Advertisement

Space Science Reviews

, 215:11 | Cite as

Circumplanetary Dust Populations

  • Frank SpahnEmail author
  • Manuel Sachse
  • Martin Seiß
  • Hsiang-Wen Hsu
  • Sascha Kempf
  • Mihály Horányi
Article
  • 76 Downloads
Part of the following topical collections:
  1. Cosmic Dust from the Laboratory to the Stars

Abstract

We summarize the current state of observations of circumplanetary dust populations, including both dilute and dense rings and tori around the giant planets, ejecta clouds engulfing airless moons, and rings around smaller planetary bodies throughout the Solar System. We also discuss the theoretical models that enable these observations to be understood in terms of the sources, sinks and transport of various dust populations. The dynamics and resulting transport of the particles can be quite complex, due to the fact that their motion is influenced by neutral and plasma drag, radiation pressure, and electromagnetic forces—all in addition to gravity. The relative importance of these forces depends on the environment, as well as the makeup and size of the particles. Possible dust sources include the generation of ejecta particles by impacts, active volcanoes and geysers, and the capture of exogenous particles. Possible dust sinks include collisions with moons, rings, or the central planet, erosion due to sublimation and sputtering, even ejection and escape from the circumplanetary environment.

Keywords

Circumplanetary dust Planetary rings and tori Dust sources and sinks Dust dynamics 

Notes

Acknowledgements

We thank an anonymous referee for his considerable advise in making the paper more convincing. We acknowledge the support by the NASA/ESA Cassini-Huygens mission and by ISSI. The work of M. Seiß and M. Sachse has been funded by the DLR (German Space Agency) with the project (50OH1401).

References

  1. N. Asada, Fine fragments in high-velocity impact experiments. J. Geophys. Res. 90, 12445 (1985).  https://doi.org/10.1029/JB090iB14p12445 ADSCrossRefGoogle Scholar
  2. W.I. Axford, D.A. Mendis, Satellites and magnetospheres of the outer planets. Annu. Rev. Earth Planet. Sci. 2, 419 (1974).  https://doi.org/10.1146/annurev.ea.02.050174.002223 ADSCrossRefGoogle Scholar
  3. A. Barkan, N. D’angelo, R.L. Merlino, Charging of dust grains in a plasma. Phys. Rev. Lett. 73, 3093–3096 (1994).  https://doi.org/10.1103/PhysRevLett.73.3093 ADSCrossRefGoogle Scholar
  4. E.R. Batista, P. Ayotte, A. Bilić, B.D. Kay, H. Jónsson, What determines the sticking probability of water molecules on ice? Phys. Rev. Lett. 95(22), 223201 (2005).  https://doi.org/10.1103/PhysRevLett.95.223201 ADSCrossRefGoogle Scholar
  5. W.A. Baum, T. Kreidl, J.A. Westphal, G.E. Danielson, P.K. Seidelmann, D. Pascu, D.G. Currie, Saturn’s E ring. Icarus 47, 84–96 (1981).  https://doi.org/10.1016/0019-1035(81)90093-2 ADSCrossRefGoogle Scholar
  6. K. Baumgärtel, K. Sauer, A. Bogdanov, E. Dubinin, M. Dougherty, “Phobos events”: signatures of solar wind dust interaction. Planet. Space Sci. 44(6), 589–601 (1996) ADSCrossRefGoogle Scholar
  7. P. Bliokh, V. Sinitsin, V. Yaroshenko, Dusty and Self-Gravitational Plasmas in Space. Astrophysics and Space Science Library (Kluwer, Dordrecht, 1995) CrossRefGoogle Scholar
  8. F. Braga-Ribas, B. Sicardy, J.L. Ortiz, C. Snodgrass, F. Roques, R. Vieira-Martins, J.I.B. Camargo, M. Assafin, R. Duffard, E. Jehin, J. Pollock, R. Leiva, M. Emilio, D.I. Machado, C. Colazo, E. Lellouch, J. Skottfelt, M. Gillon, N. Ligier, L. Maquet, G. Benedetti-Rossi, A.R. Gomes, P. Kervella, H. Monteiro, R. Sfair, M. El Moutamid, G. Tancredi, J. Spagnotto, A. Maury, N. Morales, R. Gil-Hutton, S. Roland, A. Ceretta, S.-H. Gu, X.-B. Wang, K. Harpsøe, M. Rabus, J. Manfroid, C. Opitom, L. Vanzi, L. Mehret, L. Lorenzini, E.M. Schneiter, R. Melia, J. Lecacheux, F. Colas, F. Vachier, T. Widemann, L. Almenares, R.G. Sandness, F. Char, V. Perez, P. Lemos, N. Martinez, U.G. Jørgensen, M. Dominik, F. Roig, D.E. Reichart, A.P. Lacluyze, J.B. Haislip, K.M. Ivarsen, J.P. Moore, N.R. Frank, D.G. Lambas, A ring system detected around the Centaur (10199) Chariklo. Nature 508, 72–75 (2014).  https://doi.org/10.1038/nature13155 ADSCrossRefGoogle Scholar
  9. N.V. Brilliantov, P.L. Krapivsky, A. Bodrova, F. Spahn, H. Hayakawa, V. Stadnichuk, J. Schmidt, Size distribution of particles in Saturn’s rings from aggregation and fragmentation. Proc. Natl. Acad. Sci. 112(31), 9536–9541 (2015) ADSCrossRefGoogle Scholar
  10. A.L. Broadfoot, F. Herbert, J.B. Holberg, D.M. Hunten, S. Kumar, B.R. Sandel, D.E. Shemansky, G.R. Smith, R.V. Yelle, D.F. Strobel, H.W. Moos, T.M. Donahue, S.K. Atreya, J.L. Bertaux, J.E. Blamont, J.C. Mcconnell, A.J. Dessler, S. Linick, R. Springer, Ultraviolet spectrometer observations of Uranus. Science 233, 74–79 (1986).  https://doi.org/10.1126/science.233.4759.74 ADSCrossRefGoogle Scholar
  11. S.M. Brooks, L.W. Esposito, M.R. Showalter, H.B. Throop, The size distribution of Jupiter’s main ring from Galileo imaging and spectroscopy. Icarus 170, 35–57 (2004).  https://doi.org/10.1016/j.icarus.2004.03.003 ADSCrossRefGoogle Scholar
  12. B.J. Buratti, J.A. Mosher, Comparative global albedo and color maps of the Uranian satellites. Icarus 90, 1–13 (1991).  https://doi.org/10.1016/0019-1035(91)90064-Z ADSCrossRefGoogle Scholar
  13. J.A. Burns, P.L. Lamy, S. Soter, Radiation forces on small particles in the solar system. Icarus 40, 1–48 (1979).  https://doi.org/10.1016/0019-1035(79)90050-2 ADSCrossRefGoogle Scholar
  14. J.A. Burns, M.R. Showalter, D.P. Hamilton, P.D. Nicholson, I. de Pater, M.E. Ockert-Bell, P.C. Thomas, The formation of Jupiter’s faint rings. Science 284, 1146 (1999).  https://doi.org/10.1126/science.284.5417.1146 ADSCrossRefGoogle Scholar
  15. J.A. Burns, D.P. Simonelli, M.R. Showalter, D.P. Hamilton, C.D. Porco, H. Throop, L.W. Esposito, Jupiter’s ring-moon system, in Jupiter. The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (2004), pp. 241–262 Google Scholar
  16. S. Charnoz, R.M. Canup, A. Crida, L. Dones, Planetary ring systems, in The Origin of Planetary Ring Systems, ed. by M.S. Tiscareno, C.D. Murray (Cambridge University Press, New York, 2018), pp. 517–538 CrossRefGoogle Scholar
  17. G. Colombo, D.A. Lautman, I.I. Shapiro, The Earth’s dust belt: fact or fiction? 2, Gravitational focusing and Jacobi capture. J. Geophys. Res. 71, 5705 (1966a) ADSCrossRefGoogle Scholar
  18. G. Colombo, I.I. Shapiro, D.A. Lautman, The Earth’s dust belt: fact or fiction? 3, Lunar ejecta. J. Geophys. Res. 71, 5719 (1966b).  https://doi.org/10.1029/JZ071i023p05719 ADSCrossRefGoogle Scholar
  19. J.E. Colwell, L.W. Esposito, A model of dust production in the Neptune ring system. Geophys. Res. Lett. 17, 1741–1744 (1990a).  https://doi.org/10.1029/GL017i010p01741 ADSCrossRefGoogle Scholar
  20. J.E. Colwell, L.W. Esposito, A numerical model of the Uranian dust rings. Icarus 86, 530–560 (1990b).  https://doi.org/10.1016/0019-1035(90)90232-X ADSCrossRefGoogle Scholar
  21. J.E. Colwell, M. Horányi, Magnetospheric effects on micrometeoroid fluxes. J. Geophys. Res. 101, 2169–2176 (1996).  https://doi.org/10.1029/95JE03103 ADSCrossRefGoogle Scholar
  22. J.E. Colwell, M. Horányi, E. Gren, Capture of interplanetary and interstellar dust by the Jovian magnetosphere. Science 280, 88 (1998).  https://doi.org/10.1126/science.280.5360.88 ADSCrossRefGoogle Scholar
  23. J.E.P. Connerney, Magnetic connection for Saturn’s rings and atmosphere. Geophys. Res. Lett. 13, 773–776 (1986).  https://doi.org/10.1029/GL013i008p00773 ADSCrossRefGoogle Scholar
  24. J.N. Cuzzi, R.H. Durisen, Bombardment of planetary rings by meteoroids—general formulation and effects of Oort cloud projectiles. Icarus 84, 467–501 (1990).  https://doi.org/10.1016/0019-1035(90)90049-F ADSCrossRefGoogle Scholar
  25. J.N. Cuzzi, P.R. Estrada, Compositional evolution of Saturn’s rings due to meteoroid bombardment. Icarus 132, 1–35 (1998).  https://doi.org/10.1006/icar.1997.5863 ADSCrossRefGoogle Scholar
  26. J.N. Cuzzi, A.D. Whizin, R.C. Hogan, A.R. Dobrovolskis, L. Dones, M.R. Showalter, J.E. Colwell, J.D. Scargle, Saturn’s F ring core: calm in the midst of chaos. Icarus 232, 157–175 (2014).  https://doi.org/10.1016/j.icarus.2013.12.027 ADSCrossRefGoogle Scholar
  27. K. de Kleer, I. de Pater, M. Ádámkovics, H. Hammel, Near-infrared spectra of the Uranian ring system. Icarus 226, 1038–1044 (2013).  https://doi.org/10.1016/j.icarus.2013.07.016 ADSCrossRefGoogle Scholar
  28. I. de Pater, M.R. Showalter, J.J. Lissauer, J.R. Graham, Keck infrared observations of Saturn’s E and G rings during Earth’s 1995 ring plane crossings. Icarus 121, 195–198 (1996) ADSCrossRefGoogle Scholar
  29. I. de Pater, M.R. Showalter, J.A. Burns, P.D. Nicholson, M.C. Liu, D.P. Hamilton, J.R. Graham, Keck infrared observations of Jupiter’s ring system near Earth’s 1997 ring plane crossing. Icarus 138, 214–223 (1999).  https://doi.org/10.1006/icar.1998.6068 ADSCrossRefGoogle Scholar
  30. I. de Pater, S.C. Martin, M.R. Showalter, Keck near-infrared observations of Saturn’s E and G rings during Earth’s ring plane crossing in August 1995. Icarus 172, 446–454 (2004).  https://doi.org/10.1016/j.icarus.2004.07.012 ADSCrossRefGoogle Scholar
  31. I. de Pater, S.G. Gibbard, E. Chiang, H.B. Hammel, B. Macintosh, F. Marchis, S.C. Martin, H.G. Roe, M. Showalter, The dynamic Neptunian ring arcs: evidence for a gradual disappearance of Liberté and resonant jump of courage. Icarus 174, 263–272 (2005).  https://doi.org/10.1016/j.icarus.2004.10.020 ADSCrossRefGoogle Scholar
  32. I. de Pater, H.B. Hammel, S.G. Gibbard, M.R. Showalter, New dust belts of Uranus: one ring, two ring, red ring, blue ring. Science 312, 92–94 (2006).  https://doi.org/10.1126/science.1125110 ADSCrossRefGoogle Scholar
  33. I. de Pater, H.B. Hammel, M.R. Showalter, M.A. van Dam, The dark side of the rings of Uranus. Science 317, 1888 (2007).  https://doi.org/10.1126/science.1148103 ADSCrossRefGoogle Scholar
  34. I. de Pater, D.E. Dunn, D.M. Stam, M.R. Showalter, H.B. Hammel, M. Min, M. Hartung, S.G. Gibbard, M.A. van Dam, K. Matthews, Keck and VLT AO observations and models of the Uranian rings during the 2007 ring plane crossings. Icarus 226, 1399–1424 (2013).  https://doi.org/10.1016/j.icarus.2013.08.001 ADSCrossRefGoogle Scholar
  35. I. de Pater, D.P. Hamilton, M.R. Showalter, H.B. Throop, J.A. Burns, The rings of Jupiter, in Planetary Ring Systems Properties, Structure, and Evolution, ed. by M.S. Tiscareno, C.D.E. Murray. (Cambridge University Press, New York, 2018a), pp. 125–134.  https://doi.org/10.1017/9781316286791.006. Chap. 6 CrossRefGoogle Scholar
  36. I. de Pater, S. Renner, M.R. Showalter, B. Sicardy, The rings of Neptune, in Planetary Ring Systems Properties, Structure, and Evolution, ed. by M.S. Tiscareno, C.D.E. Murray. (Cambridge University Press, New York, 2018b), pp. 112–124.  https://doi.org/10.1017/9781316286791.005. Chap. 5 CrossRefGoogle Scholar
  37. V.V. Dikarev, Dynamics of particles in Saturn’s E ring: effects of charge variations and the plasma drag force. Astron. Astrophys. 346, 1011–1019 (1999) ADSGoogle Scholar
  38. Y. Dong, T.W. Hill, S.-Y. Ye, Characteristics of ice grains in the Enceladus plume from Cassini observations. J. Geophys. Res. Space Phys. 120, 915–937 (2015).  https://doi.org/10.1002/2014JA020288 ADSCrossRefGoogle Scholar
  39. M.K. Dougherty, K.K. Khurana, F.M. Neubauer, C.T. Russell, J. Saur, J.S. Leisner, M.E. Burton, Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer. Science 311, 1406–1409 (2006).  https://doi.org/10.1126/science.1120985 ADSCrossRefGoogle Scholar
  40. C. Dumas, R.J. Terrile, B.A. Smith, G. Schneider, E.E. Becklin, Stability of Neptune’s ring arcs in question. Nature 400, 733–735 (1999).  https://doi.org/10.1038/23414 ADSCrossRefGoogle Scholar
  41. C. Dumas, R.J. Terrile, B.A. Smith, G. Schneider, Astrometry and near-infrared photometry of Neptune’s inner satellites and ring arcs. Astron. J. 123, 1776–1783 (2002).  https://doi.org/10.1086/339022 ADSCrossRefGoogle Scholar
  42. D.E. Dunn, I. de Pater, D. Stam, Modeling the Uranian rings at 2.2 μm: comparison with Keck AO data from July 2004. Icarus 208, 927–937 (2010).  https://doi.org/10.1016/j.icarus.2010.03.027 ADSCrossRefGoogle Scholar
  43. J.L. Elliot, Stellar occultation studies of the Solar System. Annu. Rev. Astron. Astrophys. 17, 445–475 (1979).  https://doi.org/10.1146/annurev.aa.17.090179.002305 ADSCrossRefGoogle Scholar
  44. J.L. Elliot, E. Dunham, D. Mink, The rings of Uranus. Nature 267, 328–330 (1977).  https://doi.org/10.1038/267328a0 ADSCrossRefGoogle Scholar
  45. L. Esposito, Planetary Rings (2014) CrossRefGoogle Scholar
  46. L.W. Esposito, J.E. Colwell, Creation of the Uranus rings and dust bands. Nature 339, 605–607 (1989).  https://doi.org/10.1038/339605a0 ADSCrossRefGoogle Scholar
  47. P.R. Estrada, R.H. Durisen, J.N. Cuzzi, D.A. Morgan, Combined structural and compositional evolution of planetary rings due to micrometeoroid impacts and ballistic transport. Icarus 252, 415–439 (2015).  https://doi.org/10.1016/j.icarus.2015.02.005 ADSCrossRefGoogle Scholar
  48. W.A. Feibelman, Concerning the ”D” ring of Saturn. Nature 214, 793–794 (1967) ADSCrossRefGoogle Scholar
  49. C. Ferrari, A. Brahic, Azimuthal brightness asymmetries in planetary rings. 1: Neptune’s arcs and narrow rings. Icarus 111, 193–210 (1994).  https://doi.org/10.1006/icar.1994.1140 ADSCrossRefGoogle Scholar
  50. C.K. Goertz, G.E. Morfill, A model for the formation of spokes in Saturn’s ring. Icarus 53, 219–229 (1983) ADSCrossRefGoogle Scholar
  51. A.L. Graps, Io revealed in the Jovian dust streams. Ph.D. Thesis, Ruprecht-Karls-Universität, Heidelberg (2001) Google Scholar
  52. A.L. Graps, E. Grün, H. Svedhem, H. Krüger, M. Horányi, A. Heck, S. Lammers, Io as a source of the Jovian dust streams. Nature 405, 48–50 (2000) ADSCrossRefGoogle Scholar
  53. E. Grün, G.E. Morfill, R.J. Terrile, T.V. Johnson, G. Schwehm, The evolution of spokes in Saturn’s B ring. Icarus 54, 227–252 (1983).  https://doi.org/10.1016/0019-1035(83)90194-X ADSCrossRefGoogle Scholar
  54. E. Grün, G.W. Garneau, R.J. Terrile, T.V. Johnson, G.E. Morfill, Kinematics of Saturn’s spokes. Adv. Space Res. 4, 143–148 (1984).  https://doi.org/10.1016/0273-1177(84)90019-X ADSCrossRefGoogle Scholar
  55. E. Grün, C.K. Goertz, G.E. Morfill, O. Havnes, Statistics of Saturn’s spokes. Icarus 99(1), 191–201 (1992a) ADSCrossRefGoogle Scholar
  56. E. Grün, H. Fechtig, M.S. Hanner, J. Kissel, B.-A. Lindblad, D. Linkert, D. Maas, G.E. Morfill, H.A. Zook, The Galileo dust detector. Space Sci. Rev. 60, 317–340 (1992b) ADSCrossRefGoogle Scholar
  57. E. Grün, H.A. Zook, M. Baguhl, A. Balogh, S.J. Bame, H. Fechtig, R. Forsyth, M.S. Hanner, M. Horanyi, J. Kissel, B.-A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, J.L. Phillips, C. Polanskey, G. Schwehm, N. Siddique, P. Staubach, J. Svestka, A. Taylor, Discovery of Jovian dust streams and interstellar grains by the ULYSSES spacecraft. Nature 362, 428–430 (1993).  https://doi.org/10.1038/362428a0 ADSCrossRefGoogle Scholar
  58. E. Grün, M. Baguhl, D.P. Hamilton, R. Riemann, H.A. Zook, S. Dermott, H. Fechtig, B.A. Gustafson, M.S. Hanner, M. Horányi, K.K. Khurana, J. Kissel, M. Kivelson, B.A. Lindblad, D. Linkert, G. Linkert, I. Mann, J.A.M. McDonnell, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, Constraints from Galileo observations on the origin of Jovian dust streams. Nature 381, 395–398 (1996).  https://doi.org/10.1038/381395a0 ADSCrossRefGoogle Scholar
  59. E. Grün, P. Staubach, M. Baguhl, D.P. Hamilton, H.A. Zook, S. Dermott, B.A. Gustafson, H. Fechtig, J. Kissel, D. Linkert, G. Linkert, R. Srama, M.S. Hanner, C. Polanskey, M. Horányi, B.A. Lindblad, I. Mann, J.A.M. McDonnell, G.E. Morfill, G. Schwehm, South-North and radial traverses through the interplanetary dust cloud. Icarus 129, 270–288 (1997) ADSCrossRefGoogle Scholar
  60. E. Grün, H. Krüger, A.L. Graps, D.P. Hamilton, A. Heck, G. Linkert, S. Dermott, H. Fechtig, B.A. Gustafson, M.S. Hanner, M. Horányi, J. Kissel, B.A. Lindblad, D. Linkert, I. Mann, J.A.M. McDonnel, G.E. Morfill, C. Polanskey, G. Schwehm, R. Srama, Galileo observes electromagnetically coupled dust in the Jovian magnetosphere. J. Geophys. Res. 103, 20011–20022 (1998) ADSCrossRefGoogle Scholar
  61. E. Grün, S. Kempf, H. Krüger, M. Landgraf, R. Srama, Dust astronomy: a new approach to the study of interstellar dust, in Meteoroids 2001 Conference, ed. by B. Warmbein. ESA Special Publication, vol. 495 (2001), pp. 651–662 Google Scholar
  62. P. Guérin, Les Anneaux de Saturne en 1969. Etude Morphologique et Photométrique. I. Obtention et Dépouillement des Photographies. Icarus 19, 202–211 (1973).  https://doi.org/10.1016/0019-1035(73)90123-1 ADSCrossRefGoogle Scholar
  63. D.A. Gurnett, W.S. Kurth, Plasma waves and related phenomena in the magnetosphere of Neptune, in Neptune and Triton, ed. by D.P. Cruikshank (Arizona University Press, Tucson, 1995), pp. 389–423 Google Scholar
  64. D.A. Gurnett, W.S. Kurth, F.L. Scarf, R.L. Poynter, First plasma wave observations of Uranus. Science 233, 106–109 (1986).  https://doi.org/10.1126/science.233.4759.106 ADSCrossRefGoogle Scholar
  65. D.A. Gurnett, W.S. Kurth, L.J. Granroth, S.C. Allendorf, R.L. Poynter, Micron-sized particles detected near Neptune by the Voyager 2 plasma wave instrument. J. Geophys. Res. 96, 19177 (1991) ADSCrossRefGoogle Scholar
  66. D.P. Hamilton, Motion of dust in a planetary magnetosphere—orbit-averaged equations for oblateness, electromagnetic, and radiation forces with application to Saturn’s E ring. Icarus 101, 244–264 (1993).  https://doi.org/10.1006/icar.1993.1022 ADSCrossRefGoogle Scholar
  67. D.P. Hamilton, J.A. Burns, Origin of Saturn’s E ring: selfsustained—naturally. Science 264, 550–553 (1994) ADSCrossRefGoogle Scholar
  68. D.P. Hamilton, A.V. Krivov, Circumplanetary dust dynamics: effects of solar gravity, radiation pressure, planetary oblateness, and electromagnetism. Icarus 123, 503–523 (1996).  https://doi.org/10.1006/icar.1996.0175 ADSCrossRefGoogle Scholar
  69. D.P. Hamilton, M.F. Skrutskie, A.J. Verbiscer, F.J. Masci, Small particles dominate Saturn’s Phoebe ring to surprisingly large distances. Nature 522, 185–187 (2015).  https://doi.org/10.1038/nature14476 ADSCrossRefGoogle Scholar
  70. C.J. Hansen, L. Esposito, A.I.F. Stewart, J. Colwell, A. Hendrix, W. Pryor, D. Shemansky, R. West, Enceladus’ water vapor plume. Science 311, 1422–1425 (2006).  https://doi.org/10.1126/science.1121254 ADSCrossRefGoogle Scholar
  71. W.K. Hartmann, Impact experiments. I—Ejecta velocity distributions and related results from regolith targets. Icarus 63, 69–98 (1985).  https://doi.org/10.1016/0019-1035(85)90021-1 ADSCrossRefGoogle Scholar
  72. M.M. Hedman, M.R. Showalter, A new pattern in Saturn’s D ring created in late 2011. Icarus 279, 155–165 (2016).  https://doi.org/10.1016/j.icarus.2015.09.017 ADSCrossRefGoogle Scholar
  73. M.M. Hedman, J.A. Burns, M.R. Showalter, C.C. Porco, P.D. Nicholson, A.S. Bosh, M.S. Tiscareno, R.H. Brown, B.J. Buratti, K.H. Baines, R. Clark, Saturn’s dynamic D ring. Icarus 188, 89–107 (2007a).  https://doi.org/10.1016/j.icarus.2006.11.017 ADSCrossRefGoogle Scholar
  74. M.M. Hedman, J.A. Burns, M.S. Tiscareno, C.C. Porco, G.H. Jones, E. Roussos, N. Krupp, C. Paranicas, S. Kempf, The source of Saturn’s G ring. Science 317, 653 (2007b).  https://doi.org/10.1126/science.1143964 ADSCrossRefGoogle Scholar
  75. M.M. Hedman, C.D. Murray, N.J. Cooper, M.S. Tiscareno, K. Beurle, M.W. Evans, J.A. Burns, Three tenuous rings/arcs for three tiny moons. Icarus 199, 378–386 (2009).  https://doi.org/10.1016/j.icarus.2008.11.001 ADSCrossRefGoogle Scholar
  76. M.M. Hedman, J.A. Burt, J.A. Burns, M.S. Tiscareno, The shape and dynamics of a heliotropic dusty ringlet in the Cassini division. Icarus 210, 284–297 (2010).  https://doi.org/10.1016/j.icarus.2010.06.017 ADSCrossRefGoogle Scholar
  77. M.M. Hedman, J.A. Burns, D.P. Hamilton, M.R. Showalter, The three-dimensional structure of Saturn’s E ring. Icarus 217, 322–338 (2012).  https://doi.org/10.1016/j.icarus.2011.11.006 ADSCrossRefGoogle Scholar
  78. M.M. Hedman, J.A. Burt, J.A. Burns, M.R. Showalter, Non-circular features in Saturn’s D ring: D68. Icarus 233, 147–162 (2014).  https://doi.org/10.1016/j.icarus.2014.01.022 ADSCrossRefGoogle Scholar
  79. M.M. Hedman, J.A. Burns, M.R. Showalter, Corrugations and eccentric spirals in Saturn’s D ring: new insights into what happened at Saturn in 1983. Icarus 248, 137–161 (2015).  https://doi.org/10.1016/j.icarus.2014.10.021 ADSCrossRefGoogle Scholar
  80. M.M. Hedman, F. Postberg, D.P. Hamilton, S. Renner, H.-W. Hsu, Dusty rings, in Planetary Ring Systems. Properties, Structure, and Evolution, ed. by M.S. Tiscareno, C.D. Murray (Cambridge Univ. Press, New York, 2018), pp. 308–337 CrossRefGoogle Scholar
  81. J.R. Hill, D.A. Mendis, Charged dust in the outer planetary magnetospheres: physical and dynamical processes. Moon Planets 21, 3–16 (1979) ADSCrossRefGoogle Scholar
  82. J.R. Hill, D.A. Mendis, On the origin of striae in cometary dust tails. Astrophys. J. 242, 395–401 (1980).  https://doi.org/10.1086/158472 ADSCrossRefGoogle Scholar
  83. J.R. Hill, D.A. Mendis, The dynamical evolution of the Saturnian ring spokes. J. Geophys. Res. 87, 7413–7420 (1982).  https://doi.org/10.1029/JA087iA09p07413 ADSCrossRefGoogle Scholar
  84. T.W. Hill, M.F. Thomsen, R.L. Tokar, A.J. Coates, G.R. Lewis, D.T. Young, F.J. Crary, R.A. Baragiola, R.E. Johnson, Y. Dong, R.J. Wilson, G.H. Jones, J.-E. Wahlund, D.G. Mitchell, M. Horányi, Charged nanograins in the Enceladus plume. J. Geophys. Res. Space Phys. 117, 05209 (2012).  https://doi.org/10.1029/2011JA017218 ADSCrossRefGoogle Scholar
  85. J.K. Hillier, S.F. Green, N. McBride, J.P. Schwanethal, F. Postberg, R. Srama, S. Kempf, G. Moragas-Klostermeyer, J.A.M. McDonnell, E. Grün, The composition of Saturn’s E ring. Mon. Not. R. Astron. Soc. 377, 1588–1596 (2007).  https://doi.org/10.1111/j.1365-2966.2007.11710.x ADSCrossRefGoogle Scholar
  86. J.K. Hillier, J. Schmidt, H.-W. Hsu, F. Postberg, Dust emission by active moons. Space Sci. Rev. 214, 51–96 (2018).  https://doi.org/10.1007/s11214-018-0539-9 CrossRefGoogle Scholar
  87. M. Horányi, New Jovian ring? Geophys. Res. Lett. 21, 1039–1042 (1994).  https://doi.org/10.1029/94GL01326 ADSCrossRefGoogle Scholar
  88. M. Horanyi, Charged dust dynamics in the solar system. Annu. Rev. Astron. Astrophys. 34, 383–418 (1996).  https://doi.org/10.1146/annurev.astro.34.1.383 ADSCrossRefGoogle Scholar
  89. M. Horányi, Dust streams from Jupiter and Saturn. Phys. Plasmas 7(10), 3847–3850 (2000) ADSCrossRefGoogle Scholar
  90. M. Horányi, H.L.F. Houpis, D.A. Mendis, Charged dust in the Earth’s magnetosphere. I—Physical and dynamical processes. Astrophys. Space Sci. 144, 215–229 (1988).  https://doi.org/10.1007/BF00793182 ADSCrossRefGoogle Scholar
  91. M. Horányi, J.A. Burns, D.P. Hamilton, The dynamics of Saturn’s E ring particles. Icarus 97, 248–259 (1992).  https://doi.org/10.1016/0019-1035(92)90131-P ADSCrossRefGoogle Scholar
  92. M. Horányi, G. Morfill, E. Grün, Mechanism for the acceleration and ejection of dust grains from Jupiter’s magnetosphere. Nature 363, 144–146 (1993) ADSCrossRefGoogle Scholar
  93. M. Horányi, T.W. Hartquist, O. Havnes, D.A. Mendis, G.E. Morfill, Dusty plasma effects in Saturn’s magnetosphere. Rev. Geophys. 42, 4002 (2004).  https://doi.org/10.1029/2004RG000151 ADSCrossRefGoogle Scholar
  94. M. Horányi, A. Juhász, G.E. Morfill, Large-scale structure of Saturn’s E-ring. Geophys. Res. Lett. 35, 04203 (2008).  https://doi.org/10.1029/2007GL032726 ADSCrossRefGoogle Scholar
  95. M. Horányi, J.A. Burns, M.M. Hedman, G.H. Jones, S. Kempf, Diffuse rings, in Saturn from Cassini-Huygens, ed. by M.K. Dougherty, L.W. Esposito, S. Krimigis (Springer, Berlin, 2009), p. 511.  https://doi.org/10.1007/978-1-4020-9217-6_16 CrossRefGoogle Scholar
  96. M. Horányi, G.E. Morfill, T.E. Cravens, Spokes in Saturn’s B ring: could lightning be the cause? IEEE Trans. Plasma Sci. 38, 874–879 (2010).  https://doi.org/10.1109/TPS.2009.2034455 ADSCrossRefGoogle Scholar
  97. M. Horányi, J.R. Szalay, S. Kempf, J. Schmidt, E. Grün, R. Srama, Z. Sternovsky, A permanent, asymmetric dust cloud around the Moon. Nature 522, 324–326 (2015).  https://doi.org/10.1038/nature14479 ADSCrossRefGoogle Scholar
  98. H. Hsu, S. Kempf, C.M. Jackman, Observation of Saturnian stream particles in the interplanetary space. Icarus 206, 653–661 (2010).  https://doi.org/10.1016/j.icarus.2009.06.033 ADSCrossRefGoogle Scholar
  99. H.-W. Hsu, S. Kempf, F. Postberg, M. Trieloff, M. Burton, M. Roy, G. Moragas-Klostermeyer, R. Srama, Cassini dust stream particle measurements during the first three orbits at Saturn. J. Geophys. Res. Space Phys. 116, 08213 (2011).  https://doi.org/10.1029/2010JA015959 ADSCrossRefGoogle Scholar
  100. H.-W. Hsu, H. Krüger, F. Postberg, Dynamics, composition, and origin of Jovian and Saturnian dust-stream particles, in Nanodust in the Solar System: Discoveries and Interpretations, ed. by I. Mann, N. Meyer-Vernet, A. Czechowski. Astrophysics and Space Science Library, vol. 385 (2012), p. 77.  https://doi.org/10.1007/978-3-642-27543-2_5 CrossRefGoogle Scholar
  101. H.-W. Hsu, F. Postberg, Y. Sekine, T. Shibuya, S. Kempf, M. Horányi, A. Juhász, N. Altobelli, K. Suzuki, Y. Masaki, T. Kuwatani, S. Tachibana, S.-I. Sirono, G. Moragas-Klostermeyer, R. Srama, Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015).  https://doi.org/10.1038/nature14262 ADSCrossRefGoogle Scholar
  102. H.-W. Hsu, J. Schmidt, S. Kempf, F. Postberg, G. Moragas-Klostermeyer, M. Seiß, H. Hoffmann, M. Burton, S. Ye, W.S. Kurth, M. Horányi, N. Khawaja, F. Spahn, D. Schirdewahn, J. O’Donoghue, L. Moore, J. Cuzzi, G.H. Jones, R. Srama, In situ collection of dust grains falling from Saturn’s rings into its atmosphere. Science 362, 3185 (2018).  https://doi.org/10.1126/science.aat3185 ADSCrossRefGoogle Scholar
  103. W.B. Hubbard, A. Brahic, B. Sicardy, L.-R. Elicer, F. Roques, F. Vilas, Occultation detection of a Neptunian ring-like arc. Nature 319, 636–640 (1986).  https://doi.org/10.1038/319636a0 ADSCrossRefGoogle Scholar
  104. L. Iess, D.J. Stevenson, M. Parisi, D. Hemingway, R.A. Jacobson, J.I. Lunine, F. Nimmo, J.W. Armstrong, S.W. Asmar, M. Ducci, P. Tortora, The gravity field and interior structure of Enceladus. Science 344, 78–80 (2014).  https://doi.org/10.1126/science.1250551 ADSCrossRefGoogle Scholar
  105. W.-H. Ip, C.-M. Liu, K.-C. Pan, Transport and electro-dynamical coupling of nano-grains ejected from the Saturnian rings and their possible ionospheric signatures. Icarus 276, 163–169 (2016).  https://doi.org/10.1016/j.icarus.2016.04.004 ADSCrossRefGoogle Scholar
  106. D. Jewitt, N. Haghighipour, Irregular satellites of the planets: products of capture in the early solar system. Annu. Rev. Astron. Astrophys. 45, 261–295 (2007).  https://doi.org/10.1146/annurev.astro.44.051905.092459 ADSCrossRefGoogle Scholar
  107. T.V. Johnson, J.I. Lunine, Saturn’s moon Phoebe as a captured body from the outer Solar System. Nature 435, 69–71 (2005).  https://doi.org/10.1038/nature03384 ADSCrossRefGoogle Scholar
  108. G.H. Jones, E. Roussos, N. Krupp, C. Paranicas, J. Woch, A. Lagg, D.G. Mitchell, S.M. Krimigis, M.K. Dougherty, Enceladus’ varying imprint on the magnetosphere of Saturn. Science 311, 1412–1415 (2006).  https://doi.org/10.1126/science.1121011 ADSCrossRefGoogle Scholar
  109. G.H. Jones, C.S. Arridge, A.J. Coates, G.R. Lewis, S. Kanani, A. Wellbrock, D.T. Young, F.J. Crary, R.L. Tokar, R.J. Wilson, T.W. Hill, R.E. Johnson, D.G. Mitchell, J. Schmidt, S. Kempf, U. Beckmann, C.T. Russell, Y.D. Jia, M.K. Dougherty, J.H. Waite, B.A. Magee, Fine jet structure of electrically charged grains in Enceladus’ plume. Geophys. Res. Lett. 36, 16204 (2009).  https://doi.org/10.1029/2009GL038284 ADSCrossRefGoogle Scholar
  110. D. Jontof-Hutter, D.P. Hamilton, The fate of sub-micron circumplanetary dust grains I: aligned dipolar magnetic fields. Icarus 218, 420–432 (2012a).  https://doi.org/10.1016/j.icarus.2011.09.033 ADSCrossRefGoogle Scholar
  111. D. Jontof-Hutter, D.P. Hamilton, The fate of sub-micron circumplanetary dust grains II: multipolar fields. Icarus 220, 487–502 (2012b).  https://doi.org/10.1016/j.icarus.2012.04.032 ADSCrossRefGoogle Scholar
  112. A. Juhász, M. Horányi, Dust torus around Mars. J. Geophys. Res., Planets 100(E2), 3277–3284 (1995) ADSCrossRefGoogle Scholar
  113. A. Juhász, M. Horányi, Dynamics of charged space debris in the Earth’s plasma environment. J. Geophys. Res. 102, 7237–7246 (1997).  https://doi.org/10.1029/96JA03672 ADSCrossRefGoogle Scholar
  114. A. Juhász, M. Horányi, Magnetospheric screening of cosmic dust. J. Geophys. Res. 104, 12577–12584 (1999).  https://doi.org/10.1029/1999JA900091 ADSCrossRefGoogle Scholar
  115. A. Juhász, M. Horányi, Saturn’s E ring: a dynamical approach. J. Geophys. Res. Space Phys. 107, 1–10 (2002).  https://doi.org/10.1029/2001JA000182 CrossRefGoogle Scholar
  116. A. Juhász, M. Horányi, Seasonal variations in Saturn’s E-ring. Geophys. Res. Lett. 311, 19703 (2004).  https://doi.org/10.1029/2004GL020999 ADSCrossRefGoogle Scholar
  117. S. Jurac, R.E. Johnson, B. Donn, M. Carlo, Calculations of the sputtering of grains: enhanced sputtering of small grains. Astrophys. J. 503, 247–252 (1998).  https://doi.org/10.1086/305994 ADSCrossRefGoogle Scholar
  118. S. Jurac, R.E. Johnson, J.D. Richardson, Saturn’s E ring and production of the neutral torus. Icarus 149, 384–396 (2001a).  https://doi.org/10.1006/icar.2000.6528 ADSCrossRefGoogle Scholar
  119. S. Jurac, R.E. Johnson, J.D. Richardson, C. Paranicas, Satellite sputtering in Saturn’s magnetosphere. Planet. Space Sci. 49, 319–326 (2001b).  https://doi.org/10.1016/S0032-0633(00)00153-7 ADSCrossRefGoogle Scholar
  120. S. Kempf, R. Srama, M. Horányi, M. Burton, S. Helfert, G. Moragas-Klostermeyer, M. Roy, E. Grün, High-velocity streams of dust originating from Saturn. Nature 433, 289–291 (2005) ADSCrossRefGoogle Scholar
  121. S. Kempf, U. Beckmann, R. Srama, M. Horányi, S. Auer, E. Grün, The electrostatic potential of E ring particles. Planet. Space Sci. 54, 999–1006 (2006).  https://doi.org/10.1016/j.pss.2006.05.012 ADSCrossRefGoogle Scholar
  122. S. Kempf, U. Beckmann, G. Moragas-Klostermeyer, F. Postberg, R. Srama, T. Economou, J. Schmidt, F. Spahn, E. Grün, The E ring in the vicinity of Enceladus I: spatial distribution and properties of the ring particles. Icarus 193, 420–437 (2008).  https://doi.org/10.1016/j.icarus.2007.06.027 ADSCrossRefGoogle Scholar
  123. S. Kempf, U. Beckmann, J. Schmidt, How the Enceladus dust plume feeds Saturn’s E ring. Icarus 206, 446–457 (2010).  https://doi.org/10.1016/j.icarus.2009.09.016 ADSCrossRefGoogle Scholar
  124. S. Kempf, M. Horanyi, A. Juhasz, R. Srama, G. Moragas-Klostermeyer, The Phoebe dust ring as seen as by the Cassini dust detector CDA, in AGU Fall Meeting Abstracts, 13-1673 (2011) Google Scholar
  125. S. Kempf, M. Horanyi, A. Juhasz, A. Cruz, R. Srama, F. Postberg, F. Spahn, J. Schmidt, The 3-dimensional structure of Saturn’s E ring inferred from Cassini CDA observations, in European Planetary Science Congress (2012), p. 701 Google Scholar
  126. S. Kempf, N. Altobelli, J.N. Cuzzi, P.R. Estrada, R. Srama, Nature (submitted, 2018a) Google Scholar
  127. S. Kempf, M. Horányi, H. Hsu, T.W. Hill, A. Juhasz, H.T. Smith, Saturn’s diffuse E ring and its connection with Enceladus, in Enceladus and the Icy Moons of Saturn (University Arizona Press, Tucson, 2018b) Google Scholar
  128. D.J. Kessler, Derivation of the collision probability between orbiting objects the lifetimes of Jupiter’s outer moons. Icarus 48, 39–48 (1981).  https://doi.org/10.1016/0019-1035(81)90151-2 ADSCrossRefGoogle Scholar
  129. D. Koschny, E. Grün, Impacts into ice-silicate mixtures: crater morphologies, volumes, depth-to-diameter ratios and yield. Icarus 154, 391–401 (2001) ADSCrossRefGoogle Scholar
  130. H. Kriegel, S. Simon, P. Meier, U. Motschmann, J. Saur, A. Wennmacher, D.F. Strobel, M.K. Dougherty, Ion densities and magnetic signatures of dust pickup at Enceladus. J. Geophys. Res. Space Phys. 119, 2740–2774 (2014).  https://doi.org/10.1002/2013JA019440 ADSCrossRefGoogle Scholar
  131. A.V. Krivov, D.P. Hamilton, Martian dust belts: waiting for discovery. Icarus 128, 335–353 (1997) ADSCrossRefGoogle Scholar
