Advertisement

Space Science Reviews

, 215:14 | Cite as

Shocks and Non-thermal Particles in Clusters of Galaxies

  • A. M. BykovEmail author
  • F. Vazza
  • J. A. Kropotina
  • K. P. Levenfish
  • F. B. S. Paerels
Article
  • 31 Downloads
Part of the following topical collections:
  1. Clusters of Galaxies: Physics and Cosmology

Abstract

Galaxy clusters grow by gas accretion, mostly from mergers of substructures, which release powerful shock waves into cosmic plasmas and convert a fraction of kinetic energy into thermal energy, amplification of magnetic fields and into the acceleration of energetic particles. The modeling of the radio signature of cosmic shocks, combined with the lack of detected \(\gamma \)-rays from cosmic ray (CR) protons, poses challenges to our understanding of how cosmic rays get accelerated and stored in the intracluster medium. Here we review the injection of CRs by cosmic shocks of different strengths, combining the detailed “microscopic” view of collisionless processes governing the creation of non-thermal distributions of electrons and protons in cluster shocks (based on analytic theory and particle-in-cell simulations), with the “macroscopic” view of the large-scale distribution of cosmic rays, suggested by modern cosmological simulations. Time dependent non-linear kinetic models of particle acceleration by multiple internal shocks with large scale compressible motions of plasma with soft CR spectra containing a noticeable energy density in the super-thermal protons of energies below a few GeV which is difficult to constrain by Fermi observations are discussed. We consider the effect of plasma composition on CR injection and super-thermal particle population in the hot intracluster matter which can be constrained by fine high resolution X-ray spectroscopy of Fe ions.

Keywords

Clusters of galaxies Shocks Cosmic rays 

Notes

Acknowledgements

A.M. Bykov thanks the staff of ISSI for their generous hospitality and assistance. The authors thank the referees for the constructive comments. A.M. Bykov and J.A. Kropotina were supported by the RSF grant 16-12-10225. Some of the modeling was performed at the “Tornado” subsystem of the St. Petersburg Polytechnic University supercomputing center and at the JSCC RAS. F. Vazza acknowledges financial support from the European Union’s Horizon 2020 program under the ERC Starting Grant “MAGCOW”, no. 714196.

References

  1. M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, R.D. Blandford, P. Blasi, E.D. Bloom, E. Bonamente, A.W. Borgland, A. Bouvier, T.J. Brandt, J. Bregeon, M. Brigida, P. Bruel, R. Buehler, S. Buson, G.A. Caliandro, R.A. Cameron, P.A. Caraveo, S. Carrigan, J.M. Casandjian, E. Cavazzuti, C. Cecchi, Ö. Çelik, E. Charles, A. Chekhtman, C.C. Cheung, J. Chiang, S. Ciprini, R. Claus, J. Cohen-Tanugi, S. Colafrancesco, L.R. Cominsky, J. Conrad, C.D. Dermer, F. de Palma, E. Silva, P.S. Drell, R. Dubois, D. Dumora, Y. Edmonds, C. Farnier, C. Favuzzi, M. Frailis, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Gehrels, S. Germani, N. Giglietto, F. Giordano, M. Giroletti, T. Glanzman, G. Godfrey, I.A. Grenier, M.H. Grondin, S. Guiriec, D. Hadasch, A.K. Harding, M. Hayashida, E. Hays, D. Horan, R.E. Hughes, T.E. Jeltema, G. Jóhannesson, A.S. Johnson, T.J. Johnson, W.N. Johnson, T. Kamae, H. Katagiri, J. Kataoka, M. Kerr, J. Knödlseder, M. Kuss, J. Lande, L. Latronico, S.H. Lee, M. Lemoine-Goumard, F. Longo, F. Loparco, B. Lott, M.N. Lovellette, P. Lubrano, G.M. Madejski, A. Makeev, M.N. Mazziotta, P.F. Michelson, W. Mitthumsiri, T. Mizuno, A.A. Moiseev, C. Monte, M.E. Monzani, A. Morselli, I.V. Moskalenko, S. Murgia, M. Naumann-Godo, P.L. Nolan, J.P. Norris, E. Nuss, T. Ohsugi, N. Omodei, E. Orlando, J.F. Ormes, M. Ozaki, D. Paneque, J.H. Panetta, M. Pepe, M. Pesce-Rollins, V. Petrosian, C. Pfrommer, F. Piron, T.A. Porter, S. Profumo, S. Rainò, R. Rando, M. Razzano, A. Reimer, O. Reimer, T. Reposeur, J. Ripken, S. Ritz, A.Y. Rodriguez, R.W. Romani, M. Roth, H.F.W. Sadrozinski, A. Sander, P.M. Saz Parkinson, J.D. Scargle, C. Sgrò, E.J. Siskind, P.D. Smith, G. Spandre, P. Spinelli, J.L. Starck, Ł. Stawarz, M.S. Strickman, A.W. Strong, D.J. Suson, H. Tajima, H. Takahashi, T. Takahashi, T. Tanaka, J.B. Thayer, J.G. Thayer, L. Tibaldo, O. Tibolla, D.F. Torres, G. Tosti, A. Tramacere, Y. Uchiyama, T.L. Usher, J. Vandenbroucke, V. Vasileiou, N. Vilchez, V. Vitale, A.P. Waite, P. Wang, B.L. Winer, K.S. Wood, Z. Yang, T. Ylinen, M. Ziegler, GeV gamma-ray flux upper limits from clusters of galaxies. Astrophys. J. Lett. 717, L71–L78 (2010).  https://doi.org/10.1088/2041-8205/717/1/L71. arXiv:1006.0748 ADSCrossRefGoogle Scholar
  2. M. Ackermann, M. Ajello, A. Allafort, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, A. Belfiore, R. Bellazzini, B. Berenji, R.D. Blandford, E.D. Bloom, E. Bonamente, A.W. Borgland, E. Bottacini, M. Brigida, P. Bruel, R. Buehler, S. Buson, G.A. Caliandro, R.A. Cameron, P.A. Caraveo, J.M. Casandjian, C. Cecchi, A. Chekhtman, C.C. Cheung, J. Chiang, S. Ciprini, R. Claus, J. Cohen-Tanugi, A. de Angelis, F. de Palma, C.D. Dermer, E. do Couto e Silva, P.S. Drell, D. Dumora, C. Favuzzi, S.J. Fegan, W.B. Focke, P. Fortin, Y. Fukazawa, P. Fusco, F. Gargano, S. Germani, N. Giglietto, F. Giordano, M. Giroletti, T. Glanzman, G. Godfrey, I.A. Grenier, L. Guillemot, S. Guiriec, D. Hadasch, Y. Hanabata, A. Okumura, E. Orlando, J.F. Ormes, M. Ozaki, D. Paneque, D. Parent, M. Pesce-Rollins, M. Pierbattista, F. Piron, M. Pohl, D. Prokhorov, S. Rainò, R. Rando, M. Razzano, T. Reposeur, S. Ritz, P.M.S. Parkinson, C. Sgrò, E.J. Siskind, P.D. Smith, P. Spinelli, A.W. Strong, H. Takahashi, T. Tanaka, J.G. Thayer, J.B. Thayer, D.J. Thompson, L. Tibaldo, D.F. Torres, G. Tosti, A. Tramacere, E. Troja, Y. Uchiyama, J. Vandenbroucke, V. Vasileiou, G. Vianello, V. Vitale, A.P. Waite, P. Wang, B.L. Winer, K.S. Wood, Z. Yang, S. Zimmer, S. Bontemps, A cocoon of freshly accelerated cosmic rays detected by Fermi in the cygnus superbubble. Science 334, 1103 (2011).  https://doi.org/10.1126/science.1210311 ADSCrossRefGoogle Scholar
