Advertisement

Space Science Reviews

, 215:18 | Cite as

Accretion of Water in Carbonaceous Chondrites: Current Evidence and Implications for the Delivery of Water to Early Earth

  • Josep M. Trigo-RodríguezEmail author
  • Albert Rimola
  • Safoura Tanbakouei
  • Victoria Cabedo Soto
  • Martin Lee
Article
Part of the following topical collections:
  1. Ices in the Solar System

Abstract

Protoplanetary disks are dust-rich structures around young stars. The crystalline and amorphous materials contained within these disks are variably thermally processed and accreted to make bodies of a wide range of sizes and compositions, depending on the heliocentric distance of formation. The chondritic meteorites are fragments of relatively small and undifferentiated bodies, and the minerals that they contain carry chemical signatures providing information about the early environment available for planetesimal formation. A current hot topic of debate is the delivery of volatiles to terrestrial planets, understanding that they were built from planetesimals formed under far more reducing conditions than the primordial carbonaceous chondritic bodies. In this review, we describe significant evidence for the accretion of ices and hydrated minerals in the outer protoplanetary disk. In that distant region highly porous and fragile carbon and water-rich transitional asteroids formed, being the parent bodies of the carbonaceous chondrites (CCs). CCs are undifferentiated meteorites that never melted but experienced other physical processes including thermal and aqueous alteration. Recent evidence indicates that few of them have escaped significant alteration, retaining unique features that can be interpreted as evidence of wet accretion. Some examples of carbonaceous chondrite parent body aqueous alteration will be presented. Finally, atomistic interpretations of the first steps leading to water-mediated alteration during the accretion of CCs are provided and discussed. From these new insights into the water retained in CCs we can decipher the pathways of delivery of volatiles to the terrestrial planets.

Keywords

Comet Asteroid Meteoroid Meteorite Minor bodies Primitive Tensile strength 

Notes

Acknowledgements

We thank two anonymous reviewers that improved significantly this manuscript. Spanish Ministry of Science and Innovation under research projects AYA2015-67175-P and CTQ2017-89132-P are acknowledged, and we also thank the UK Science and Technology Facilities Council for funding through project ST/N000846/1. Mike Zolensky is acknowledged for kindly providing the Murchison and Renazzo pristine sections studied in this work. AR is indebted to “Ramón y Cajal” program. ST made this study in the frame of a PhD. on Physics at the Autonomous University of Barcelona (UAB). M. del Mar Abad is acknowledged by her interpretation of the data obtained of Murchison CM2 using the HR-TEM image (Fig. 4) obtained by JMTR at Centro de Instrumentación Científica (CIC), Universidad de Granada. US Antarctic meteorite samples are recovered by the Antarctic Search for Meteorites (ANSMET) program which has been funded by NSF and NASA, and characterized and curated by the Department of Mineral Sciences of the Smithsonian Institution and Astromaterials Acquisition and Curation Office at NASA Johnson Space Center. We thank these institutions for kindly providing the Antarctic meteorites studied here.