  132. A.V. Krivov, L.L. Sokolov, V.V. Dikarev, Dynamics of Mars-orbiting dust: effects of light pressure and planetary oblateness. Celest. Mech. Dyn. Astron. 63, 313–339 (1996).  https://doi.org/10.1007/BF00692293 ADSCrossRefzbMATHGoogle Scholar
  133. A.V. Krivov, H. Krüger, E. Grün, K.-U. Thiessenhusen, D.P. Hamilton, A tenuous dust ring of Jupiter formed by escaping ejecta from the Galilean satellites. J. Geophys. Res., Planets 107, 5002 (2002a).  https://doi.org/10.1029/2000JE001434 ADSCrossRefGoogle Scholar
  134. A.V. Krivov, I. Wardinski, F. Spahn, H. Krüger, E. Grün, Dust on the outskirts of the Jovian system. Icarus 157, 436–455 (2002b).  https://doi.org/10.1006/icar.2002.6848 ADSCrossRefGoogle Scholar
  135. A.V. Krivov, M. Sremčević, F. Spahn, V.V. Dikarev, K.V. Kholshevnikov, Impact-generated dust clouds around planetary satellites: spherically symmetric case. Planet. Space Sci. 51, 251–269 (2003).  https://doi.org/10.1016/S0032-0633(02)00147-2 ADSCrossRefGoogle Scholar
  136. H. Krüger, A.V. Krivov, D.P. Hamilton, E. Grün, Detection of an impact-generated dust cloud around Ganymede. Nature 399, 558–560 (1999).  https://doi.org/10.1038/21136 ADSCrossRefGoogle Scholar
  137. H. Krüger, M. Horányi, E. Grün, Jovian dust streams: probes of the Io plasma torus. Geophys. Res. Lett. 30(2), 1058 (2003a).  https://doi.org/10.1029/2002GL015920 ADSCrossRefGoogle Scholar
  138. H. Krüger, A.V. Krivov, M. Sremčević, E. Grün, Impact-generated dust clouds surrounding the Galilean moons. Icarus 164, 170–187 (2003b).  https://doi.org/10.1016/S0019-1035(03)00127-1 ADSCrossRefGoogle Scholar
  139. H. Krüger, D.P. Hamilton, R. Moissl, E. Grün, Galileo in-situ dust measurements in Jupiter’s gossamer rings. Icarus 203, 198–213 (2009).  https://doi.org/10.1016/j.icarus.2009.03.040 ADSCrossRefGoogle Scholar
  140. L.J. Lanzerotti, W.L. Brown, C.G. Maclennan, A.F. Cheng, S.M. Krimigis, Effects of charged particles on the surfaces of the satellites of Uranus. J. Geophys. Res. 92, 14949–14957 (1987).  https://doi.org/10.1029/JA092iA13p14949 ADSCrossRefGoogle Scholar
  141. S.M. Larson, J.W. Fountain, B.A. Smith, H.J. Reitsema, Observations of the Saturn E ring and a new satellite. Icarus 47, 288–290 (1981).  https://doi.org/10.1016/0019-1035(81)90173-1 ADSCrossRefGoogle Scholar
  142. T.R. Lauer et al., The New Horizons and Hubble Space Telescope search for rings, dust, and debris in the Pluto-Charon System (2017). arXiv:1709.07981 [astro-ph.EP]
  143. D.A. Lautman, I.I. Shapiro, G. Colombo, The Earth’s dust belt: fact or fiction? 4, Sunlight-pressure air-drag capture. J. Geophys. Res. 71, 5733 (1966).  https://doi.org/10.1029/JZ071i023p05733 ADSCrossRefGoogle Scholar
  144. A. Le Gall, C. Leyrat, M.A. Janssen, G. Choblet, G. Tobie, O. Bourgeois, A. Lucas, C. Sotin, C. Howett, R. Kirk, R.D. Lorenz, R.D. West, A. Stolzenbach, M. Massé, A.H. Hayes, L. Bonnefoy, G. Veyssière, F. Paganelli, Thermally anomalous features in the subsurface of Enceladus’s South polar terrain. Nat. Astron. 1, 0063 (2017).  https://doi.org/10.1038/s41550-017-0063 CrossRefGoogle Scholar
  145. J.J. Lissauer, Shepherding model for Neptune’s arc ring. Nature 318, 544 (1985).  https://doi.org/10.1038/318544a0 ADSCrossRefGoogle Scholar
  146. C.-M. Liu, W.-H. Ip, A new pathway of Saturnian ring-ionosphere coupling via charged nanograins. Astrophys. J. 786, 34 (2014).  https://doi.org/10.1088/0004-637X/786/1/34 ADSCrossRefGoogle Scholar
  147. X. Liu, M. Sachse, F. Spahn, J. Schmidt, Dynamics and distribution of Jovian dust ejected from the Galilean satellites. J. Geophys. Res., Planets 121, 1141–1173 (2016).  https://doi.org/10.1002/2016JE004999 ADSCrossRefGoogle Scholar
  148. M. Makuch, A.V. Krivov, F. Spahn, Long-term dynamical evolution of dust ejecta from Deimos. Planet. Space Sci. 53, 357–369 (2005) ADSCrossRefGoogle Scholar
  149. M.A. McGrath, W.B. Sparks, Galileo ionosphere profile coincident with repeat plume detection location at Europa. Res. Notes Am. Astron. Soc. 1, 14 (2017).  https://doi.org/10.3847/2515-5172/aa988e ADSCrossRefGoogle Scholar
  150. R. Meier, B.A. Smith, T.C. Owen, E.E. Becklin, R.J. Terrile, Near infrared photometry of the Jovian ring and Adrastea. Icarus 141, 253–262 (1999) ADSCrossRefGoogle Scholar
  151. P. Meier, U. Motschmann, J. Schmidt, F. Spahn, T.W. Hill, Y. Dong, G.H. Jones, H. Kriegel, Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations. Planet. Space Sci. 119, 208–221 (2015).  https://doi.org/10.1016/j.pss.2015.10.002 ADSCrossRefGoogle Scholar
  152. D.A. Mendis, W.I. Axford, Satellites and magnetospheres of the outer planets. Annu. Rev. Earth Planet. Sci. 2, 419. 2(1), 419–474 (1974) CrossRefGoogle Scholar
  153. D.A. Mendis, W.I. Axford, Revisiting Iapetus following recent Cassini observations. J. Geophys. Res. Space Phys. 113, 11217 (2008).  https://doi.org/10.1029/2008JA013532 ADSCrossRefGoogle Scholar
  154. N. Meyer-Vernet, On the charge of nanograins in cold environments and Enceladus dust. Icarus 226, 583–590 (2013).  https://doi.org/10.1016/j.icarus.2013.06.014 ADSCrossRefGoogle Scholar
  155. N. Meyer-Vernet, M.G. Aubier, B.M. Pedersen, Voyager 2 at Uranus—grain impacts in the ring plane. Geophys. Res. Lett. 13, 617–620 (1986).  https://doi.org/10.1029/GL013i007p00617 ADSCrossRefGoogle Scholar
  156. N. Meyer-Vernet, A. Lecacheux, B.M. Pedersen, Constraints on Saturn’s E ring from the Voyager 1 radio astronomy instrument. Icarus 123, 113–128 (1996).  https://doi.org/10.1006/icar.1996.0145 ADSCrossRefGoogle Scholar
  157. C.J. Mitchell, J.E. Colwell, M. Horányi, Dust capture by the Saturnian magnetosphere. IEEE Trans. Plasma Sci. 32, 598–600 (2004).  https://doi.org/10.1109/TPS.2004.826100 ADSCrossRefGoogle Scholar
  158. C.J. Mitchell, J.E. Colwell, M. Horányi, Tenuous ring formation by the capture of interplanetary dust at Saturn. J. Geophys. Res. Space Phys. 110, 9218 (2005).  https://doi.org/10.1029/2004JA010577 ADSCrossRefGoogle Scholar
  159. C.J. Mitchell, C.C. Porco, H.L. Dones, J.N. Spitale, The behavior of spokes in Saturn’s B ring. Icarus 225, 446–474 (2013).  https://doi.org/10.1016/j.icarus.2013.02.011 ADSCrossRefGoogle Scholar
  160. C.J. Mitchell, C.C. Porco, J.W. Weiss, Tracking the Geysers of Enceladus into Saturn’s E ring. Astron. J. 149, 156 (2015).  https://doi.org/10.1088/0004-6256/149/5/156 ADSCrossRefGoogle Scholar
  161. D.G. Mitchell, M.E. Perry, D.C. Hamilton, J.H. Westlake, P. Kollmann, H.T. Smith, J.F. Carbary, J.H. Waite, R. Perryman, H.-W. Hsu, J.-E. Wahlund, M.W. Morooka, L.Z. Hadid, A.M. Persoon, W.S. Kurth, Dust grains fall from Saturn’s D-ring into its equatorial upper atmosphere. Science 362, 2236 (2018).  https://doi.org/10.1126/science.aat2236 ADSCrossRefGoogle Scholar
  162. L. Moore, J. O’Donoghue, I. Müller-Wodarg, M. Galand, M. Mendillo, Saturn ring rain: model estimates of water influx into Saturn’s atmosphere. Icarus 245, 355–366 (2015).  https://doi.org/10.1016/j.icarus.2014.08.041 ADSCrossRefGoogle Scholar
  163. M.W. Morooka, J.-E. Wahlund, A.I. Eriksson, W.M. Farrell, D.A. Gurnett, W.S. Kurth, A.M. Persoon, M. Shafiq, M. André, M.K.G. Holmberg, Dusty plasma in the vicinity of Enceladus. J. Geophys. Res. Space Phys. 116, 12221 (2011).  https://doi.org/10.1029/2011JA017038 ADSCrossRefGoogle Scholar
  164. C.D. Murray, R.S. French, Planetary ring systems, in The F ring of Saturn, ed. by M.S. Tiscareno, C.D. Murray (Cambridge University Press, New York, 2018), pp. 338–362 Google Scholar
  165. C.D. Murray, R.P. Thompson, Orbits of shepherd satellites deduced from the structure of the rings of Uranus. Nature 348, 499–502 (1990).  https://doi.org/10.1038/348499a0 ADSCrossRefGoogle Scholar
  166. F. Namouni, C. Porco, The confinement of Neptune’s ring arcs by the moon Galatea. Nature 417, 45–47 (2002).  https://doi.org/10.1038/417045a ADSCrossRefGoogle Scholar
  167. P.D. Nicholson, M.R. Showalter, L. Dones, Observations of Saturn’s ring-plane crossing in August and November. Science 272, 509–516 (1996) ADSCrossRefGoogle Scholar