  3. M. Ackermann, M. Ajello, A. Albert, A. Allafort, W.B. Atwood, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, E.D. Bloom, E. Bonamente, E. Bottacini, T.J. Brandt, J. Bregeon, M. Brigida, P. Bruel, R. Buehler, S. Buson, G.A. Caliandro, R.A. Cameron, P.A. Caraveo, E. Cavazzuti, R.C.G. Chaves, J. Chiang, G. Chiaro, S. Ciprini, R. Claus, J. Cohen-Tanugi, J. Conrad, F. D’Ammando, A. de Angelis, F. de Palma, C.D. Dermer, S.W. Digel, P.S. Drell, A. Drlica-Wagner, C. Favuzzi, A. Franckowiak, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, S. Germani, N. Giglietto, F. Giordano, M. Giroletti, G. Godfrey, G.A. Gomez-Vargas, I.A. Grenier, S. Guiriec, M. Gustafsson, D. Hadasch, M. Hayashida, J. Hewitt, R.E. Hughes, T.E. Jeltema, G. Jóhannesson, A.S. Johnson, T. Kamae, J. Kataoka, J. Knödlseder, M. Kuss, J. Lande, S. Larsson, L. Latronico, M. Llena Garde, F. Longo, F. Loparco, M.N. Lovellette, P. Lubrano, M. Mayer, M.N. Mazziotta, J.E. McEnery, P.F. Michelson, W. Mitthumsiri, T. Mizuno, M.E. Monzani, A. Morselli, I.V. Moskalenko, S. Murgia, R. Nemmen, E. Nuss, T. Ohsugi, M. Orienti, E. Orlando, J.F. Ormes, J.S. Perkins, M. Pesce-Rollins, F. Piron, G. Pivato, S. Rainò, R. Rando, M. Razzano, S. Razzaque, A. Reimer, O. Reimer, J. Ruan, M. Sánchez-Conde, A. Schulz, C. Sgrò, E.J. Siskind, G. Spandre, P. Spinelli, E. Storm, A.W. Strong, D.J. Suson, H. Takahashi, J.G. Thayer, J.B. Thayer, D.J. Thompson, L. Tibaldo, M. Tinivella, D.F. Torres, E. Troja, Y. Uchiyama, T.L. Usher, J. Vandenbroucke, G. Vianello, V. Vitale, B.L. Winer, K.S. Wood, S. Zimmer, A. Pinzke, C. Pfrommer (Fermi-LAT Collaboration), Search for cosmic-ray-induced gamma-ray emission in galaxy clusters. Astrophys. J. 787, 18 (2014).  https://doi.org/10.1088/0004-637X/787/1/18. arXiv:1308.5654 ADSCrossRefGoogle Scholar
  4. M. Ackermann, M. Ajello, A. Albert, W.B. Atwood, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, E. Bissaldi, R.D. Blandford, E.D. Bloom, R. Bonino, E. Bottacini, J. Bregeon, P. Bruel, R. Buehler, G.A. Caliandro, R.A. Cameron, M. Caragiulo, P.A. Caraveo, J.M. Casandjian, E. Cavazzuti, C. Cecchi, E. Charles, A. Chekhtman, G. Chiaro, S. Ciprini, J. Cohen-Tanugi, J. Conrad, S. Cutini, F. D’Ammando, A. de Angelis, F. de Palma, R. Desiante, S.W. Digel, L. Di Venere, P.S. Drell, C. Favuzzi, S.J. Fegan, Y. Fukazawa, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, N. Giglietto, F. Giordano, M. Giroletti, G. Godfrey, D. Green, I.A. Grenier, S. Guiriec, E. Hays, J.W. Hewitt, D. Horan, G. Jóhannesson, M. Kuss, S. Larsson, L. Latronico, J. Li, L. Li, F. Longo, F. Loparco, M.N. Lovellette, P. Lubrano, G.M. Madejski, S. Maldera, A. Manfreda, M. Mayer, M.N. Mazziotta, P.F. Michelson, W. Mitthumsiri, T. Mizuno, M.E. Monzani, A. Morselli, I.V. Moskalenko, S. Murgia, E. Nuss, T. Ohsugi, M. Orienti, E. Orlando, J.F. Ormes, D. Paneque, M. Pesce-Rollins, V. Petrosian, F. Piron, G. Pivato, T.A. Porter, S. Rainò, R. Rando, M. Razzano, A. Reimer, O. Reimer, M. Sánchez-Conde, C. Sgrò, E.J. Siskind, F. Spada, G. Spandre, P. Spinelli, H. Tajima, H. Takahashi, J.B. Thayer, L. Tibaldo, D.F. Torres, G. Tosti, E. Troja, G. Vianello, K.S. Wood, S. Zimmer, Y. Rephaeli (The Fermi-LAT Collaboration), Search for gamma-ray emission from the coma cluster with six years of Fermi-LAT data. Astrophys. J. 819, 149 (2016).  https://doi.org/10.3847/0004-637X/819/2/149. arXiv:1507.08995 ADSCrossRefGoogle Scholar
  5. O. Agertz, B. Moore, J. Stadel, D. Potter, F. Miniati, J. Read, L. Mayer, A. Gawryszczak, A. Kravtsov, F. Nordlund, Å. Pearce, V. Quilis, D. Rudd, V. Springel, J. Stone, E. Tasker, R. Teyssier, J. Wadsley, R. Walder, Fundamental differences between SPH and grid methods. Mon. Not. R. Astron. Soc. 380, 963–978 (2007).  https://doi.org/10.1111/j.1365-2966.2007.12183.x. arXiv:astro-ph/0610051 ADSCrossRefzbMATHGoogle Scholar
  6. T. Antecki, R. Schlickeiser, M. Zhang, Stochastic acceleration of suprathermal particles under pressure balance conditions. Astrophys. J. 764, 89 (2013).  https://doi.org/10.1088/0004-637X/764/1/89 ADSCrossRefGoogle Scholar
  7. P.A. Araya-Melo, M.A. Aragón-Calvo, M. Brüggen, M. Hoeft, Radio emission in the cosmic web. Mon. Not. R. Astron. Soc. 423, 2325–2341 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21042.x. arXiv:1204.1759 ADSCrossRefGoogle Scholar
  8. A.V. Artemyev, A.I. Neishtadt, D.L. Vainchtein, A.A. Vasiliev, I.Y. Vasko, L.M. Zelenyi, Trapping (capture) into resonance and scattering on resonance: summary of results for space plasma systems. Commun. Nonlinear Sci. Numer. Simul. 65, 111–160 (2018).  https://doi.org/10.1016/j.cnsns.2018.05.004 ADSMathSciNetCrossRefGoogle Scholar
  9. D. Barret, T. Lam Trong, J.W. den Herder, L. Piro, M. Cappi, J. Houvelin, R. Kelley, J.M. Mas-Hesse, K. Mitsuda, S. Paltani, G. Rauw, A. Rozanska, J. Wilms, S. Bandler, M. Barbera, X. Barcons, E. Bozzo, M.T. Ceballos, I. Charles, E. Costantini, A. Decourchelle, R. den Hartog, L. Duband, J.M. Duval, F. Fiore, F. Gatti, A. Goldwurm, B. Jackson, P. Jonker, C. Kilbourne, C. Macculi, M. Mendez, S. Molendi, P. Orleanski, F. Pajot, E. Pointecouteau, F. Porter, G.W. Pratt, D. Prêle, L. Ravera, K. Sato, J. Schaye, K. Shinozaki, T. Thibert, L. Valenziano, V. Valette, J. Vink, N. Webb, M. Wise, N. Yamasaki, F. Douchin, J.M. Mesnager, B. Pontet, A. Pradines, G. Branduardi-Raymont, E. Bulbul, M. Dadina, S. Ettori, A. Finoguenov, Y. Fukazawa, A. Janiuk, J. Kaastra, P. Mazzotta, J. Miller, G. Miniutti, Y. Naze, F. Nicastro, S. Scioritino, A. Simonescu, J.M. Torrejon, B. Frezouls, H. Geoffray, P. Peille, C. Aicardi, J. André, C. Daniel, A. Clénet, C. Etcheverry, E. Gloaguen, G. Hervet, A. Jolly, A. Ledot, I. Paillet, R. Schmisser, B. Vella, J.C. Damery, K. Boyce, M. Dipirro, S. Lotti, D. Schwander, S. Smith, B.J. Van Leeuwen, H. van Weers, N. Clerc, B. Cobo, T. Dauser, C. Kirsch, E. Cucchetti, M. Eckart, P. Ferrando, L. Natalucci, The ATHENA X-ray Integral Field Unit (X-IFU), in Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 10699 (2018), p. 106991G.  https://doi.org/10.1117/12.2312409. arXiv:1807.06092 CrossRefGoogle Scholar
  10. N. Battaglia, C. Pfrommer, J.L. Sievers, J.R. Bond, T.A. Enßlin, Exploring the magnetized cosmic web through low-frequency radio emission. Mon. Not. R. Astron. Soc. 393, 1073–1089 (2009).  https://doi.org/10.1111/j.1365-2966.2008.14136.x. arXiv:0806.3272 ADSCrossRefGoogle Scholar
  11. V.S. Berezinsky, P. Blasi, V.S. Ptuskin, Clusters of galaxies as storage room for cosmic rays. Astrophys. J. 487, 529 (1997).  https://doi.org/10.1086/304622. arXiv:astro-ph/9609048 ADSCrossRefGoogle Scholar
  12. V. Biffi, S. Planelles, S. Borgani, E. Rasia, G. Murante, D. Fabjan, M. Gaspari, The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations. Mon. Not. R. Astron. Soc. 476, 2689–2703 (2018).  https://doi.org/10.1093/mnras/sty363. arXiv:1801.05425 ADSCrossRefGoogle Scholar
  13. H. Böhringer, N. Werner, X-ray spectroscopy of galaxy clusters: studying astrophysical processes in the largest celestial laboratories. Astron. Astrophys. Rev. 18, 127–196 (2010).  https://doi.org/10.1007/s00159-009-0023-3 ADSCrossRefGoogle Scholar
  14. A. Bonafede, M. Brüggen, R. van Weeren, F. Vazza, G. Giovannini, H. Ebeling, A.C. Edge, M. Hoeft, U. Klein, Discovery of radio haloes and double relics in distant MACS galaxy clusters: clues to the efficiency of particle acceleration. Mon. Not. R. Astron. Soc. 426, 40–56 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21570.x. arXiv:1206.6102 ADSCrossRefGoogle Scholar
  15. S. Brown, A. Emerick, L. Rudnick, G. Brunetti, Probing the off-state of cluster giant radio halos. Astrophys. J. Lett. 740, L28+ (2011).  https://doi.org/10.1088/2041-8205/740/1/L28. arXiv:1109.0316 ADSCrossRefGoogle Scholar
  16. M. Brüggen, A. Bykov, D. Ryu, H. Röttgering, Magnetic fields, relativistic particles, and shock waves in cluster outskirts. Space Sci. Rev. 166, 187–213 (2012).  https://doi.org/10.1007/s11214-011-9785-9. arXiv:1107.5223 ADSCrossRefGoogle Scholar
  17. G. Brunetti, Gamma rays from galaxy clusters, in 6th International Symposium on High Energy Gamma-Ray Astronomy. American Institute of Physics Conference Series, vol. 1792 (2017), p. 020009.  https://doi.org/10.1063/1.4968894 CrossRefGoogle Scholar
  18. G. Brunetti, T.W. Jones, Cosmic rays in galaxy clusters and their nonthermal emission. Int. J. Mod. Phys. D 23, 1430007 (2014).  https://doi.org/10.1142/S0218271814300079. arXiv:1401.7519 ADSCrossRefGoogle Scholar
  19. G. Brunetti, A. Lazarian, Compressible turbulence in galaxy clusters: physics and stochastic particle re-acceleration. Mon. Not. R. Astron. Soc. 378, 245–275 (2007).  https://doi.org/10.1111/j.1365-2966.2007.11771.x. arXiv:astro-ph/0703591 ADSCrossRefGoogle Scholar
  20. G. Brunetti, A. Lazarian, Acceleration of primary and secondary particles in galaxy clusters by compressible MHD turbulence: from radio haloes to gamma-rays. Mon. Not. R. Astron. Soc. 410, 127–142 (2011a).  https://doi.org/10.1111/j.1365-2966.2010.17457.x. arXiv:1008.0184 ADSCrossRefGoogle Scholar
  21. G. Brunetti, A. Lazarian, Particle reacceleration by compressible turbulence in galaxy clusters: effects of a reduced mean free path. Mon. Not. R. Astron. Soc. 412, 817–824 (2011b).  https://doi.org/10.1111/j.1365-2966.2010.17937.x. arXiv:1011.1198 ADSCrossRefGoogle Scholar
  22. G. Brunetti, T. Venturi, D. Dallacasa, R. Cassano, K. Dolag, S. Giacintucci, G. Setti, Cosmic rays and radio halos in galaxy clusters: new constraints from radio observations. Astrophys. J. Lett. 670, L5–L8 (2007).  https://doi.org/10.1086/524037. arXiv:0710.0801 ADSCrossRefGoogle Scholar
  23. G. Brunetti, P. Blasi, O. Reimer, L. Rudnick, A. Bonafede, S. Brown, Probing the origin of giant radio haloes through radio and \(\gamma \)-ray data: the case of the Coma cluster. Mon. Not. R. Astron. Soc. 426, 956–968 (2012).  https://doi.org/10.1111/j.1365-2966.2012.21785.x. arXiv:1207.3025 ADSCrossRefGoogle Scholar
  24. G. Brunetti, S. Zimmer, F. Zandanel, Relativistic protons in the Coma galaxy cluster: first gamma-ray constraints ever on turbulent reacceleration. Mon. Not. R. Astron. Soc. 472, 1506–1525 (2017).  https://doi.org/10.1093/mnras/stx2092. arXiv:1707.02085 ADSCrossRefGoogle Scholar
  25. A.M. Bykov, Particle acceleration and nonthermal phenomena in superbubbles. Space Sci. Rev. 99, 317–326 (2001) ADSCrossRefGoogle Scholar
  26. A.M. Bykov, Nonthermal particles and photons in starburst regions and superbubbles. Astron. Astrophys. Rev. 22, 77 (2014).  https://doi.org/10.1007/s00159-014-0077-8 ADSCrossRefGoogle Scholar
  27. A.M. Bykov, I.N. Toptygin, Magnetohydrodynamic turbulence in the cosmic rays confinement regions of galaxy, in International Cosmic Ray Conference 9:247 (1983) Google Scholar
  28. A.M. Bykov, I.N. Toptygin, Effect of shocks on interstellar turbulence and cosmic-ray dynamics. Astrophys. Space Sci. 138, 341–354 (1987).  https://doi.org/10.1007/BF00637855 ADSCrossRefGoogle Scholar
  29. A.M. Bykov, I.N. Toptygin, Theory of charged-particle acceleration by a collection of shock-waves in a turbulent medium. Sov. Phys. JETP 71, 702–708 (1990) Google Scholar
  30. A.M. Bykov, I. Toptygin, Particle kinetics in highly turbulent plasmas (renormalization and self-consistent field methods). Phys. Usp. 36, 1020–1052 (1993).  https://doi.org/10.1070/PU1993v036n11ABEH002179 ADSCrossRefGoogle Scholar
  31. A.M. Bykov, H. Bloemen, Y.A. Uvarov, Nonthermal emission from clusters of galaxies. Astron. Astrophys. 362, 886–894 (2000) ADSGoogle Scholar
  32. A.M. Bykov, K. Dolag, F. Durret, Cosmological shock waves. Space Sci. Rev. 134, 119–140 (2008a).  https://doi.org/10.1007/s11214-008-9312-9. arXiv:0801.0995 ADSCrossRefGoogle Scholar
  33. A.M. Bykov, F.BS. Paerels, V. Petrosian, Equilibration processes in the warm-hot intergalactic medium. Space Sci. Rev. 134, 141–153 (2008b).  https://doi.org/10.1007/s11214-008-9309-4. arXiv:0801.1008 ADSCrossRefGoogle Scholar
  34. A.M. Bykov, D.C. Ellison, S.M. Osipov, A.E. Vladimirov, Magnetic field amplification in nonlinear diffusive shock acceleration including resonant and non-resonant cosmic-ray driven instabilities. Astrophys. J. 789, 137 (2014).  https://doi.org/10.1088/0004-637X/789/2/137. arXiv:1406.0084 ADSCrossRefGoogle Scholar
  35. A.M. Bykov, D.C. Ellison, S.M. Osipov, Nonlinear Monte Carlo model of superdiffusive shock acceleration with magnetic field amplification. Phys. Rev. E 95(3), 033207 (2017).  https://doi.org/10.1103/PhysRevE.95.033207. arXiv:1703.01160 ADSCrossRefGoogle Scholar
  36. A.M. Bykov, D.C. Ellison, A. Marcowith, S.M. Osipov, Cosmic ray production in supernovae. Space Sci. Rev. 214, 41 (2018).  https://doi.org/10.1007/s11214-018-0479-4. arXiv:1801.08890 ADSCrossRefGoogle Scholar
  37. D. Caprioli, A. Spitkovsky, Simulations of ion acceleration at non-relativistic shocks. I. Acceleration efficiency. Astrophys. J. 783, 91 (2014).  https://doi.org/10.1088/0004-637X/783/2/91. arXiv:1310.2943 ADSCrossRefGoogle Scholar
  38. A. Cavaliere, A. Lapi, The astrophysics of the intracluster plasma. Phys. Rep. 533, 69–94 (2013).  https://doi.org/10.1016/j.physrep.2013.08.001. arXiv:1308.6673 ADSCrossRefGoogle Scholar
  39. L. Chuzhoy, A. Loeb, Element segregation in giant galaxies and X-ray clusters. Mon. Not. R. Astron. Soc. 349, L13–L17 (2004).  https://doi.org/10.1111/j.1365-2966.2004.07688.x. arXiv:astro-ph/0312472 ADSCrossRefGoogle Scholar
