3), 239–266 (2006).  https://doi.org/10.1007/s11263-006-5168-1 CrossRefGoogle Scholar
  20. S.B. Goldberg, M.W. Maimone, L. Matthies, Stereo vision and rover navigation software for planetary exploration, in 2002 IEEE Aerospace Conference, Inst. of Electr. and Electron. Eng., Big Sky, Montana (2002) Google Scholar
  21. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017).  https://doi.org/10.1007/s11214-016-0321-9 ADSCrossRefGoogle Scholar
  22. M. Golombek et al., Geology and physical properties investigations by the InSight lander. Space Sci. Rev. 214(5), 84 (2018) ADSCrossRefGoogle Scholar
  23. K. Grimes, J. Padams, G. Hollins, Web resource platform, in 3nd Planetary Data Workshop, Flagstaff, AZ (2017). Abstract #7131 Google Scholar
  24. A.W. Gruen, E.P. Baltsavias, Geometrically constrained multiphoto matching. Photogramm. Eng. Remote Sens. 54(5), 633–641 (1988). 1988 Google Scholar
  25. T. Huang, Component architecture—the software architecture for mission requirements, in 5th Int’l Symposium on Reducing the Cost of Spacecraft Ground Systems and Operations (RCSGSO), Deep Space Comm. and Nav. Syst. Cent. of Excellence (DESCANSO), Pasadena, California, 2003 (2003) Google Scholar
  26. ITU, International Telecommunication Union Radiocommunication Sector, Recommendation ITU-R BT.709-6, “Parameter values for the HDTV standards for production and international programme exchange”, June 2015, BT Series, Broadcasting Service, Television, Electronic Publication Geneva, 2015 (2015). http://www.itu.int/rec/R-REC-BT.709-6-201506-I/en
  27. S.K. LaVoie et al., Processing and analysis of Mars Pathfinder science data at the Jet Propulsion Laboratory’s Science Data Processing Systems section. J. Geophys. Res. 104(E4), 8831–8852 (1999) ADSCrossRefGoogle Scholar
  28. P. Lognonné et al., SEIS: insight’s seismic experiment for internal structure of Mars. Space Sci. Rev. 215, 12 (2019) ADSCrossRefGoogle Scholar
  29. D.G. Lowe, Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91 (2004).  https://doi.org/10.1023/B:VISI.0000029664.99615.94 CrossRefGoogle Scholar
  30. J. Maki, D. Thiessen, A. Pourangi, P. Kobzeff, T. Litwin, L. Scherr, S. Elliott, A. Dingizian, M. Maimone, The Mars Science Laboratory engineering cameras. Space Sci. Rev. 170, 77–93 (2012).  https://doi.org/10.1007/s11214-012-9882-4 ADSCrossRefGoogle Scholar
  31. J.N. Maki, M. Golombek, R. Deen, H. Abarca, C. Sorice, T. Goodsall, M. Schwochert, M. Lemmon, A. Trebi-Ollennu, W.B. Banerdt, The color cameras on the InSight lander. Space Sci. Rev. 214(6), 105 (2018) ADSCrossRefGoogle Scholar
  32. C.F. Olson, L.H. Matthies, J.R. Wright, R. Li, K. Di, Visual terrain mapping for Mars exploration. Comput. Vis. Image Underst. 105(1), 73–85 (2007) CrossRefGoogle Scholar
  33. Open_Inventor (web). https://www.openinventor.com
  34. PDS_Imaging_Node (web). https://pds-imaging.jpl.nasa.gov/search
  35. T. Spohn et al., The heat flow and physical properties package (HP3) for the InSight mission. Space Sci. Rev. 214(5), 96 (2018) ADSCrossRefGoogle Scholar
  36. J.E. Tomakyo, Computers in spaceflight: the NASA experience. Encyclopedia of Computer Science and Technology (Supplement 3), vol. 18, 292 (1988), NASA-CR-182505 Google Scholar
  37. A. Trebi-Ollennu et al., InSight Mars lander robotics instrument deployment system. Space Sci. Rev. 214(5), 93 (2018) ADSCrossRefGoogle Scholar
  38. B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon, Bundle adjustment—a modern synthesis, in ICCV ’99: Proceedings of the International Workshop on Vision Algorithms (Springer, Berlin, 1999), pp. 298–372 Google Scholar
  39. D. Watson, An implementation of natural neighbor interpolation (1994). https://books.google.com/books?id=jMmjcQAACAAJ
  40. G. Wyszecki, W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edn. (Wiley, New York, 1982). 1982 Google Scholar
  41. Z. Xing, F. Sayfi, Webification (W10N)—data on the web platform, in 2nd Planetary Data Workshop, Flagstaff, AZ (2015). Abstract #7066 Google Scholar
  42. Y. Yakimovsky, R. Cunningham, A system for extracting three dimensional measurements from a stereo pair of TV cameras. Comput. Graph. Image Process. 7, 195–210 (1978) ADSCrossRefGoogle Scholar

Copyright information

© This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply 2019

Authors and Affiliations

  • H. Abarca
    • 1
    Email author
  • R. Deen
    • 1
  • G. Hollins
    • 1
  • P. Zamani
    • 1
  • J. Maki
    • 1
  • A. Tinio
    • 1
  • O. Pariser
    • 1
  • F. Ayoub
    • 1
  • N. Toole
    • 1
  • S. Algermissen
    • 1
  • T. Soliman
    • 1
  • Y. Lu
    • 1
  • M. Golombek
    • 1
  • F. CalefIII
    • 1
  • K. Grimes
    • 1
  • C. De Cesare
    • 1
  • C. Sorice
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations