Advertisement

Space Science Reviews

, 215:21 | Cite as

The Multi-needle Langmuir Probe Instrument for QB50 Mission: Case Studies of Ex-Alta 1 and Hoopoe Satellites

  • H. HoangEmail author
  • K. Røed
  • T. A. Bekkeng
  • J. I. Moen
  • L. B. N. Clausen
  • E. Trondsen
  • B. Lybekk
  • H. Strøm
  • D. M. Bang-Hauge
  • A. Pedersen
  • C. D. A. Nokes
  • C. Cupido
  • I. R. Mann
  • M. Ariel
  • D. Portnoy
  • E. Sagi
Article
  • 195 Downloads
Part of the following topical collections:
  1. Multi-Point Measurements of the Thermosphere with the QB50 Mission

Abstract

The QB50 mission is a satellite constellation designed to carry out measurements at between 200–380 km altitude in the ionosphere. The multi-needle Langmuir probe (m-NLP) instrument has been mounted on board eleven QB50 satellites in order to characterize ambient plasma. The distinct feature of this instrument is its capability of measuring the plasma density at high spatial resolution without the need to know the electron temperature or the spacecraft potential. While the instrument has been deployed on many sounding rockets, the QB50 satellites offer the opportunity to demonstrate the operation of the instrument in low-earth orbit (LEO). This paper provides a brief review of the m-NLP instrument specifically designed for the QB50 mission and the case studies of the instrument’s performance on board the Ex-Alta 1 and Hoopoe satellites. The system has also been functionally verified in a plasma chamber at the European Space Research and Technology Center (ESTEC). Although the QB50 mission’s scientific goals have not been reached yet and some uncertainties still remain, there are some optimistic in-orbit preliminary results which could be helpful for the system improvement in future campaigns. Particularly, the electron emitter as part of the m-NLP science unit has demonstrated its capability in the plasma chamber and in orbit to mitigate spacecraft charging effects.

Keywords

QB50 Langmuir probe Electron density Spacecraft charging 

Notes

Acknowledgements

This research has received financial support from Research Council of Norway project 208006, 230996 and ESA PRODEX project 4200090335. The research leading to these results has also received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 284427. The work is also a part of the 4DSpace initiative at the University of Oslo. Ex-Alta-1 was carried out with the financial support of donors, two crowd-sourcing campaigns, from the Canadian Space Agency, and from the Canadian Natural Sciences and Engineering Research Council (NSERC) through a Discovery Grant to Ian R. Mann.

References

  1. S. Basu, S. Basu, Equatorial scintillations—a review. J. Atmos. Terr. Phys. 43(5), 473–489 (1981).  https://doi.org/10.1016/0021-9169(81)90110-0. Equatorial Aeronomy—I ADSCrossRefGoogle Scholar
  2. S. Basu, S. Basu, E. MacKenzie, P.F. Fougere, W.R. Coley, N.C. Maynard, J.D. Winningham, M. Sugiura, W.B. Hanson, W.R. Hoegy, Simultaneous density and electric field fluctuation spectra associated with velocity shears in the auroral oval. J. Geophys. Res. Space Phys. 93(A1), 115–136 (1988a).  https://doi.org/10.1029/JA093iA01p00115 ADSCrossRefGoogle Scholar
  3. S. Basu, E. MacKenzie, S. Basu, Ionospheric constraints on VHF/UHF communications links during solar maximum and minimum periods. Radio Sci. 23(03), 363–378 (1988b).  https://doi.org/10.1029/RS023i003p00363 ADSCrossRefGoogle Scholar
  4. S. Basu, S. Basu, E. MacKenzie, W.R. Coley, J.R. Sharber, W.R. Hoegy, Plasma structuring by the gradient drift instability at high latitudes and comparison with velocity shear driven processes. J. Geophys. Res. Space Phys. 95(A6), 7799–7818 (1990).  https://doi.org/10.1029/JA095iA06p07799 ADSCrossRefGoogle Scholar
  5. S. Basu, E.J. Weber, T.W. Bullett, M.J. Keskinen, E. MacKenzie, P. Doherty, R. Sheehan, H. Kuenzler, P. Ning, J. Bongiolatti, Characteristics of plasma structuring in the cusp/cleft region at Svalbard. Radio Sci. 33(6), 1885–1899 (1998).  https://doi.org/10.1029/98RS01597 ADSCrossRefGoogle Scholar
  6. A.M. Beattie, Ø. Helleren, R.E. Zee, In-flight operations of a high-availability nanosatellite constellation for maritime observation, in Proceedings of the 64th International Astronautical Congress (IAC 2013) (2013). http://utias-sfl.net/wp-content/uploads/International-Astronautical-Congress-2013-IAC-13B431x16514.pdf Google Scholar
  7. T.A. Bekkeng, Development of a miniaturized multi-needle Langmuir probe system for in-situ measurements of electron density and spacecraft floating potential. PhD thesis, University of Oslo (2017) Google Scholar
  8. T.A. Bekkeng, K.S. Jacobsen, J.K. Bekkeng, A. Pedersen, T. Lindem, J.P. Lebreton, J.I. Moen, Design of a multi-needle Langmuir probe system. Meas. Sci. Technol. 085, 903 (2010). http://stacks.iop.org/0957-0233/21/i=8/a=085903 Google Scholar
  9. T.A. Bekkeng, A. Barjatya, U.P. Hoppe, A. Pedersen, J.I. Moen, M. Friedrich, M. Rapp, Payload charging events in the mesosphere and their impact on Langmuir type electric probes. Ann. Geophys. 31(2), 187–196 (2013).  https://doi.org/10.5194/angeo-31-187-2013 ADSCrossRefGoogle Scholar
  10. T.A. Bekkeng, E.S. Helgeby, A. Pedersen, E. Trondsen, T. Lindem, J.I. Moen, Multi-needle Langmuir probe system for electron density measurements and active spacecraft potential control on cubesats. IEEE Trans. Aerosp. Electron. Syst. (2017, submitted) Google Scholar
  11. D. Bilitza, D. Altadill, Y. Zhang, C. Mertens, V. Truhlik, P. Richards, L.A. McKinnell, B. Reinisch, The international reference ionosphere 2012—a model of international collaboration. J. Space Weather Space Clim. 4, A07 (2014).  https://doi.org/10.1051/swsc/2014004 CrossRefGoogle Scholar
  12. D. Bilitza, D. Altadill, V. Truhlik, V. Shubin, I. Galkin, B. Reinisch, X. Huang, International reference ionosphere 2016: from ionospheric climate to real-time weather predictions. Space Weather 15(2), 418–429 (2017).  https://doi.org/10.1002/2016SW001593 ADSCrossRefGoogle Scholar