References

  1. N.M. Abreu, A.J. Brearley, Geochim. Cosmochim. Acta 74, 1146 (2010) ADSGoogle Scholar
  2. C.M.O’D. Alexander, C.M. Cody, G.D. Cody, B.T. De Gregorio, L.R. Nittler, R.M. Stroud, Chem. Erde 77, 227 (2017) Google Scholar
  3. C.M.O’D. Alexander, K.D. McKeegan, K. Altwegg, Space Sci. Rev. 214, 36 (2018) ADSGoogle Scholar
  4. Y. Amelin, A.N. Krot, I.D. Hutcheon, A.A. Ulyanov, Science 297, 1678 (2002) ADSGoogle Scholar
  5. E. Anders, N. Grevese, Geochim. Cosmochim. Acta 53, 197 (1989) ADSGoogle Scholar
  6. P.J. Armitage, Annu. Rev. Astron. Astrophys. 49, 195 (2011) ADSGoogle Scholar
  7. E. Beitz, C. Güttler, A.M. Nakamura, A. Tsuchiyama, J. Blum, Icarus 225, 558 (2013) ADSGoogle Scholar
  8. E. Beitz, J. Blum, M.G. Parisi, J. Trigo-Rodriguez, Astrophys. J. 824, 12 (2016) ADSGoogle Scholar
  9. A. Bischoff, Meteorit. Planet. Sci. 33, 1113 (1998) ADSGoogle Scholar
  10. A. Bischoff, E.R.D. Scott, K. Metzler, C.A. Goodrich, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 679–712 Google Scholar
  11. P.A. Bland, G.S. Collins, T.M. Davison, N.M. Abreu, F.J. Ciesla, A.R. Muxworthy, J. Moore, Nat. Commun. 5, id, 5451 (2014) ADSGoogle Scholar
  12. J. Blum, R. Schräpler, B.J.R. Davidson, J.M. Trigo-Rodríguez, Astrophys. J. 652, 1768 (2006) ADSGoogle Scholar
  13. A.P. Boss, Astrophys. J. 764, 194 (2013) ADSGoogle Scholar
  14. A.J. Brearley, Science 276, 1103–1105 (1997) ADSGoogle Scholar
  15. A.J. Brearley, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 587–624 Google Scholar
  16. A.J. Brearley, R.H. Jones, in Planetary Materials, ed. by J.J. Papike. Reviews in Mineralogy, vol. 36 (Mineralogical Society of America, Washington, 1998), pp. 1–398 Google Scholar
  17. G. Briani, A. Morbidelli, M. Gounelle, D. Nesvorný, Meteorit. Planet. Sci. 46, 1863 (2011) ADSGoogle Scholar
  18. L. Browning, H. McSween, M. Zolensky, Geochim. Cosmochim. Acta 60, 2621 (1996) ADSGoogle Scholar
  19. D.E. Brownlee, in Accretion of Extraterrestrial Matter Throughout Earth’s History, ed. by B. Peucker-Ehrenbrink, B. Schmitz (Kluwer Academic/Plenum, New York, 2001), pp. 1–12 Google Scholar
  20. D. Brownlee et al., Science 314, 1711 (2006) ADSGoogle Scholar
  21. H. Busemann, A.F. Young, C.O’D. Alexander, P. Hoppe, S. Mukhopadhyay, L.R. Nittler, Science 312, 727 (2006) ADSGoogle Scholar
  22. L. Carporzen, B.P. Weiss, L.T. Elkins-Tanton, D.L. Shuster, D. Ebel, J. Gattacceca, Proc. Natl. Acad. Sci. 108, 6386 (2011) ADSGoogle Scholar
  23. G. Cliff, G.W. Lorimer, J. Microsc. 103, 203 (1975) Google Scholar
  24. E. Dobricǎ, A.J. Brearley, Meteorit. Planet. Sci. 49, 1323 (2014) ADSGoogle Scholar
  25. P.M. Doyle, K. Jogo, K. Nagashima, A.N. Krot, S. Wakita, F.J. Ciesl, I.D. Hutcheon, Nat. Commun. (2015).  https://doi.org/10.1038/ncomms8444 CrossRefGoogle Scholar
  26. K.A. Dyl, A. Bischoff, K. Ziegler, E.D. Young, K. Wimmer, P.A. Bland, Proc. Natl. Acad. Sci. 109, 18306 (2012) ADSGoogle Scholar
  27. N.Y. Dzade, A. Roldan, N.H. de Leeuw, J. Phys. Chem. C 120, 21441–21450 (2016) Google Scholar
  28. D.S. Ebel, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween Jr. (University of Arizona Press, Tucson, 2006), pp. 253–277 Google Scholar
  29. M. Endreß, A. Bischoff, Geochim. Cosmochim. Acta 60, 489 (1996) ADSGoogle Scholar
  30. B. Fegley Jr., R.G. Prinn, in The Formation and Evolution of Planetary Systems, ed. by H.A. Weaver, L. Danly. Space Telescope Science Institute Symposium Series (1989) Google Scholar
  31. L.H. Fuchs, E. Olsen, K.J. Jensen, Smithson. Contrib. Earth Sci. 10, 39 (1973) Google Scholar
  32. A. Fuente, J. Cernicharo, E. Roueff, M. Gerin, J. Pety, N. Marcelino, R. Bachiller, B. Lefloch, O. Roncero, A. Aguado, Astron. Astrophys. 593, A94 (2016) ADSGoogle Scholar
  33. A. Garenne, P. Beck, G. Montes-Hernandez, R. Chiriac, F. Toche, E. Quirico, L. Bonal, B. Schmitt, Geochim. Cosmochim. Acta 137, 93 (2014) ADSGoogle Scholar
  34. R. Gomes, H.F. Levison, K. Tsiganis, A. Morbidelli, Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466 (2005) ADSGoogle Scholar
  35. R.D. Hanna, R.A. Ketcham, M. Zolensky, W.M. Behr, Geochim. Cosmochim. Acta 171, 256 (2015) ADSGoogle Scholar
  36. N.P. Hanowski, A. Brearley, Meteorit. Planet. Sci. 35, 1291 (2000) ADSGoogle Scholar
  37. K.T. Howard, C.M.O’D. Alexander, D.L. Schrader, K.A. Dyl, Geochim. Cosmochim. Acta 149, 206 (2015) ADSGoogle Scholar
  38. R. Hutchison, Meteorites (Cambridge University Press, Cambridge, 2004), 506 pp. Google Scholar
  39. D. Jewitt, L. Chizmadia, R. Grimm, D. Prialnik, in Protostars and Planets V, ed. by B. Reipurth, D. Jewitt, K. Keil (University of Arizona Press, Tucson, 2007), pp. 863–867 Google Scholar
  40. A.J. King, P.F. Schofield, S.S. Russell, Meteorit. Planet. Sci. 52, 1197 (2017) ADSGoogle Scholar
  41. T. Kunihiro, A.E. Rubin, K.D. McKeegan, J.T. Wasson, Geochim. Cosmochim. Acta 68, 3599 (2004) ADSGoogle Scholar
  42. C. Le Guillou, A.J. Brearley, Geochim. Cosmochim. Acta 131, 344 (2014) ADSGoogle Scholar
  43. C. Le Guillou, H.G. Changela, A.J. Brearley, Earth Planet. Sci. Lett. 420, 162 (2015) ADSGoogle Scholar
  44. M.R. Lee, P. Lindgren, Meteorit. Planet. Sci. 51, 1003 (2016) ADSGoogle Scholar
  45. M.R. Lee, P. Lindgren, M.R. Sofe, C.M.O’D. Alexander, J. Wang, Geochim. Cosmochim. Acta 92, 148 (2012) ADSGoogle Scholar
  46. M.R. Lee, M.R. Sofe, P. Lindgren, N.A. Starkey, I.A. Franchi, Geochim. Cosmochim. Acta 121, 452 (2013) ADSGoogle Scholar
  47. M.R. Lee, P. Lindgren, M.R. Sofe, Geochim. Cosmochim. Acta 144, 126 (2014) ADSGoogle Scholar
  48. P. Lindgren, R.D. Hanna, K.J. Dobson, T. Tomkinson, M.R. Lee, Geochim. Cosmochim. Acta 148, 159–178 (2015) ADSGoogle Scholar
  49. K. Lodders, Astrophys. J. 591, 1220 (2003) ADSGoogle Scholar
  50. K. Lodders, S. Amari, Chem. Erde 65, 93–166 (2005) Google Scholar
  51. K. Lodders, B. Fegley, in Chemistry of the Solar System (Royal Society of Chemistry, London, 2011). ISBN 978-0-85404-128-2, 496 pp. Google Scholar
  52. G.W. Lorimer, G. Cliff, in Electron Microscopy in Mineralogy, vol. 506, ed. by H.R. Wenk, (Springer, Berlin, (1976) Google Scholar
  53. S. Marchi, M. Delbó, A. Morbidelli, P. Paolicchi, M. Lazzarin, Mon. Not. R. Astron. Soc. 400, 147 (2009) ADSGoogle Scholar
  54. M. Martínez-Jiménez, C.E. Moyano-Cambero, J.M. Trigo-Rodríguez, J. Alonso-Azcárate, J. Llorca, in Assessment and Mitigation of Asteroid Impact Hazards, ed. by J.M. Trigo-Rodríguez, M. Gritsevich, H. Palme (Springer, Cham, 2017), pp. 73–101. ISBN 978-3-319-46178-6 Google Scholar
  55. Y. Marrocchi, D.V. Bekaert, L. Piani, Earth Planet. Sci. Lett. 482, 23 (2018) ADSGoogle Scholar
  56. Z. Martins, C.M.O’D. Alexander, G.E. Orzechowska, M.L. Fogel, P. Ehrenfreund, Meteorit. Planet. Sci. 42, 2125 (2007) ADSGoogle Scholar
  57. P. Mignon, P. Ugliengo, M. Sodupe, E.R. Hernandez, Ab initio molecular dynamics study of the hydration of Li+, Na+ and K+ in a montmorillonite model. Influence of isomorphic substitution. Phys. Chem. Chem. Phys. 12, 688–697 (2010) Google Scholar
  58. E. Molina-Montes, D. Donadio, A. Hernández-Laguna, C.I. Sainz-Díaz, M. Parrinello, DFT research on the dehydroxylation reaction of pyrophyllite 1. First-principle molecular dynamics simulations. J. Phys. Chem. B 112, 7051–7060 (2008a) Google Scholar
  59. E. Molina-Montes, D. Donadio, A. Hernández-Laguna, C.I. Sainz-Díaz, DFT research on the dehydroxylation reaction of pyrophyllite 2. Characterization of reactants, intermediates, and transition states along the reaction path. J. Phys. Chem. A 112, 6373–6383 (2008b) Google Scholar
  60. E. Molina-Montes, D. Donadio, A. Hernández-Laguna, C.I. Sainz-Díaz, Exploring the rehydroxylation reaction of pyrophyllite by ab initio molecular dynamics. J. Phys. Chem. B 114, 7593–7601 (2010) Google Scholar
  61. C.E. Moyano-Cambero, L.R. Nittler, J.M. Trigo-Rodríguez, C.M.O’D. Alexander, J. Davidson, R.M. Stroud, in 47th Lunar and Planetary Science Conference, LPI Contribution, No. 1903 (2016), p. 2537 Google Scholar
  62. D. Muñoz-Santiburcio, M. Kosa, A. Hernández-Laguna, C.I. Sainz-Díaz, M. Parrinello, Ab initio molecular dynamics study of the dehydroxylation reaction in a smectite model. J. Phys. Chem. C 116, 12203–12211 (2012) Google Scholar
  63. D. Muñoz-Santiburcio, A. Hernández-Laguna, C.I. Sainz-Díaz, Simulating the dehydroxylation reaction in smectite models by Car–Parrinello-like-Born–Oppenheimer molecular dynamics and metadynamics. J. Phys. Chem. C 120, 28186–28192 (2016) Google Scholar
  64. L.R. Nittler, R.M. Stroud, J.M. Trigo-Rodríguez, B.T. De Gregorio, C.M.O’D. Alexander, J. Davidson, C.E. Moyano-Cambero, S. Tanbakouei, Nat. Commun. (2019, submitted) Google Scholar
  65. E.E. Palmer, D.S. Lauretta, Meteorit. Planet. Sci. 46, 1587 (2011) ADSGoogle Scholar
  66. L. Piani, H. Yurimoto, L. Remusat, Nat. Astron. 2, 317 (2018) ADSGoogle Scholar
  67. V. Prigiobbe, A. Suarez Negreira, J. Wilcox, Interaction between olivine and water based on density functional theory calculations. J. Phys. Chem. C 117, 21203–21216 (2013) Google Scholar
  68. A. Rimola, J.M. Trigo-Rodríguez, Atomistic simulations of aqueous alteration processes of mafic silicates in carbonaceous chondrites, in Assessment and Mitigation of Asteroid Impact Hazards, ed. by J.M. Trigo-Rodríguez, M. Gritsevich, H. Palme. Astrophysics and Space Science Proceedings, vol. 46 (Springer, Cham, 2017), pp. 103–127 Google Scholar
  69. L. Rotelli, J.M. Trigo-Rodríguez, C.E. Moyano-Cambero, E. Carota, L. Botta, E. Di Mauro, R. Saladino, The key role of meteorites in the formation of relevant prebiotic molecules in a formamide/water environment. Nature Sci. Rep. 6, 38888 (2016) ADSGoogle Scholar
  70. A.E. Rubin, Meteorit. Planet. Sci. 32, 231 (1997) ADSGoogle Scholar
  71. A.E. Rubin, Geochim. Cosmochim. Acta 68, 673 (2004) ADSGoogle Scholar
  72. A.E. Rubin, Geochim. Cosmochim. Acta 90, 181 (2012) ADSGoogle Scholar
  73. A. Rubin, J.M. Trigo-Rodríguez, H. Huber, J.T. Wasson, Geochim. Cosmochim. Acta 71, 2361 (2007) ADSGoogle Scholar
  74. D.L. Schrader, H.C. Connolly Jr., D.S. Lauretta, K. Nagashima, G.S. Huss, J. Davidson, K.J. Domanik, Geochim. Cosmochim. Acta 101, 302 (2013) ADSGoogle Scholar
  75. R. Schulz, M. Hilchenbach, Y. Langevin, J. Kissel, J. Silen et al., Nature 518, 216 (2015) ADSGoogle Scholar
  76. J. Shah, H.C. Bates, A.R. Muxworthy, D.C. Hezel, S.S. Russell, M.J. Genge, Earth Planet. Sci. Lett. 475, 106 (2017) ADSGoogle Scholar
  77. S.A. Singerling, A.J. Brearley, Meteorit. Planet. Sci. (2018).  https://doi.org/10.1111/maps.13108. 29 pp. CrossRefGoogle Scholar
  78. A. Stirling, M. Bernasconi, M. Parrinello, J. Chem. Phys. 118, 8917 (2003) ADSGoogle Scholar
  79. R.M. Stroud, L.R. Nittler, C.E. Moyano-Cambero, J.M. Trigo-Rodriguez, J. Davidson, B.T. De Gregorio, C.M.O’D. Alexander, in 79th Annual Meeting of the Meteoritical Society. LPI Contribution No. 1921, id. 6360, (2016) Google Scholar
  80. D. Takir, J.P. Emery, H.Y. McSween, C.A. Hibbitts, R.N. Clark, N. Pearson, A. Wang, Meteorit. Planet. Sci. 48, 1618 (2013) ADSGoogle Scholar
  81. J.M. Trigo-Rodríguez, in Planetary Materials, ed. by M.R. Lee, H. Leroux (European Mineralogical Union/Mineralogical Society of Great Britain and Ireland, London, 2015), p. 67 ISBN 978-0903056-55-7, 301 pp. Google Scholar
  82. J.M. Trigo-Rodríguez, J. Blum, Planet. Space Sci. 57, 243 (2009) ADSGoogle Scholar
  83. J.M. Trigo-Rodríguez, J. Llorca, J. Oró, in Life in the Universe: From the Miller Experiment to the Search for Life on Other Worlds, ed. by J. Seckbach, J. Chela-Flores, T. Owen, F. Raulin (Springer, Berlin, 2004), p. 201). ISBN 1-4020-2371-5, 387 pp. Google Scholar