  168. P.D. Nicholson, I.D. Pater, R.G. French, M.R. Showalter, The rings of Uranus, in Planetary Ring Systems Properties, Structure, and Evolution, ed. by M.S. Tiscareno, C.D.E. Murray. (Cambridge University Press, New York, 2018), pp. 93–111.  https://doi.org/10.1017/9781316286791.004. Chap. 4 CrossRefGoogle Scholar
  169. T.G. Northrop, J.E.P. Connerney, A micrometeorite erosion model and the age of Saturn’s rings. Icarus 70, 124–137 (1987).  https://doi.org/10.1016/0019-1035(87)90079-0 ADSCrossRefGoogle Scholar
  170. T.G. Northrop, J.R. Hill, Stability of negatively charged dust grains in Saturn’s ring plane. J. Geophys. Res. 87, 6045–6051 (1982).  https://doi.org/10.1029/JA087iA08p06045 ADSCrossRefGoogle Scholar
  171. T.G. Northrop, J.R. Hill, The adiabatic motion of charged dust grains in rotating magnetospheres. J. Geophys. Res. 88, 1–11 (1983a).  https://doi.org/10.1029/JA088iA01p00001 ADSCrossRefGoogle Scholar
  172. T.G. Northrop, J.R. Hill, The inner edge of Saturn’s B ring. J. Geophys. Res. 88, 6102–6108 (1983b).  https://doi.org/10.1029/JA088iA08p06102 ADSCrossRefGoogle Scholar
  173. M.E. Ockert-Bell, J.A. Burns, I.J. Daubar, P.C. Thomas, J. Veverka, M.J.S. Belton, K.P. Klaasen, The structure of Jupiter’s ring system as revealed by the Galileo imaging experiment. Icarus 138, 188–213 (1999).  https://doi.org/10.1006/icar.1998.6072 ADSCrossRefGoogle Scholar
  174. J. O’Donoghue, T.S. Stallard, H. Melin, G.H. Jones, S.W.H. Cowley, S. Miller, K.H. Baines, J.S.D. Blake, The domination of Saturn’s low-latitude ionosphere by ring ‘rain’. Nature 496, 193–195 (2013).  https://doi.org/10.1038/nature12049 ADSCrossRefGoogle Scholar
  175. M. Øieroset, D.A. Brain, E. Simpson, D.L. Mitchell, T.D. Phan, J.S. Halekas, R.P. Lin, M.H. Acuña, Search for Phobos and Deimos gas/dust tori using in situ observations from Mars Global Surveyor MAG/ER. Icarus 206, 189–198 (2010).  https://doi.org/10.1016/j.icarus.2009.07.017 ADSCrossRefGoogle Scholar
  176. E.J. Öpik, Collision probabilities with the planets and the distribution of interplanetary matter. Proc. R. Ir. Acad., A Math. Phys. Sci. 54, 165–199 (1951) zbMATHGoogle Scholar
  177. J.L. Ortiz, R. Duffard, N. Pinilla-Alonso, A. Alvarez-Candal, P. Santos-Sanz, N. Morales, E. Fernández-Valenzuela, J. Licandro, A. Campo Bagatin, A. Thirouin, Possible ring material around centaur (2060) Chiron. Astron. Astrophys. 576, 18 (2015).  https://doi.org/10.1051/0004-6361/201424461 ADSCrossRefGoogle Scholar
  178. J.L. Ortiz, P. Santos-Sanz, B. Sicardy, G. Benedetti-Rossi, D. Bérard, N. Morales, R. Duffard, F. Braga-Ribas, U. Hopp, C. Ries, V. Nascimbeni, F. Marzari, V. Granata, A. Pál, C. Kiss, T. Pribulla, R. Komžík, K. Hornoch, P. Pravec, P. Bacci, M. Maestripieri, L. Nerli, L. Mazzei, M. Bachini, F. Martinelli, G. Succi, F. Ciabattari, H. Mikuz, A. Carbognani, B. Gaehrken, S. Mottola, S. Hellmich, F.L. Rommel, E. Fernández-Valenzuela, A.C. Bagatin, S. Cikota, A. Cikota, J. Lecacheux, R. Vieira-Martins, J.I.B. Camargo, M. Assafin, F. Colas, R. Behrend, J. Desmars, E. Meza, A. Alvarez-Candal, W. Beisker, A.R. Gomes-Junior, B.E. Morgado, F. Roques, F. Vachier, J. Berthier, T.G. Mueller, J.M. Madiedo, O. Unsalan, E. Sonbas, N. Karaman, O. Erece, D.T. Koseoglu, T. Ozisik, S. Kalkan, Y. Guney, M.S. Niaei, O. Satir, C. Yesilyaprak, C. Puskullu, A. Kabas, O. Demircan, J. Alikakos, V. Charmandaris, G. Leto, J. Ohlert, J.M. Christille, R. Szakáts, A.T. Farkas, E. Varga-Verebélyi, G. Marton, A. Marciniak, P. Bartczak, T. Santana-Ros, M. Butkiewicz-Bąk, G. Dudziński, V. Alí-Lagoa, K. Gazeas, L. Tzouganatos, N. Paschalis, V. Tsamis, A. Sánchez-Lavega, S. Pérez-Hoyos, R. Hueso, J.C. Guirado, V. Peris, R. Iglesias-Marzoa, The size, shape, density and ring of the dwarf planet Haumea from a stellar occultation. Nature 550, 219–223 (2017).  https://doi.org/10.1038/nature24051 ADSCrossRefGoogle Scholar
  179. C.C. Porco, An explanation for Neptune’s ring arcs. Science 253, 995–1001 (1991).  https://doi.org/10.1126/science.253.5023.995 ADSCrossRefGoogle Scholar
  180. C.A. Porco, G.E. Danielson, The periodic variation of spokes in Saturn’s rings. Astron. J. 87, 826–833 (1982).  https://doi.org/10.1086/113162 ADSCrossRefGoogle Scholar
  181. C.C. Porco, P.D. Nicholson, J.N. Cuzzi, J.J. Lissauer, L.W. Esposito, Neptune’s ring system, in Neptune and Triton, Arizona, Tucson ed. by D.P. Cruikshank (1995), pp. 703–804 Google Scholar
  182. C.C. Porco, P. Helfenstein, P.C. Thomas, A.P. Ingersoll, J. Wisdom, R. West, G. Neukum, T. Denk, R. Wagner, T. Roatsch, S. Kieffer, E. Turtle, A. McEwen, T.V. Johnson, J. Rathbun, J. Veverka, D. Wilson, J. Perry, J. Spitale, A. Brahic, J.A. Burns, A.D. Del Genio, L. Dones, C.D. Murray, S. Squyres, Cassini observes the active South pole of Enceladus. Science 311, 1393–1401 (2006).  https://doi.org/10.1126/science.1123013 ADSCrossRefGoogle Scholar
  183. C.C. Porco, P.C. Thomas, J.W. Weiss, D.C. Richardson, Saturn’s small inner satellites: clues to their origins. Science 318, 1602 (2007).  https://doi.org/10.1126/science.1143977 ADSCrossRefGoogle Scholar
  184. S.B. Porter, A.S. Stern, Orbits of potential Pluto satellites and rings between Charon and Hydra (2015). arXiv:1505.05933 [astro-ph.EP]
  185. F. Postberg, S. Kempf, R. Srama, S.F. Green, J.K. Hillier, N. McBride, E. Grün, Composition of Jovian dust stream particles. Icarus 183, 122–134 (2006).  https://doi.org/10.1016/j.icarus.2006.02.001 ADSCrossRefGoogle Scholar
  186. F. Postberg, S. Kempf, J. Schmidt, N. Brilliantov, A. Beinsen, B. Abel, U. Buck, R. Srama, Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009).  https://doi.org/10.1038/nature08046 ADSCrossRefGoogle Scholar
  187. F. Postberg, J. Schmidt, J. Hillier, S. Kempf, R. Srama, A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474, 620–622 (2011a).  https://doi.org/10.1038/nature10175 ADSCrossRefGoogle Scholar
  188. F. Postberg, E. Grün, M. Horányi, S. Kempf, H. Krüger, R. Srama, Z. Sternovsky, M. Trieloff, Compositional mapping of planetary moons by mass spectrometry of dust ejecta. Planet. Space Sci. (2011b).  https://doi.org/10.1016/j.pss.2011.05.001 CrossRefGoogle Scholar
  189. F. Postberg, R.N. Clark, C.J. Hansen, A.J. Coates, C.M. Dale Ore, F. Scipioni, M.M. Hedman, J.H. Waite, Plume and surface composition of Enceladus, in Enceladus and the Icy Moons of Saturn (University of Arizona Press, Tucson, 2018) Google Scholar
  190. S. Renner, B. Sicardy, D. Souami, B. Carry, C. Dumas, Neptune’s ring arcs: VLT/NACO near-infrared observations and a model to explain their stability. Astron. Astrophys. 563, 133 (2014).  https://doi.org/10.1051/0004-6361/201321910 ADSCrossRefGoogle Scholar
  191. W. Riedler, K. Schwingenschuh, D. Möhlmann, V.N. Oraevskii, E. Eroshenko, J. Slavin, Magnetic fields near Mars: first results. Nature 341, 604–607 (1989) ADSCrossRefGoogle Scholar
  192. L.J. Robinson, Closing in on Saturn. Sky Telesc. 60, 481 (1980) ADSGoogle Scholar
  193. L. Roth, J. Saur, K.D. Retherford, D.F. Strobel, P.D. Feldman, M.A. McGrath, F. Nimmo, Transient water vapor at Europa’s South pole. Science 343, 171–174 (2014).  https://doi.org/10.1126/science.1247051 ADSCrossRefGoogle Scholar
  194. E. Roussos, G.H. Jones, N. Krupp, C. Paranicas, D.G. Mitchell, S.M. Krimigis, J. Woch, A. Lagg, K. Khurana, Energetic electron signatures of Saturn’s smaller moons: evidence of an arc of material at Methone. Icarus 193, 455–464 (2008).  https://doi.org/10.1016/j.icarus.2007.03.034 ADSCrossRefGoogle Scholar
  195. M. Sachse, A planetary dust ring generated by impact-ejection from the Galilean satellites. Icarus 303, 166–180 (2018).  https://doi.org/10.1016/j.icarus.2017.10.011 ADSCrossRefGoogle Scholar
  196. M. Sachse, J. Schmidt, S. Kempf, F. Spahn, Correlation between speed and size for ejecta from hypervelocity impacts. J. Geophys. Res., Planets 120, 1847–1858 (2015).  https://doi.org/10.1002/2015JE004844 ADSCrossRefGoogle Scholar
  197. V.S. Safronov, Evolution of the protoplanetary cloud and formation of the earth and planets (1972) Google Scholar
  198. J. Schmidt, N. Brilliantov, F. Spahn, S. Kempf, Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451, 685–688 (2008).  https://doi.org/10.1038/nature06491 ADSCrossRefGoogle Scholar