  13. R.L. Boggess, L.H. Brace, N.W. Spencer, Langmuir probe measurements in the ionosphere. J. Geophys. Res. 64(10), 1627–1630 (1959).  https://doi.org/10.1029/JZ064i010p01627 ADSCrossRefGoogle Scholar
  14. L.H. Brace, Langmuir probe measurements in the ionosphere, in Measurement Techniques in Space Plasmas: Particles (Am. Geophys. Union, Washington, 1998).  https://doi.org/10.1029/GM102p0023 CrossRefGoogle Scholar
  15. L.H. Brace, R.F. Theis, A. Dalgarno, The cylindrical electrostatic probes for atmosphere explorer -c,-d, and -e. Radio Sci. 8(4), 341–348 (1973).  https://doi.org/10.1029/RS008i004p00341 ADSCrossRefGoogle Scholar
  16. S.K. Chapkunov, T.N. Ivanova, M.K. Petrunova, K.B. Serafimov, Measurement of electron and ion density and temperature on the intercosmos 12 satellite, in Space Research XVI; Proceedings of the Open Meetings of Working Groups on Physical Sciences (1976), pp. 423–425 Google Scholar
  17. F.F. Chen, Electric Probes (Academic Press, San Diego, 1965), pp. 113–200, Chap. 4 Google Scholar
  18. A. Denis, QB50 System Requirements and Recommendations (2015). https://qb50.eu/index.php/tech-docs/category/25-up-to-date-docs?download=89:qb50-docs
  19. L.V. Goodwin, B. Iserhienrhien, D.M. Miles, S. Patra, C. van der Meeren, S.C. Buchert, J.K. Burchill, L.B.N. Clausen, D.J. Knudsen, K.A. McWilliams, J. Moen, Swarm in situ observations of f region polar cap patches created by cusp precipitation. Geophys. Res. Lett. 42(4), 996–1003 (2015).  https://doi.org/10.1002/2014GL062610 ADSCrossRefGoogle Scholar
  20. Ø. Helleren, Ø. Olsen, B.T. Narheim, A.N. Skauen, R.B. Olsen, Aissat-1—2 years of service, in European Space Agency Small Satellite Systems and Services Symposium (2012) Google Scholar
  21. H. Hoang, K. Røed, T.A. Bekkeng, E. Trondsen, L.B.N. Clausen, W.J. Miloch, J.I. Moen, High spatial-resolution electron density measurement by Langmuir probe for multi-point observations using tiny spacecraft. Meas. Sci. Technol. (2017).  https://doi.org/10.1088/1361-6501/aa87e1 CrossRefGoogle Scholar
  22. H. Hoang, K. Røed, T.A. Bekkeng, J.I. Moen, A. Spicher, L.B.N. Clausen, W.J. Miloch, E. Trondsen, A. Pedersen, A study of data analysis techniques for the multi-needle Langmuir probe. Meas. Sci. Technol. 065, 906 (2018). http://stacks.iop.org/0957-0233/29/i=6/a=065906 Google Scholar
  23. K.S. Jacobsen, A. Pedersen, J.I. Moen, T.A. Bekkeng, A new Langmuir probe concept for rapid sampling of space plasma electron density. Meas. Sci. Technol. 085, 902 (2010). http://stacks.iop.org/0957-0233/21/i=8/a=085902 Google Scholar
  24. P.M. Kintner, B.M. Ledvina, E.R. de Paula, GPS and ionospheric scintillations. Space Weather 5(9), s09003 (2007).  https://doi.org/10.1029/2006SW000260 ADSCrossRefGoogle Scholar
  25. I.R. Mann et al., The ex-alta 1 cubesat mission Space Sci. Rev. (2019, this issue) Google Scholar
  26. D.M. Miles, J.R. Bennest, I.R. Mann, D.K. Millling, A radiation hardened digital fluxgate magnetometer for space applications. Geosci. Instrum. Method. Data Syst. 2(2), 213–224 (2013).  https://doi.org/10.5194/gi-2-213-2013 ADSCrossRefGoogle Scholar
  27. D.M. Miles, I.R. Mann, M. Ciurzynski, D. Barona, B.B. Narod, J.R. Bennest, I.P. Pakhotin, A. Kale, B. Bruner, C.D.A. Nokes, C. Cupido, T. Haluza-DeLay, D.G. Elliott, D.K. Milling, A miniature, low-power scientific fluxgate magnetometer: a stepping-stone to cube-satellite constellation missions. J. Geophys. Res. Space Phys. 121(12), 11839–11860 (2016).  https://doi.org/10.1002/2016JA023147 ADSCrossRefGoogle Scholar