  40. F. de Gasperin, R.J. van Weeren, M. Brüggen, F. Vazza, A. Bonafede, H.T. Intema, A new double radio relic in PSZ1 G096.89+24.17 and a radio relic mass-luminosity relation. Mon. Not. R. Astron. Soc. 444, 3130–3138 (2014).  https://doi.org/10.1093/mnras/stu1658. arXiv:1408.2677 ADSCrossRefGoogle Scholar
  41. J. de Plaa, N. Werner, A.M. Bykov, J.S. Kaastra, M. Méndez, J. Vink, J.A.M. Bleeker, M. Bonamente, J.R. Peterson, Chemical evolution in Sérsic 159-03 observed with XMM-Newton. Astron. Astrophys. 452, 397–412 (2006).  https://doi.org/10.1051/0004-6361:20053864. arXiv:astro-ph/0602582 ADSCrossRefGoogle Scholar
  42. K. Dolag, T.A. Enßlin, Radio halos of galaxy clusters from hadronic secondary electron injection in realistic magnetic field configurations. Astron. Astrophys. 362, 151–157 (2000). arXiv:astro-ph/0008333 ADSGoogle Scholar
  43. J. Donnert, G. Brunetti, An efficient Fokker-Planck solver and its application to stochastic particle acceleration in galaxy clusters. Mon. Not. R. Astron. Soc. 443, 3564–3577 (2014).  https://doi.org/10.1093/mnras/stu1417. arXiv:1407.2735 ADSCrossRefGoogle Scholar
  44. J. Donnert, K. Dolag, R. Cassano, G. Brunetti, Radio haloes from simulations and hadronic models—II. The scaling relations of radio haloes. Mon. Not. R. Astron. Soc. 407, 1565–1580 (2010).  https://doi.org/10.1111/j.1365-2966.2010.17065.x. arXiv:1003.0336 ADSCrossRefGoogle Scholar
  45. J. Donnert, K. Dolag, G. Brunetti, R. Cassano, Rise and fall of radio haloes in simulated merging galaxy clusters. Mon. Not. R. Astron. Soc. 429, 3564–3569 (2013).  https://doi.org/10.1093/mnras/sts628. arXiv:1211.3337 ADSCrossRefGoogle Scholar
  46. Donnert et al., Space Sci. Rev. (2019, this issue).  https://doi.org/10.1007/s11214-018-0556-8. CrossRefGoogle Scholar
  47. T.A. Enßlin, C. Pfrommer, V. Springel, M. Jubelgas, Cosmic ray physics in calculations of cosmological structure formation. Astron. Astrophys. 473, 41–57 (2007).  https://doi.org/10.1051/0004-6361:20065294. arXiv:astro-ph/0603484 ADSCrossRefzbMATHGoogle Scholar
  48. T. Enßlin, C. Pfrommer, F. Miniati, K. Subramanian, Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating. Astron. Astrophys. 527, A99 (2011).  https://doi.org/10.1051/0004-6361/201015652. arXiv:1008.4717 ADSCrossRefGoogle Scholar
  49. S. Ettori, A.C. Fabian, Effects of sedimented helium on the X-ray properties of galaxy clusters. Mon. Not. R. Astron. Soc. 369, L42–L46 (2006).  https://doi.org/10.1111/j.1745-3933.2006.00170.x. arXiv:astro-ph/0603383 ADSCrossRefGoogle Scholar
  50. A.C. Fabian, J.E. Pringle, On the spatial distribution of heavy elements in X-ray emitting clusters of galaxies. Mon. Not. R. Astron. Soc. 181, 5P–7P (1977).  https://doi.org/10.1093/mnras/181.1.5P ADSCrossRefGoogle Scholar
  51. L. Feretti, G. Giovannini, F. Govoni, M. Murgia, Clusters of galaxies: observational properties of the diffuse radio emission. Astron. Astrophys. Rev. 20, 54 (2012).  https://doi.org/10.1007/s00159-012-0054-z. arXiv:1205.1919 ADSCrossRefGoogle Scholar
  52. C. Ferrari, F. Govoni, S. Schindler, A.M. Bykov, Y. Rephaeli, Observations of extended radio emission in clusters. Space Sci. Rev. 134, 93–118 (2008).  https://doi.org/10.1007/s11214-008-9311-x. arXiv:0801.0985 ADSCrossRefGoogle Scholar
  53. L.A. Fisk, 50 years of research on particle acceleration in the heliosphere, in Journal of Physics Conference Series. Journal of Physics Conference Series, vol. 642 (2015), p. 012009.  https://doi.org/10.1088/1742-6596/642/1/012009 CrossRefGoogle Scholar
  54. L.A. Fisk, G. Gloeckler, The common spectrum for accelerated ions in the quiet-time solar wind. Astrophys. J. Lett. 640, L79–L82 (2006).  https://doi.org/10.1086/503293 ADSCrossRefGoogle Scholar
  55. L.A. Fisk, G. Gloeckler, The case for a common spectrum of particles accelerated in the heliosphere: observations and theory. J. Geophys. Res. Space Phys. 119, 8733–8749 (2014).  https://doi.org/10.1002/2014JA020426 ADSCrossRefGoogle Scholar
  56. L.A. Fisk, G. Gloeckler, The pump acceleration mechanism. J. Phys. Conf. Ser. 900, 012006 (2017).  https://doi.org/10.1088/1742-6596/900/1/012006 CrossRefGoogle Scholar
  57. L. Gargaté, R. Bingham, R.A. Fonseca, L.O. Silva, dHybrid: a massively parallel code for hybrid simulations of space plasmas. Comput. Phys. Commun. 176, 419–425 (2007).  https://doi.org/10.1016/j.cpc.2006.11.013. arXiv:physics/0611174 ADSCrossRefzbMATHGoogle Scholar
  58. J. Giacalone, D. Burgess, S.J. Schwartz, D.C. Ellison, L. Bennett, Injection and acceleration of thermal protons at quasi-parallel shocks: a hybrid simulation parameter survey. J. Geophys. Res. 1102, 19789–19804 (1997).  https://doi.org/10.1029/97JA01529 ADSCrossRefGoogle Scholar
  59. M.R. Gilfanov, R.A. Syunyaev, Intracluster gravitational separation of deuterium and helium in rich galaxy clusters. Sov. Astron. Lett. 10, 137–140 (1984) ADSGoogle Scholar
  60. I.A. Grenier, J.H. Black, A.W. Strong, The nine lives of cosmic rays in galaxies. Annu. Rev. Astron. Astrophys. 53, 199–246 (2015).  https://doi.org/10.1146/annurev-astro-082214-122457 ADSCrossRefGoogle Scholar
  61. R.D. Griffin, X. Dai, C.S. Kochanek, New limits on gamma-ray emission from galaxy clusters. Astrophys. J. Lett. 795, L21 (2014).  https://doi.org/10.1088/2041-8205/795/1/L21. arXiv:1405.7047 ADSCrossRefGoogle Scholar
  62. X. Guo, L. Sironi, R. Narayan, Non-thermal electron acceleration in low mach number collisionless shocks. I. Particle energy spectra and acceleration mechanism. Astrophys. J. 794, 153 (2014a).  https://doi.org/10.1088/0004-637X/794/2/153. arXiv:1406.5190 ADSCrossRefGoogle Scholar
  63. X. Guo, L. Sironi, R. Narayan, Non-thermal electron acceleration in low mach number collisionless shocks. II. Firehose-mediated Fermi acceleration and its dependence on pre-shock conditions. Astrophys. J. 797, 47 (2014b).  https://doi.org/10.1088/0004-637X/797/1/47. arXiv:1409.7393 ADSCrossRefGoogle Scholar
  64. X. Guo, L. Sironi, R. Narayan, Non-Thermal Electron Acceleration in Low Mach Number Collisionless Shocks. II. Firehose-Mediated Fermi Acceleration and its Dependence on Pre-Shock Conditions (2014c). ArXiv e-prints arXiv:1409.7393
  65. X. Guo, L. Sironi, R. Narayan, Electron heating in low-mach-number perpendicular shocks. I. Heating mechanism. Astrophys. J. 851, 134 (2017).  https://doi.org/10.3847/1538-4357/aa9b82. arXiv:1710.07648 ADSCrossRefGoogle Scholar
  66. X. Guo, L. Sironi, R. Narayan, Electron heating in low mach number perpendicular shocks. II. Dependence on the pre-shock conditions. Astrophys. J. 858, 95 (2018).  https://doi.org/10.3847/1538-4357/aab6ad. arXiv:1712.03239 ADSCrossRefGoogle Scholar