  84. J.M. Trigo-Rodríguez, A.E. Rubin, J.T. Wasson, Geochim. Cosmochim. Acta 70, 1271 (2006) ADSGoogle Scholar
  85. J.M. Trigo-Rodríguez, M. Delbó, J. Blum, in European Planetary Science Congress 2009, 14–18 September, Potsdam, Germany (2009a), p. 520 Google Scholar
  86. J.M. Trigo-Rodríguez, D.A. García-Hernández, M. Lugaro, A.I. Karakas, M. van Raai, P. García Lario, A. Manchado, Meteorit. Planet. Sci. 44, 627 (2009b) ADSGoogle Scholar
  87. J.M. Trigo-Rodríguez, C.E. Moyano-Cambero, N. Mestres, J. Fraxedas, M.E. Zolensky, T. Nakamura, Z. Martins, in 44th Lunar and Planetary Sciences Conference (2013), abstract #1929 Google Scholar
  88. J.M. Trigo-Rodríguez, A. Vila-Ruaix, J. Alonso-Azcárate, M.M. Abad, Highlights on Spanish astrophysics IX, in Proceedings of the XII Scientific Meeting of the SEA, ed. by S. Arribas et al.(2017), pp. 531–542 Google Scholar
  89. M.A. Velbel, E.E. Palmer, Clays Clay Miner. 59, 416 (2011) ADSGoogle Scholar
  90. M.A. Velbel, E.K. Tonui, M.E. Zolensky, Geochim. Cosmochim. Acta 87, 117 (2012) ADSGoogle Scholar
  91. J.T. Wasson, A.E. Rubin, Geochim. Cosmochim. Acta 74, 2212 (2010) ADSGoogle Scholar
  92. M.K. Weisberg, T.J. McCoy, A.N. Krot, in Meteorites and the Early Solar System II, ed. by D.S. Lauretta, H.Y. McSween (University of Arizona Press, Tucson, 2006), pp. 19–52 Google Scholar
  93. K. Zhang, G.A. Blake, E.A. Bergin, Astrophys. J. Lett. 806, L7 (2015) ADSGoogle Scholar
  94. E. Zinner, in Treatise on Geochemistry, vol. 1, ed. by A.M. Davis, Executive Editors: H.D. Holland, K.K. Turekian (Elsevier, Amsterdam, 2003), pp. 17–39. ISBN 0-08-043751-6 Google Scholar
  95. M.E. Zolensky, A. Ivanov, Chem. Erde 63, 185 (2003) Google Scholar
  96. M.E. Zolensky, H. McSween Jr., in Meteorites and the Early Solar System, ed. by J.F. Kerridge, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 114–143 Google Scholar
  97. M.E. Zolensky, T. Barret, L. Browning, Geochim. Cosmochim. Acta 57, 3123 (1993) ADSGoogle Scholar
  98. M.E. Zolensky, A.N. Krot, G. Benedix, Record of low-temperature alteration in asteroids, in Oxygen in the Solar System, ed. by G.J. MacPherson, D.W. Mittlefehldt, J.H. Jones, S.B. Simon. Reviews in Mineralogy and Geochemistry, vol. 68 (Mineralogical Society of America, Washington, 2008), pp. 429–462 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Josep M. Trigo-Rodríguez
    • 1
    • 2
    Email author
  • Albert Rimola
    • 3
  • Safoura Tanbakouei
    • 1
    • 2
  • Victoria Cabedo Soto
    • 1
    • 3
  • Martin Lee
    • 4
  1. 1.Institute of Space Sciences (CSIC)Cerdanyola del Vallés (Barcelona)Spain
  2. 2.Institut d’Estudis Espacials de Catalunya (IEEC)BarcelonaSpain
  3. 3.Departament de QuímicaUniversitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.University of GlasgowSchool of Geographical and Earth SciencesGlasgowUK

Personalised recommendations