  199. M. Seiß, R. Srama, K.-L. Sun, M. Seiler, G. Moragas-Klostermeyer, S. Kempf, F. Spahn, Pallene dust torus observations by the cosmic dust analyzer, in European Planetary Science Congress, vol. 9 (2014), p. 375 Google Scholar
  200. Y. Sekine, T. Shibuya, F. Postberg, H. Hsu, K. Suzuki, Y. Masaki, T. Kuwatani, M. Mori, P.K. Hong, M. Yoshizaki, S. Tachibana, S.-I. Sirono, High-temperature water–rock interactions and hydrothermal environments in the chondrite-like high-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015) CrossRefGoogle Scholar
  201. R. Sfair, S.M. Giuliatti Winter, Orbital evolution of the \(\mu \) and \(\nu \) dust ring particles of Uranus. Astron. Astrophys. 505, 845–852 (2009).  https://doi.org/10.1051/0004-6361/200911886 ADSCrossRefzbMATHGoogle Scholar
  202. R. Sfair, S.M. Giuliatti Winter, The role of Mab as a source for the \(\mu \) ring of Uranus. Astron. Astrophys. 543, 17 (2012).  https://doi.org/10.1051/0004-6361/201117346 ADSCrossRefGoogle Scholar
  203. I.I. Shapiro, D.A. Lautman, G. Colombo, The Earth’s dust belt: fact or fiction?: 1. Forces perturbing dust particle motion. J. Geophys. Res. 71, 5695–5704 (1966).  https://doi.org/10.1029/JZ071i023p05695 ADSCrossRefGoogle Scholar
  204. R.A. Shaw, D. Lamb, Experimental determination of the thermal accommodation and condensation coefficients of water. J. Chem. Phys. 111, 10659–10663 (1999).  https://doi.org/10.1063/1.480419 ADSCrossRefGoogle Scholar
  205. M.R. Showalter, Arcs and clumps in the Uranian \(\lambda \) ring. Science 267, 490–493 (1995).  https://doi.org/10.1126/science.267.5197.490 ADSCrossRefGoogle Scholar
  206. M.R. Showalter, Saturn’s D ring in the Voyager images. Icarus 124, 677–689 (1996).  https://doi.org/10.1006/icar.1996.0241 ADSCrossRefGoogle Scholar
  207. M.R. Showalter, D.P. Hamilton, Resonant interactions and chaotic rotation of Pluto’s small moons. Nature 522, 45–49 (2015).  https://doi.org/10.1038/nature14469 ADSCrossRefGoogle Scholar
  208. M.R. Showalter, J.J. Lissauer, The second ring-moon system of Uranus: discovery and dynamics. Science 311, 973–977 (2006).  https://doi.org/10.1126/science.1122882 ADSCrossRefGoogle Scholar
  209. M.R. Showalter, J.A. Burns, J.N. Cuzzi, J.B. Pollack, Jupiter’s ring system—new results on structure and particle properties. Icarus 69, 458–498 (1987) ADSCrossRefGoogle Scholar
  210. M.R. Showalter, J.N. Cuzzi, S.M. Larson, Structure and particle properties of Saturn’s E ring. Icarus 94, 451–473 (1991) ADSCrossRefGoogle Scholar
  211. M.R. Showalter, J.A. Burns, I. de Pater, D.P. Hamilton, J.J. Lissauer, G. Verbanac, Updates on the dusty rings of Jupiter, Uranus and Neptune, in Dust in Planetary Systems. LPI Contributions, vol. 1280 (2005), p. 130 Google Scholar
  212. M.R. Showalter, D.P. Hamilton, P.D. Nicholson, A deep search for Martian dust rings and inner moons using the Hubble Space. Planet. Space Sci. 54, 844–854 (2006).  https://doi.org/10.1016/j.pss.2006.05.009 ADSCrossRefGoogle Scholar
  213. M.R. Showalter, A.F. Cheng, H.A. Weaver, S.A. Stern, J.R. Spencer, H.B. Throop, E.M. Birath, D. Rose, J.M. Moore, Clump detections and limits on moons in Jupiter’s ring system. Science 318, 232 (2007).  https://doi.org/10.1126/science.1147647 ADSCrossRefGoogle Scholar
  214. M.R. Showalter, M.M. Hedman, J.A. Burns, The impact of comet Shoemaker-Levy 9 sends ripples through the rings of Jupiter. Science 332, 711 (2011).  https://doi.org/10.1126/science.1202241 ADSCrossRefGoogle Scholar
  215. P.K. Shukla, A.A. Mamun, Introduction to the Physics of Dusty Plasmas. IOP Series in Plasma Physics (Bristol, Institute of Physics, 2002) CrossRefGoogle Scholar
  216. B. Sicardy et al., Rings beyond the Giant Planets (2017). arXiv:1612.03321 [astro-ph.EP]
  217. S. Simon, J. Saur, H. Kriegel, F.M. Neubauer, U. Motschmann, M.K. Dougherty, Influence of negatively charged plume grains and hemisphere coupling currents on the structure of Enceladus’ Alfvén wings: analytical modeling of Cassini magnetometer observations. J. Geophys. Res. Space Phys. 116, 04221 (2011).  https://doi.org/10.1029/2010JA016338 ADSCrossRefGoogle Scholar
  218. W.M. Sinton, Uranus—the rings are black. Science 198, 503 (1977).  https://doi.org/10.1126/science.198.4316.503 ADSCrossRefGoogle Scholar
  219. B.A. Smith, L.A. Soderblom, T.V. Johnson, A.P. Ingersoll, S.A. Collins, E.M. Shoemaker, G.E. Hunt, H. Masursky, M.H. Carr, M.E. Davies, A.F. Cook, J.M. Boyce, T. Owen, G.E. Danielson, C. Sagan, R.F. Beebe, J. Veverka, J.F. McCauley, R.G. Strom, D. Morrison, G.A. Briggs, V.E. Suomi, The Jupiter system through the eyes of Voyager 1. Science 204, 951–957 (1979).  https://doi.org/10.1126/science.204.4396.951 ADSCrossRefGoogle Scholar
  220. B.A. Smith, L. Soderblom, R.F. Beebe, J.M. Boyce, G. Briggs, A. Bunker, S.A. Collins, C. Hansen, T.V. Johnson, J.L. Mitchell, R.J. Terrile, M.H. Carr, A.F. Cook, J.N. Cuzzi, J.B. Pollack, G.E. Danielson, A.P. Ingersoll, M.E. Davies, G.E. Hunt, H. Masursky, E.M. Shoemaker, D. Morrison, T. Owen, C. Sagan, J. Veverka, R. Strom, V.E. Suomi, Encounter with Saturn—Voyager 1 imaging science results. Science 212, 163–191 (1981) ADSCrossRefGoogle Scholar
  221. B.A. Smith, L. Soderblom, R.M. Batson, P.M. Bridges, J.L. Inge, H. Masursky, E. Shoemaker, R.F. Beebe, J. Boyce, G. Briggs, A. Bunker, S.A. Collins, C. Hansen, T.V. Johnson, J.L. Mitchell, R.J. Terrile, A.F. Cook, J.N. Cuzzi, J.B. Pollack, G.E. Danielson, A.P. Ingersoll, M.E. Davies, G.E. Hunt, D. Morrison, T. Owen, C. Sagan, J. Veverka, R. Strom, V.E. Suomi, A new look at Saturn system: the Voyager 2 images. Science 215, 503–537 (1982) ADSGoogle Scholar
  222. B.A. Smith, L.A. Soderblom, R. Beebe, D. Bliss, R.H. Brown, S.A. Collins, J.M. Boyce, G.A. Briggs, A. Brahic, J.N. Cuzzi, D. Morrison, Voyager 2 in the Uranian system—imaging science results. Science 233, 43–64 (1986).  https://doi.org/10.1126/science.233.4759.43 ADSCrossRefGoogle Scholar
  223. B.A. Smith, L.A. Soderblom, D. Banfield, C. Barnet, A.T. Basilevksy, R.F. Beebe, K. Bollinger, J.M. Boyce, A. Brahic, G.A. Briggs, R.H. Brown, C. Chyba, S.A. Collins, T. Colvin, A.F. Cook, D. Crisp, S.K. Croft, D. Cruikshank, J.N. Cuzzi, G.E. Danielson, M.E. Davies, E. de Jong, L. Dones, D. Godfrey, J. Goguen, I. Grenier, V.R. Haemmerle, H. Hammel, C.J. Hansen, C.P. Helfenstein, C. Howell, G.E. Hunt, A.P. Ingersoll, T.V. Johnson, J. Kargel, R. Kirk, D.I. Kuehn, S. Limaye, H. Masursky, A. McEwen, D. Morrison, T. Owen, W. Owen, J.B. Pollack, C.C. Porco, K. Rages, P. Rogers, D. Rudy, C. Sagan, J. Schwartz, E.M. Shoemaker, M. Showalter, B. Sicardy, D. Simonelli, J. Spencer, L.A. Sromovsky, C. Stoker, R.G. Strom, V.E. Suomi, S.P. Synott, R.J. Terrile, P. Thomas, W.R. Thompson, A. Verbiscer, J. Veverka, Voyager 2 at Neptune: imaging science results. Science 246, 1422–1449 (1989).  https://doi.org/10.1126/science.246.4936.1422 ADSCrossRefGoogle Scholar
  224. S. Soter, The dust belts of Mars. Technical report, Center for Radiophysics and Space Research (1971) Google Scholar
  225. S. Soter, Brightness asymmetry of Iapetus, Paper presented at IAU Coll. No. 28, Cornell Univ. (Aug. 1974) Google Scholar
  226. B.S. Southworth, S. Kempf, J. Schmidt, Modeling Europa’s dust plumes. Geophys. Res. Lett. 42, 10 (2015).  https://doi.org/10.1002/2015GL066502 CrossRefGoogle Scholar
  227. F. Spahn, H.-J. Wiebicke, Long-term gravitational influence of moonlets in planetary rings. Icarus 77, 124–134 (1989) ADSCrossRefGoogle Scholar
  228. F. Spahn, N. Albers, M. Sremčević, C. Thornton, Kinetic description of coagulation and fragmentation in dilute granular particle ensembles. Europhys. Lett. 67, 545–551 (2004) ADSCrossRefGoogle Scholar
  229. F. Spahn, N. Albers, M. Hörning, S. Kempf, A.V. Krivov, M. Makuch, J. Schmidt, M. Seiß, M. Sremčević, E ring dust sources: implications from Cassini’s dust measurements. Planet. Space Sci. 54, 1024–1032 (2006a).  https://doi.org/10.1016/j.pss.2006.05.022 ADSCrossRefGoogle Scholar