  67. J.H. Ha, D. Ryu, H. Kang, A.J. van Marle, Proton acceleration in weak quasi-parallel intracluster shocks: injection and early acceleration. Astrophys. J. 864, 105 (2018).  https://doi.org/10.3847/1538-4357/aad634. arXiv:1807.09403 ADSCrossRefGoogle Scholar
  68. M. Hoeft, M. Brüggen, Radio signature of cosmological structure formation shocks. Mon. Not. R. Astron. Soc. 375, 77–91 (2007).  https://doi.org/10.1111/j.1365-2966.2006.11111.x. arXiv:astro-ph/0609831 ADSCrossRefGoogle Scholar
  69. M. Hoeft, M. Brüggen, G. Yepes, S. Gottlöber, A. Schwope, Diffuse radio emission from clusters in the MareNostrum Universe simulation. Mon. Not. R. Astron. Soc. 391, 1511–1526 (2008).  https://doi.org/10.1111/j.1365-2966.2008.13955.x. arXiv:0807.1266 ADSCrossRefGoogle Scholar
  70. S.E. Hong, H. Kang, D. Ryu, Radio and X-ray shocks in clusters of galaxies. Astrophys. J. 812, 49 (2015).  https://doi.org/10.1088/0004-637X/812/1/49. arXiv:1504.03102 ADSCrossRefGoogle Scholar
  71. S. Jacob, R. Pakmor, C.M. Simpson, V. Springel, C. Pfrommer, The dependence of cosmic ray-driven galactic winds on halo mass. Mon. Not. R. Astron. Soc. 475, 570–584 (2018).  https://doi.org/10.1093/mnras/stx3221. arXiv:1712.04947 ADSCrossRefGoogle Scholar
  72. J.R. Jokipii, M.A. Lee, Compression acceleration in astrophysical plasmas and the production of f(v) vprop v −5 spectra in the heliosphere. Astrophys. J. 713, 475–483 (2010).  https://doi.org/10.1088/0004-637X/713/1/475 ADSCrossRefGoogle Scholar
  73. M. Jubelgas, V. Springel, T. Enßlin, C. Pfrommer, Cosmic ray feedback in hydrodynamical simulations of galaxy formation. Astron. Astrophys. 481, 33–63 (2008).  https://doi.org/10.1051/0004-6361:20065295. arXiv:astro-ph/0603485 ADSCrossRefzbMATHGoogle Scholar
  74. J.S. Kaastra, A.M. Bykov, N. Werner, Non-Maxwellian electron distributions in clusters of galaxies. Astron. Astrophys. 503, 373–378 (2009).  https://doi.org/10.1051/0004-6361/200912492. arXiv:0905.4802 ADSCrossRefzbMATHGoogle Scholar
  75. H. Kang, T.W. Jones, Self-similar evolution of cosmic-ray-modified quasi-parallel plane shocks. Astropart. Phys. 28, 232–246 (2007).  https://doi.org/10.1016/j.astropartphys.2007.05.007. arXiv:0705.3274 ADSCrossRefGoogle Scholar
  76. H. Kang, D. Ryu, Diffusive shock acceleration at cosmological shock waves. Astrophys. J. 764, 95 (2013).  https://doi.org/10.1088/0004-637X/764/1/95. arXiv:1212.3246 ADSCrossRefGoogle Scholar
  77. H. Kang, D. Ryu, Effects of Alfvénic drift on diffusive shock acceleration at weak cluster shocks. Astrophys. J. 856, 33 (2018).  https://doi.org/10.3847/1538-4357/aab1f2. arXiv:1802.03189 ADSCrossRefGoogle Scholar
  78. H. Kang, D. Ryu, R. Cen, J.P. Ostriker, Astrophys. J. 669, 729–740 (2007).  https://doi.org/10.1086/521717. arXiv:0704.1521 ADSCrossRefGoogle Scholar
  79. H. Kang, D. Ryu, T.W. Jones, Diffusive shock acceleration simulations of radio relics. Astrophys. J. 756, 97 (2012a).  https://doi.org/10.1088/0004-637X/756/1/97. arXiv:1205.1895 ADSCrossRefGoogle Scholar
  80. H. Kang, D. Ryu, T.W. Jones, Diffusive shock acceleration simulations of radio relics. Astrophys. J. 756, 97 (2012b).  https://doi.org/10.1088/0004-637X/756/1/97. arXiv:1205.1895 ADSCrossRefGoogle Scholar
  81. T.N. Kato, H. Takabe, Nonrelativistic collisionless shocks in weakly magnetized electron-ion plasmas: two-dimensional particle-in-cell simulation of perpendicular shock. Astrophys. J. 721, 828–842 (2010).  https://doi.org/10.1088/0004-637X/721/1/828. arXiv:1008.0265 ADSCrossRefGoogle Scholar
  82. J. Katsuta, Y. Uchiyama, S. Funk, Extended gamma-ray emission from the G25.0+0.0 region: a star-forming region powered by the newly found OB association? Astrophys. J. 839, 129 (2017).  https://doi.org/10.3847/1538-4357/aa6aa3. arXiv:1704.06110 ADSCrossRefGoogle Scholar
  83. U. Keshet, E. Waxman, A. Loeb, Imprint of intergalactic shocks on the radio sky. Astrophys. J. 617, 281–302 (2004).  https://doi.org/10.1086/424837. arXiv:astro-ph/0402320 ADSCrossRefGoogle Scholar
  84. S.V. Komarov, E.M. Churazov, M.W. Kunz, A.A. Schekochihin, Thermal conduction in a mirror-unstable plasma. Mon. Not. R. Astron. Soc. 460, 467–477 (2016).  https://doi.org/10.1093/mnras/stw963. arXiv:1603.00524 ADSCrossRefGoogle Scholar
  85. Y.A. Kropotina, A.M. Bykov, A.M. Krasil’shchikov, K.P. Levenfish, Relaxation of heavy ions in collisionless shock waves in cosmic plasma. J. Tech. Phys. 61, 517–524 (2016).  https://doi.org/10.1134/S1063784216040149 ADSCrossRefGoogle Scholar
  86. J.A. Kropotina, A.M. Bykov, A.M. Krassilchtchikov, K.P. Levenfish, Maximus: a Hybrid Particle-in-Cell Code for Microscopic Modeling of Collisionless Plasmas (2018). ArXiv e-prints arXiv:1806.05926
  87. M.W. Kunz, A.A. Schekochihin, J.M. Stone, Firehose and mirror instabilities in a collisionless shearing plasma. Phys. Rev. Lett. 112(20), 205003 (2014).  https://doi.org/10.1103/PhysRevLett.112.205003. arXiv:1402.0010 ADSCrossRefGoogle Scholar
  88. D. Kushnir, E. Waxman, Nonthermal emission from clusters of galaxies. J. Cosmol. Astropart. Phys. 8, 002 (2009).  https://doi.org/10.1088/1475-7516/2009/08/002. arXiv:0903.2271 ADSCrossRefGoogle Scholar
  89. A. Lazarian, G. Brunetti, Turbulence, reconnection and cosmic rays in galaxy clusters. Mem. Soc. Astron. Ital. 82, 636 (2011). arXiv:1108.2268 ADSGoogle Scholar
  90. R.E. Lingenfelter, Cosmic rays from supernova remnants and superbubbles. Adv. Space Res. 62(10), 2750–2763 (2018) ADSCrossRefGoogle Scholar
  91. A.S. Lipatov, The hybrid multiscale simulation technology: an introduction with application to astrophysical and laboratory plasmas (2002) Google Scholar
  92. A. Marcowith, A. Bret, A. Bykov, M.E. Dieckman, L. O’C Drury, B. Lembège, M. Lemoine, G. Morlino, G. Murphy, G. Pelletier, I. Plotnikov, B. Reville, M. Riquelme, L. Sironi, A. Stockem Novo, The microphysics of collisionless shock waves. Rep. Prog. Phys. 79(4), 046901 (2016).  https://doi.org/10.1088/0034-4885/79/4/046901. arXiv:1604.00318 ADSCrossRefGoogle Scholar
  93. M. Markevitch, A. Vikhlinin, Shocks and cold fronts in galaxy clusters. Phys. Rep. 443, 1–53 (2007).  https://doi.org/10.1016/j.physrep.2007.01.001. arXiv:astro-ph/0701821 ADSCrossRefGoogle Scholar
  94. M. Markevitch, F. Govoni, G. Brunetti, D. Jerius, Bow shock and radio halo in the merging cluster A520. Astrophys. J. 627, 733–738 (2005).  https://doi.org/10.1086/430695. arXiv:astro-ph/0412451 ADSCrossRefGoogle Scholar