  28. J. Moen, K. Oksavik, T. Abe, M. Lester, Y. Saito, T.A. Bekkeng, K.S. Jacobsen, First in-situ measurements of hf radar echoing targets. Geophys. Res. Lett. 39(7), l07104 (2012).  https://doi.org/10.1029/2012GL051407 ADSCrossRefGoogle Scholar
  29. J. Moen, K. Oksavik, L. Alfonsi, Y. Daabakk, V. Romano, L. Spogli, Space weather challenges of the polar cap ionosphere. J. Space Weather Space Clim. (2013).  https://doi.org/10.1051/swsc/2013025 CrossRefGoogle Scholar
  30. H.M. Mott-Smith, I. Langmuir, The theory of collectors in gaseous discharges. Phys. Rev. 28, 727–763 (1926).  https://doi.org/10.1103/PhysRev.28.727 ADSCrossRefGoogle Scholar
  31. J. Muylaert, R. Reinhard, C. Asma, V. Danilkin, Qb50, an international network of 50 cubesats for multi-point, in-situ measurements in the lower thermosphere and re-entry research, in QB50 Workshop (2009) Google Scholar
  32. K. Oksavik, J. Moen, M. Lester, T.A. Bekkeng, J.K. Bekkeng, In situ measurements of plasma irregularity growth in the cusp ionosphere. J. Geophys. Res. Space Phys. 117(A11), a11301 (2012).  https://doi.org/10.1029/2012JA017835 ADSCrossRefGoogle Scholar
  33. P. Prikryl, P.T. Jayachandran, S.C. Mushini, D. Pokhotelov, J.W. MacDougall, E. Donovan, E. Spanswick, J.P. St-Maurice, GPS TEC, scintillation and cycle slips observed at high latitudes during solar minimum. Ann. Geophys. 28(6), 1307–1316 (2010).  https://doi.org/10.5194/angeo-28-1307-2010 ADSCrossRefGoogle Scholar
  34. Program CPSTC, Cubesat design specification (2015) Google Scholar
  35. A. Spicher, W.J. Miloch, J.I. Moen, Direct evidence of double-slope power spectra in the high-latitude ionospheric plasma. Geophys. Res. Lett. 41(5), 1406–1412 (2014).  https://doi.org/10.1002/2014GL059214 ADSCrossRefGoogle Scholar
  36. A. Spicher, T. Cameron, E.M. Grono, K.N. Yakymenko, S.C. Buchert, L.B.N. Clausen, D.J. Knudsen, K.A. McWilliams, J.I. Moen, Observation of polar cap patches and calculation of gradient drift instability growth times: a swarm case study. Geophys. Res. Lett. 42(2), 201–206 (2015a).  https://doi.org/10.1002/2014GL062590 ADSCrossRefGoogle Scholar
  37. A. Spicher, W.J. Miloch, L.B.N. Clausen, J.I. Moen, Plasma turbulence and coherent structures in the polar cap observed by the ICI-2 sounding rocket. J. Geophys. Res. Space Phys. 120(12), 10959–10978 (2015b).  https://doi.org/10.1002/2015JA021634 ADSCrossRefGoogle Scholar
  38. C. Venturini, L. Abramowitz, J. Johansen, J. Gee, W. Floyd, Cubesat developmental programs-working with the community, in AIAA SPACE 2009 Conference & Exposition, AIAA-6501 (2009).  https://doi.org/10.2514/6.2009-6501 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • H. Hoang
    • 1
    Email author
  • K. Røed
    • 1
  • T. A. Bekkeng
    • 1
  • J. I. Moen
    • 1
  • L. B. N. Clausen
    • 1
  • E. Trondsen
    • 1
  • B. Lybekk
    • 1
  • H. Strøm
    • 1
  • D. M. Bang-Hauge
    • 1
  • A. Pedersen
    • 1
  • C. D. A. Nokes
    • 2
  • C. Cupido
    • 2
  • I. R. Mann
    • 2
  • M. Ariel
    • 3
  • D. Portnoy
    • 3
  • E. Sagi
    • 3
  1. 1.Department of PhysicsUniversity of OsloOsloNorway
  2. 2.Department of PhysicsUniversity of AlbertaEdmontonCanada
  3. 3.Herzliya Science CenterHertsliyaIsrael

Personalised recommendations