  95. S. Martin-Alvarez, S. Planelles, V. Quilis, On the interplay between cosmological shock waves and their environment. Astrophys. Space Sci. 362, 91 (2017).  https://doi.org/10.1007/s10509-017-3066-3 ADSCrossRefGoogle Scholar
  96. A. Masters, A.H. Sulaiman, Ł. Stawarz, B. Reville, N. Sergis, M. Fujimoto, D. Burgess, A.J. Coates, M.K. Dougherty, An in situ comparison of electron acceleration at collisionless shocks under differing upstream magnetic field orientations. Astrophys. J. 843, 147 (2017).  https://doi.org/10.3847/1538-4357/aa76ea. arXiv:1705.11096 ADSCrossRefGoogle Scholar
  97. S. Matsukiyo, Y. Matsumoto, Electron acceleration at a High Beta and low mach number rippled shock, in Journal of Physics Conference Series. Journal of Physics Conference Series, vol. 642 (2015), p. 012017.  https://doi.org/10.1088/1742-6596/642/1/012017 CrossRefGoogle Scholar
  98. H. Matsumoto, Test particle study of nonlinear wave-particle interaction in the magnetosonic mode—pure sinusoidal wave model. Phys. Fluids 20, 2093–2103 (1977).  https://doi.org/10.1063/1.861839 ADSCrossRefGoogle Scholar
  99. A.P. Matthews, Current advance method and cyclic leapfrog for 2D multispecies hybrid plasma simulations. J. Comput. Phys. 112, 102–116 (1994).  https://doi.org/10.1006/jcph.1994.1084 ADSCrossRefzbMATHGoogle Scholar
  100. P.S. Medvedev, S.Y. Sazonov, M.R. Gilfanov, Diffusion of elements in the interstellar medium in early-type galaxies. Astron. Lett. 43, 285–303 (2017).  https://doi.org/10.1134/S1063773717050024. arXiv:1802.03217 ADSCrossRefGoogle Scholar
  101. F. Mernier, J. de Plaa, J.S. Kaastra, Y.Y. Zhang, H. Akamatsu, L. Gu, P. Kosec, J. Mao, C. Pinto, T.H. Reiprich, J.S. Sanders, A. Simionescu, N. Werner, Radial metal abundance profiles in the intra-cluster medium of cool-core galaxy clusters, groups, and ellipticals. Astron. Astrophys. 603, A80 (2017).  https://doi.org/10.1051/0004-6361/201630075. arXiv:1703.01183 CrossRefGoogle Scholar
  102. G. Miley, The structure of extended extragalactic radio sources. Annu. Rev. Astron. Astrophys. 18, 165–218 (1980).  https://doi.org/10.1146/annurev.aa.18.090180.001121 ADSCrossRefGoogle Scholar
  103. F. Miniati, Numerical modelling of gamma radiation from galaxy clusters. Mon. Not. R. Astron. Soc. 342, 1009–1020 (2003).  https://doi.org/10.1046/j.1365-8711.2003.06647.x. arXiv:astro-ph/0303593 ADSCrossRefGoogle Scholar
  104. F. Miniati, D. Ryu, H. Kang, T.W. Jones, R. Cen, J.P. Ostriker, Astrophys. J. 542, 608–621 (2000).  https://doi.org/10.1086/317027. arXiv:astro-ph/0005444 ADSCrossRefGoogle Scholar
  105. F. Miniati, T.W. Jones, H. Kang, D. Ryu, Astrophys. J. 562, 233–253 (2001a).  https://doi.org/10.1086/323434. arXiv:astro-ph/0108305 ADSCrossRefGoogle Scholar
  106. F. Miniati, T.W. Jones, H. Kang, D. Ryu, Cosmic-ray electrons in groups and clusters of galaxies: primary and secondary populations from a numerical cosmological simulation. Astrophys. J. 562, 233–253 (2001b).  https://doi.org/10.1086/323434. arXiv:astro-ph/0108305 ADSCrossRefGoogle Scholar
  107. C. Mouhot, C. Villani, Landau damping. J. Math. Phys. 51(1), 015204 (2010).  https://doi.org/10.1063/1.3285283. arXiv:0905.2167 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  108. S.E. Nuza, M. Hoeft, R.J. van Weeren, S. Gottlöber, G. Yepes, How many radio relics await discovery? Mon. Not. R. Astron. Soc. 420, 2006–2019 (2012).  https://doi.org/10.1111/j.1365-2966.2011.20118.x. arXiv:1111.1721 ADSCrossRefGoogle Scholar
  109. S.E. Nuza, J. Gelszinnis, M. Hoeft, G. Yepes, Can cluster merger shocks reproduce the luminosity and shape distribution of radio relics? Mon. Not. R. Astron. Soc. 470, 240–263 (2017).  https://doi.org/10.1093/mnras/stx1109. arXiv:1704.06661 ADSCrossRefGoogle Scholar
  110. M. Oka, T. Terasawa, Y. Seki, M. Fujimoto, Y. Kasaba, H. Kojima, I. Shinohara, H. Matsui, H. Matsumoto, Y. Saito, T. Mukai, Whistler critical Mach number and electron acceleration at the bow shock: geotail observation. Geophys. Res. Lett. 33, L24104 (2006).  https://doi.org/10.1029/2006GL028156 ADSCrossRefGoogle Scholar
  111. T. O’Neil, Collisionless damping of nonlinear plasma oscillations. Phys. Fluids 8, 2255–2262 (1965).  https://doi.org/10.1063/1.1761193 ADSMathSciNetCrossRefGoogle Scholar
  112. V. Petrosian, A.M. Bykov, Particle acceleration mechanisms. Space Sci. Rev. 134, 207–227 (2008).  https://doi.org/10.1007/s11214-008-9315-6. arXiv:0801.0923 ADSCrossRefGoogle Scholar
  113. C. Pfrommer, T.A. Enßlin, J. Korean Astron. Soc. 37, 455–460 (2004). arXiv:astro-ph/0412371 ADSCrossRefGoogle Scholar
  114. C. Pfrommer, V. Springel, T.A. Enßlin, M. Jubelgas, Mon. Not. R. Astron. Soc. 367, 113–131 (2006).  https://doi.org/10.1111/j.1365-2966.2005.09953.x. arXiv:astro-ph/0603483 ADSCrossRefGoogle Scholar
  115. C. Pfrommer, T.A. Enßlin, V. Springel, M. Jubelgas, K. Dolag, Mon. Not. R. Astron. Soc. 378, 385–408 (2007).  https://doi.org/10.1111/j.1365-2966.2007.11732.x. arXiv:astro-ph/0611037 ADSCrossRefGoogle Scholar
  116. C. Pfrommer, T.A. Enßlin, V. Springel, Simulating cosmic rays in clusters of galaxies—II. A unified scheme for radio haloes and relics with predictions of the \(\gamma \)-ray emission. Mon. Not. R. Astron. Soc. 385, 1211–1241 (2008).  https://doi.org/10.1111/j.1365-2966.2008.12956.x. arXiv:0707.1707 ADSCrossRefGoogle Scholar
  117. A. Pinzke, C. Pfrommer, Simulating the \(\gamma \)-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution. Mon. Not. R. Astron. Soc. 409, 449–480 (2010).  https://doi.org/10.1111/j.1365-2966.2010.17328.x. arXiv:1001.5023 ADSCrossRefGoogle Scholar
  118. A. Pinzke, S.P. Oh, C. Pfrommer, Giant radio relics in galaxy clusters: reacceleration of fossil relativistic electrons? Mon. Not. R. Astron. Soc. 435, 1061–1082 (2013).  https://doi.org/10.1093/mnras/stt1308. arXiv:1301.5644 ADSCrossRefGoogle Scholar
  119. A. Pinzke, S.P. Oh, C. Pfrommer, Turbulence and particle acceleration in giant radio haloes: the origin of seed electrons. Mon. Not. R. Astron. Soc. 465, 4800–4816 (2017).  https://doi.org/10.1093/mnras/stw3024. arXiv:1611.07533 ADSCrossRefGoogle Scholar
  120. S. Planelles, V. Quilis, Cosmological shock waves: clues to the formation history of haloes. Mon. Not. R. Astron. Soc. 428, 1643–1655 (2013).  https://doi.org/10.1093/mnras/sts142. arXiv:1210.1369 ADSCrossRefGoogle Scholar
  121. S. Planelles, P. Mimica, V. Quilis, C. Cuesta-Martínez, Multiwavelength mock observations of the WHIM in a simulated galaxy cluster. Mon. Not. R. Astron. Soc. 476, 4629–4648 (2018).  https://doi.org/10.1093/mnras/sty527. arXiv:1802.09458 ADSCrossRefGoogle Scholar
  122. Pratt et al., Space Sci. Rev. (2019, this issue) Google Scholar
  123. D.A. Prokhorov, E.M. Churazov, Counting gamma rays in the directions of galaxy clusters. Astron. Astrophys. 567, A93 (2014).  https://doi.org/10.1051/0004-6361/201322454. arXiv:1309.0197 ADSCrossRefGoogle Scholar
  124. K.B. Quest, Theory and simulation of collisionless parallel shocks. J. Geophys. Res. 193, 9649–9680 (1988).  https://doi.org/10.1029/JA093iA09p09649 ADSCrossRefGoogle Scholar
  125. O. Reimer, M. Pohl, P. Sreekumar, J.R. Mattox, EGRET upper limits on the high-energy gamma-ray emission of galaxy clusters. Astrophys. J. 588, 155–164 (2003).  https://doi.org/10.1086/374046. arXiv:astro-ph/0301362 ADSCrossRefGoogle Scholar
  126. D. Ryu, H. Kang, P.L. Biermann, Dynamical role of cosmic rays in clusters of galaxies, in Matter and Energy in Clusters of Galaxies, ed. by S. Bowyer, C.Y. Hwang. Astronomical Society of the Pacific Conference Series, vol. 301 (2003a), p. 327 Google Scholar
  127. D. Ryu, H. Kang, E. Hallman, T.W. Jones, Cosmological shock waves and their role in the large-scale structure of the universe. Astrophys. J. 593, 599–610 (2003b).  https://doi.org/10.1086/376723. arXiv:astro-ph/0305164 ADSCrossRefGoogle Scholar
  128. M. Salem, G.L. Bryan, L. Corlies, Role of cosmic rays in the circumgalactic medium. Mon. Not. R. Astron. Soc. 456, 582–601 (2016).  https://doi.org/10.1093/mnras/stv2641. arXiv:1511.05144 ADSCrossRefGoogle Scholar
  129. K. Schaal, V. Springel, R. Pakmor, C. Pfrommer, D. Nelson, M. Vogelsberger, S. Genel, A. Pillepich, D. Sijacki, L. Hernquist, Shock finding on a moving-mesh—II. Hydrodynamic shocks in the Illustris universe. Mon. Not. R. Astron. Soc. 461, 4441–4465 (2016).  https://doi.org/10.1093/mnras/stw1587. arXiv:1604.07401 ADSCrossRefGoogle Scholar
  130. A.A. Schekochihin, S.C. Cowley, R.M. Kulsrud, M.S. Rosin, T. Heinemann, Nonlinear growth of firehose and mirror fluctuations in astrophysical plasmas. Phys. Rev. Lett. 100(8), 081301 (2008).  https://doi.org/10.1103/PhysRevLett.100.081301. arXiv:0709.3828 ADSCrossRefGoogle Scholar
  131. R. Schlickeiser, Cosmic Ray Astrophysics (Springer, Berlin, 2002) CrossRefGoogle Scholar
  132. N. Shimada, T. Terasawa, M. Hoshino, T. Naito, H. Matsui, T. Koi, K. Maezawa, Diffusive shock acceleration of electrons at an interplanetary shock observed on 21 Feb 1994. Astrophys. Space Sci. 264, 481–488 (1999).  https://doi.org/10.1023/A:1002499513777 ADSCrossRefGoogle Scholar
  133. S.W. Skillman, E.J. Hallman, B.W. O’Shea, J.O. Burns, B.D. Smith, M.J. Turk, Galaxy cluster radio relics in adaptive mesh refinement cosmological simulations: relic properties and scaling relationships. Astrophys. J. 735, 96 (2011).  https://doi.org/10.1088/0004-637X/735/2/96. arXiv:1006.3559 ADSCrossRefGoogle Scholar
  134. S.W. Skillman, H. Xu, E.J. Hallman, B.W. O’Shea, J.O. Burns, H. Li, D.C. Collins, M.L. Norman, Cosmological magnetohydrodynamic simulations of galaxy cluster radio relics: insights and warnings for observations. Astrophys. J. 765, 21 (2013).  https://doi.org/10.1088/0004-637X/765/1/21. arXiv:1211.3122 ADSCrossRefGoogle Scholar
  135. R.A. Sunyaev, Y.B. Zeldovich, Formation of clusters of galaxies; protocluster fragmentation and intergalactic gas heating. Astron. Astrophys. 20, 189 (1972) ADSGoogle Scholar
  136. The Fermi-LAT Collaboration, M. Ackermann, M. Ajello, A. Albert, A. Allafort, WB. Atwood, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, ED. Bloom, E. Bonamente, E. Bottacini, TJ. Brandt, J. Bregeon, M. Brigida, P. Bruel, R. Buehler, S. Buson, GA. Caliandro, RA. Cameron, PA. Caraveo, E. Cavazzuti, R. Chaves, J. Chiang, G. Chiaro, S. Ciprini, R. Claus, J. Cohen-Tanugi, J. Conrad, F. D’Ammando, A. de Angelis, F. de Palma, CD. Dermer, SW. Digel, PS. Drell, A. Drlica-Wagner, C. Favuzzi, A. Franckowiak, S. Funk, P. Fusco, F. Gargano, D. Gasparrini, S. Germani, N. Giglietto, F. Giordano, M. Giroletti, G. Godfrey, GA. Gomez-Vargas, IA. Grenier, S. Guiriec, M. Gustafsson, D. Hadasch, M. Hayashida, J. Hewitt, RE. Hughes, TE. Jeltema, G. Jóhannesson, AS. Johnson, T. Kamae, J. Kataoka, J. Knödlseder, M. Kuss, J. Lande, S. Larsson, L. Latronico, M. Llena Garde, F. Longo, F. Loparco, MN. Lovellette, P. Lubrano, M. Mayer, MN. Mazziotta, JE. McEnery, PF. Michelson, W. Mitthumsiri, T. Mizuno, ME. Monzani, A. Morselli, IV. Moskalenko, S. Murgia, R. Nemmen, E. Nuss, T. Ohsugi, M. Orienti, E. Orlando, JF. Ormes, JS. Perkins, M. Pesce-Rollins, F. Piron, G. Pivato, S. Rainò, R. Rando, M. Razzano, S. Razzaque, A. Reimer, O. Reimer, J. Ruan, M. Sánchez-Conde, A. Schulz, C. Sgrò, EJ. Siskind, G. Spandre, P. Spinelli, E. Storm, AW. Strong, DJ. Suson, H. Takahashi, JG. Thayer, JB. Thayer, DJ. Thompson, L. Tibaldo, M. Tinivella, DF. Torres, E. Troja, Y. Uchiyama, TL. Usher, J. Vandenbroucke, G. Vianello, V. Vitale, BL. Winer, KS. Wood, S. Zimmer, C. Pfrommer, A. Pinzke, Search for cosmic-ray induced gamma-ray emission in Galaxy Clusters (2013). ArXiv e-prints arXiv:1308.5654
  137. I.N. Toptygin, Cosmic Rays in Interplanetary Magnetic Fields (Springer, Netherlands, 1985) CrossRefGoogle Scholar
  138. D. Trotta, D. Burgess, Electron acceleration at quasi-perpendicular shocks in sub- and supercritical regimes: 2D and 3D simulations. Mon. Not. R. Astron. Soc. 482, 1154 (2019).  https://doi.org/10.1093/mnras/sty2756. arXiv:1808.00812 ADSCrossRefGoogle Scholar
  139. R.J. van Weeren, H.J.A. Röttgering, M. Brüggen, M. Hoeft, Particle acceleration on megaparsec scales in a merging galaxy cluster. Science 330, 347 (2010).  https://doi.org/10.1126/science.1194293. arXiv:1010.4306 ADSCrossRefGoogle Scholar
  140. Van Weeren et al., Space Sci. Rev. (2019, this issue).  https://doi.org/10.1007/s11214-019-0584-z CrossRefGoogle Scholar
  141. F. Vazza, M. Brüggen, Do radio relics challenge diffusive shock acceleration? Mon. Not. R. Astron. Soc. 437, 2291–2296 (2014).  https://doi.org/10.1093/mnras/stt2042. arXiv:1310.5707 ADSCrossRefGoogle Scholar
  142. F. Vazza, G. Brunetti, C. Gheller, Shock waves in Eulerian cosmological simulations: main properties and acceleration of cosmic rays. Mon. Not. R. Astron. Soc. 395, 1333–1354 (2009).  https://doi.org/10.1111/j.1365-2966.2009.14691.x. arXiv:0808.0609 ADSCrossRefGoogle Scholar
  143. F. Vazza, G. Brunetti, C. Gheller, R. Brunino, Massive and refined: a sample of large galaxy clusters simulated at high resolution. I: Thermal gas and properties of shock waves. New Astron. 15, 695–711 (2010).  https://doi.org/10.1016/j.newast.2010.05.003. arXiv:1003.5658 ADSCrossRefGoogle Scholar
  144. F. Vazza, K. Dolag, D. Ryu, G. Brunetti, C. Gheller, H. Kang, C. Pfrommer, A comparison of cosmological codes: properties of thermal gas and shock waves in large-scale structures. Mon. Not. R. Astron. Soc. 418, 960–985 (2011).  https://doi.org/10.1111/j.1365-2966.2011.19546.x. arXiv:1106.2159 ADSCrossRefGoogle Scholar
  145. F. Vazza, M. Brüggen, C. Gheller, G. Brunetti, Modelling injection and feedback of cosmic rays in grid-based cosmological simulations: effects on cluster outskirts. Mon. Not. R. Astron. Soc. 421, 3375–3398 (2012a).  https://doi.org/10.1111/j.1365-2966.2012.20562.x. arXiv:1201.3362 ADSCrossRefGoogle Scholar
  146. F. Vazza, M. Brüggen, R. van Weeren, A. Bonafede, K. Dolag, G. Brunetti, Why are central radio relics so rare? Mon. Not. R. Astron. Soc. 421, 1868–1873 (2012b).  https://doi.org/10.1111/j.1365-2966.2011.20160.x. arXiv:1111.1720 ADSCrossRefGoogle Scholar
  147. F. Vazza, M. Brüggen, C. Gheller, Thermal and non-thermal traces of AGN feedback: results from cosmological AMR simulations. Mon. Not. R. Astron. Soc. 428, 2366–2388 (2013).  https://doi.org/10.1093/mnras/sts213. arXiv:1210.3541 ADSCrossRefGoogle Scholar
  148. F. Vazza, C. Gheller, M. Brüggen, Simulations of cosmic rays in large-scale structures: numerical and physical effects (2014). ArXiv e-prints arXiv:1401.4454
  149. F. Vazza, D. Eckert, M. Brüggen, B. Huber, Electron and proton acceleration efficiency by merger shocks in galaxy clusters. Mon. Not. R. Astron. Soc. 451, 2198–2211 (2015).  https://doi.org/10.1093/mnras/stv1072. arXiv:1505.02782 ADSCrossRefGoogle Scholar
  150. F. Vazza, M. Brüggen, D. Wittor, C. Gheller, D. Eckert, M. Stubbe, Constraining the efficiency of cosmic ray acceleration by cluster shocks. Mon. Not. R. Astron. Soc. 459, 70–83 (2016).  https://doi.org/10.1093/mnras/stw584. arXiv:1603.02688 ADSCrossRefGoogle Scholar
  151. J. Vink, S. Broersen, A. Bykov, S. Gabici, On the electron-ion temperature ratio established by collisionless shocks. Astron. Astrophys. 579, A13 (2015).  https://doi.org/10.1051/0004-6361/201424612. arXiv:1407.4499 ADSCrossRefGoogle Scholar
  152. H.J. Völk, A.M. Atoyan, Clusters of galaxies: magnetic fields and nonthermal emission. Astropart. Phys. 11, 73–82 (1999).  https://doi.org/10.1016/S0927-6505(99)00029-8. arXiv:astro-ph/9812458 ADSCrossRefGoogle Scholar
  153. H.J. Völk, F.A. Aharonian, D. Breitschwerdt, The nonthermal energy content and gamma-ray emission of starburst galaxies and clusters of galaxies. Space Sci. Rev. 75, 279–297 (1996).  https://doi.org/10.1007/BF00195040 ADSCrossRefGoogle Scholar
  154. S.A. Walker, J. ZuHone, A. Fabian, J. Sanders, The split in the ancient cold front in the Perseus cluster. Nat. Astron. 2, 292–296 (2018).  https://doi.org/10.1038/s41550-018-0401-8. arXiv:1803.00898 ADSCrossRefGoogle Scholar
  155. J. Wiener, S.P. Oh, F. Guo, Cosmic ray streaming in clusters of galaxies. Mon. Not. R. Astron. Soc. 434, 2209–2228 (2013).  https://doi.org/10.1093/mnras/stt1163. arXiv:1303.4746 ADSCrossRefGoogle Scholar
  156. J. Wiener, C. Pfrommer, S.P. Oh, Cosmic ray-driven galactic winds: streaming or diffusion? Mon. Not. R. Astron. Soc. 467, 906–921 (2017).  https://doi.org/10.1093/mnras/stx127. arXiv:1608.02585 ADSCrossRefGoogle Scholar
  157. J. Wiener, E.G. Zweibel, S.P. Oh, High \(\beta \) effects on cosmic ray streaming in galaxy clusters. Mon. Not. R. Astron. Soc. 473, 3095–3103 (2018).  https://doi.org/10.1093/mnras/stx2603. arXiv:1706.08525 ADSCrossRefGoogle Scholar
  158. D. Winske, N. Omidi, A nonspecialist’s guide to kinetic simulations of space plasmas. J. Geophys. Res. 1101, 17287–17304 (1996).  https://doi.org/10.1029/96JA00982 ADSCrossRefGoogle Scholar
  159. D. Wittor, F. Vazza, M. Brüggen, Testing cosmic-ray acceleration with radio relics: a high-resolution study using MHD and tracers (2016). ArXiv e-prints arXiv:1610.05305
  160. D. Wittor, F. Vazza, M. Brüggen, Testing cosmic ray acceleration with radio relics: a high-resolution study using MHD and tracers. Mon. Not. R. Astron. Soc. 464, 4448–4462 (2017).  https://doi.org/10.1093/mnras/stw2631. arXiv:1610.05305 ADSCrossRefGoogle Scholar
  161. S. Xu, A. Lazarian, Resonance-broadened transit time damping of particles in MHD turbulence (2018). ArXiv e-prints arXiv:1810.07726
  162. Z. Yang, Q. Lu, Y.D. Liu, R. Wang, Impact of shock front rippling and self-reformation on the electron dynamics at low-mach-number shocks. Astrophys. J. 857, 36 (2018).  https://doi.org/10.3847/1538-4357/aab714 ADSCrossRefGoogle Scholar
  163. F. Zandanel, S. Ando, Constraints on diffuse gamma-ray emission from structure formation processes in the Coma cluster. Mon. Not. R. Astron. Soc. 440, 663–671 (2014).  https://doi.org/10.1093/mnras/stu324. arXiv:1312.1493 ADSCrossRefGoogle Scholar
  164. F. Zandanel, C. Pfrommer, F. Prada, On the physics of radio haloes in galaxy clusters: scaling relations and luminosity functions. Mon. Not. R. Astron. Soc. 438, 124–144 (2014).  https://doi.org/10.1093/mnras/stt2250. arXiv:1311.4795 ADSCrossRefGoogle Scholar
  165. F. Zandanel, I. Tamborra, S. Gabici, S. Ando, High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints. Astron. Astrophys. 578, A32 (2015).  https://doi.org/10.1051/0004-6361/201425249. arXiv:1410.8697 ADSCrossRefGoogle Scholar
  166. M. Zhang, Acceleration of suprathermal particles by compressional plasma wave trains in the solar wind. J. Geophys. Res. Space Phys. 115, A12102 (2010).  https://doi.org/10.1029/2010JA015723 ADSCrossRefGoogle Scholar
  167. G. Zimbardo, S. Perri, Understanding the radio spectral indices of galaxy cluster relics by superdiffusive shock acceleration. Mon. Not. R. Astron. Soc. 478, 4922–4930 (2018).  https://doi.org/10.1093/mnras/sty1438 ADSCrossRefGoogle Scholar
  168. J.A. ZuHone, M.W. Kunz, M. Markevitch, J.M. Stone, V. Biffi, The effect of anisotropic viscosity on cold fronts in galaxy clusters. Astrophys. J. 798, 90 (2015).  https://doi.org/10.1088/0004-637X/798/2/90. arXiv:1406.4031 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • A. M. Bykov
    • 1
    • 2
    • 3
    Email author
  • F. Vazza
    • 4
    • 5
  • J. A. Kropotina
    • 1
  • K. P. Levenfish
    • 1
  • F. B. S. Paerels
    • 6
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  3. 3.International Space Science InstituteBernSwitzerland
  4. 4.Dipartimento di Fisica e AstronomiaUniversit di BolognaBolognaItaly
  5. 5.Hamburger SternwarteUniversität HamburgHamburgGermany
  6. 6.Columbia Astrophysics LaboratoryColumbia UniversityNew YorkUSA

Personalised recommendations