  230. F. Spahn, J. Schmidt, N. Albers, M. Hörning, M. Makuch, M. Seiß, S. Kempf, R. Srama, V. Dikarev, S. Helfert, G. Moragas-Klostermeyer, A.V. Krivov, M. Sremčević, A.J. Tuzzolino, T. Economou, E. Grün, Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311, 1416–1418 (2006b).  https://doi.org/10.1126/science.1121375 ADSCrossRefGoogle Scholar
  231. W.B. Sparks, K.P. Hand, M.A. McGrath, E. Bergeron, M. Cracraft, S.E. Deustua, Probing for evidence of plumes on Europa with HST/STIS. Astrophys. J. 829, 121 (2016).  https://doi.org/10.3847/0004-637X/829/2/121 ADSCrossRefGoogle Scholar
  232. W.B. Sparks, B.E. Schmidt, M.A. McGrath, K.P. Hand, J.R. Spencer, M. Cracraft, S.E. Deustua, Active cryovolcanism on Europa? Astrophys. J. Lett. 839, 18 (2017).  https://doi.org/10.3847/2041-8213/aa67f8 ADSCrossRefGoogle Scholar
  233. J.R. Spencer, J.C. Pearl, M. Segura, F.M. Flasar, A. Mamoutkine, P. Romani, B.J. Buratti, A.R. Hendrix, L.J. Spilker, R.M.C. Lopes, Cassini encounters Enceladus: background and the discovery of a South polar hot spot. Science 311, 1401–1405 (2006).  https://doi.org/10.1126/science.1121661 ADSCrossRefGoogle Scholar
  234. J.N. Spitale, T.A. Hurford, A.R. Rhoden, E.E. Berkson, S.S. Platts, Curtain eruptions from Enceladus’ South-polar terrain. Nature 521, 57–60 (2015).  https://doi.org/10.1038/nature14368 ADSCrossRefGoogle Scholar
  235. R. Srama, T.J. Ahrens, N. Altobelli, S. Auer, J.G. Bradley, M. Burton, V.V. Dikarev, T. Economou, H. Fechtig, M. Görlich, M. Grande, A. Graps, E. Grün, O. Havnes, S. Helfert, M. Horanyi, E. Igenbergs, E.K. Jessberger, T.V. Johnson, S. Kempf, A.V. Krivov, H. Krüger, A. Mocker-Ahlreep, G. Moragas-Klostermeyer, P. Lamy, M. Landgraf, D. Linkert, G. Linkert, F. Lura, J.A.M. McDonnell, D. Möhlmann, G.E. Morfill, M. Müller, M. Roy, G. Schäfer, G. Schlotzhauer, G.H. Schwehm, F. Spahn, M. Stübig, J. Svestka, V. Tschernjawski, A.J. Tuzzolino, R. Wäsch, H.A. Zook, The Cassini cosmic dust analyzer. Space Sci. Rev. 114, 465–518 (2004).  https://doi.org/10.1007/s11214-004-1435-z ADSCrossRefGoogle Scholar
  236. R. Srama, S. Kempf, G. Moragas-Klostermeyer, S. Helfert, T.J. Ahrens, N. Altobelli, S. Auer, U. Beckmann, J.G. Bradley, M. Burton, V.V. Dikarev, T. Economou, H. Fechtig, S.F. Green, M. Grande, O. Havnes, J.K. Hillier, M. Horányi, E. Igenbergs, E.K. Jessberger, T.V. Johnson, H. Krüger, G. Matt, N. McBride, A. Mocker, P. Lamy, D. Linkert, G. Linkert, F. Lura, J.A.M. McDonnell, D. Möhlmann, G.E. Morfill, F. Postberg, M. Roy, G.H. Schwehm, F. Spahn, J. Svestka, V. Tschernjawski, A.J. Tuzzolino, R. Wäsch, E. Grün, In situ dust measurements in the inner Saturnian system. Planet. Space Sci. 54, 967–987 (2006).  https://doi.org/10.1016/j.pss.2006.05.021 ADSCrossRefGoogle Scholar
  237. M. Sremčević, A.V. Krivov, F. Spahn, Impact-generated dust clouds around planetary satellites: asymmetry effects. Planet. Space Sci. 51, 455–471 (2003).  https://doi.org/10.1016/S0032-0633(03)00050-3 ADSCrossRefGoogle Scholar
  238. M. Sremčević, A.V. Krivov, H. Krüger, F. Spahn, Impact-generated dust clouds around planetary satellites: model versus Galileo data. Planet. Space Sci. 53, 625–641 (2005).  https://doi.org/10.1016/j.pss.2004.10.001 ADSCrossRefGoogle Scholar
  239. G.R. Stewart, D.N.C. Lin, P. Bodenheimer, Collision-induced transport processes in planetary rings, in Planetary Rings, ed. by R. Greenberg, A. Brahic (University Arizona Press, Tucson, 1984), pp. 447–512 Google Scholar
  240. G. Strazzulla, Organic material from Phoebe to Iapetus. Icarus 66, 397–400 (1986).  https://doi.org/10.1016/0019-1035(86)90167-3 ADSCrossRefGoogle Scholar
  241. K.-L. Sun, M. Seiß, M.M. Hedman, F. Spahn, Dust in the arcs of Methone and Anthe. Icarus 284, 206–215 (2017).  https://doi.org/10.1016/j.icarus.2016.11.009 ADSCrossRefGoogle Scholar
  242. J.R. Szalay, A.R. Poppe, J. Agarwal, D. Britt, I. Belskaya, M. Horányi, T. Nakamura, M. Sachse, F. Spahn, Dust phenomena relating to airless bodies. Space Sci. Rev. 214, 98 (2018).  https://doi.org/10.1007/s11214-018-0527-0 ADSCrossRefGoogle Scholar
  243. D. Tamayo, J.A. Burns, D.P. Hamilton, Chaotic dust dynamics and implications for the hemispherical color asymmetries of the Uranian satellites. Icarus 226, 655–662 (2013).  https://doi.org/10.1016/j.icarus.2013.06.018 ADSCrossRefGoogle Scholar
  244. D. Tamayo, M.M. Hedman, J.A. Burns, First observations of the Phoebe ring in optical light. Icarus 233, 1–8 (2014).  https://doi.org/10.1016/j.icarus.2014.01.021 ADSCrossRefGoogle Scholar
  245. D. Tamayo, S.R. Markham, M.M. Hedman, J.A. Burns, D.P. Hamilton, Radial profiles of the Phoebe ring: a vast debris disk around Saturn. Icarus 275, 117–131 (2016).  https://doi.org/10.1016/j.icarus.2016.04.009 ADSCrossRefGoogle Scholar
  246. P.C. Thomas, R. Tajeddine, M.S. Tiscareno, J.A. Burns, J. Joseph, T.J. Loredo, P. Helfenstein, C. Porco, Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016).  https://doi.org/10.1016/j.icarus.2015.08.037 ADSCrossRefGoogle Scholar
  247. H.B. Throop, L.W. Esposito, G ring particle sizes derived from ring plane crossing observations. Icarus 131, 152–166 (1998) ADSCrossRefGoogle Scholar
  248. H.B. Throop, C.C. Porco, R.A. West, J.A. Burns, M.R. Showalter, P.D. Nicholson, The Jovian rings: new results derived from Cassini, Galileo, Voyager, and Earth-based observations. Icarus 172, 59–77 (2004).  https://doi.org/10.1016/j.icarus.2003.12.020 ADSCrossRefGoogle Scholar
  249. A.J. Verbiscer, M.F. Skrutskie, D.P. Hamilton, Saturn’s largest ring. Nature 461, 1098–1100 (2009).  https://doi.org/10.1038/nature08515 ADSCrossRefGoogle Scholar
  250. J.-E. Wahlund, M. André, A.I.E. Eriksson, M. Lundberg, M.W. Morooka, M. Shafiq, T.F. Averkamp, D.A. Gurnett, G.B. Hospodarsky, W.S. Kurth, K.S. Jacobsen, A. Pedersen, W. Farrell, S. Ratynskaia, N. Piskunov, Detection of dusty plasma near the E-ring of Saturn. Planet. Space Sci. 57, 1795–1806 (2009).  https://doi.org/10.1016/j.pss.2009.03.011 ADSCrossRefGoogle Scholar
  251. J.H. Waite, M.R. Combi, W.-H. Ip, T.E. Cravens, R.L. McNutt, W. Kasprzak, R. Yelle, J. Luhmann, H. Niemann, D. Gell, B. Magee, G. Fletcher, J. Lunine, W.-L. Tseng, Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422 (2006).  https://doi.org/10.1126/science.1121290 ADSCrossRefGoogle Scholar
  252. J.H. Waite, R.S. Perryman, M.E. Perry, K.E. Miller, J. Bell, T.E. Cravens, C.R. Glein, J. Grimes, M. Hedman, J. Cuzzi, T. Brockwell, B. Teolis, L. Moore, D.G. Mitchell, A. Persoon, W.S. Kurth, J.-E. Wahlund, M. Morooka, L.Z. Hadid, S. Chocron, J. Walker, A. Nagy, R. Yelle, S. Ledvina, R. Johnson, W. Tseng, O.J. Tucker, W.-H. Ip, Chemical interactions between Saturn’s atmosphere and its rings. Science 362, 2382 (2018).  https://doi.org/10.1126/science.aat2382 ADSCrossRefGoogle Scholar
  253. H.A. Weaver, P.D. Feldman, M.F. A’Hearn, C. Arpigny, R.A. Brown, E.F. Helin, D.H. Levy, B.G. Marsden, K.J. Meech, S.M. Larson, K.S. Noll, J.V. Scotti, Z. Sekanina, C.S. Shoemaker, E.M. Shoemaker, T.E. Smith, A.D. Storrs, D.K. Yeomans, B. Zellner, HST observations of comet Shoemaker-Levy (1993e), in AAS/Division for Planetary Sciences Meeting Abstracts #25. Bulletin of the American Astronomical Society, vol. 25 (1993), p. 1042 Google Scholar
  254. H.A. Weaver, S.A. Stern, M.J. Mutchler, A.J. Steffl, M.W. Buie, W.J. Merline, J.R. Spencer, E.F. Young, L.A. Young, Discovery of two new satellites of Pluto. Nature 439, 943–945 (2006).  https://doi.org/10.1038/nature04547 ADSCrossRefGoogle Scholar
  255. G.W. Wetherill, Collisions in the asteroid belt. J. Geophys. Res. 72, 2429 (1967).  https://doi.org/10.1029/JZ072i009p02429 ADSCrossRefGoogle Scholar
  256. O.C. Winter, D.C. Mourão, S.M. Giuliatti Winter, F. Spahn, C. da Cruz, Moonlets wandering on a leash-ring. Mon. Not. R. Astron. Soc. 380, 54–57 (2007) ADSCrossRefGoogle Scholar
  257. V.V. Yaroshenko, H. Lühr, Electrical conductivity of the dusty plasma in the Enceladus plume. Icarus 278, 79–87 (2016).  https://doi.org/10.1016/j.icarus.2016.05.033 ADSCrossRefGoogle Scholar
  258. V.V. Yaroshenko, M. Horányi, G.E. Morfill, The wave mechanism of spoke formation in Saturn’s rings, in Multifacets of Dusty Plasmas, Fifths International Conference on the Physics of Dusty Plasmas, vol. 1041 (AIP, New York, 2008), pp. 215–216 Google Scholar
  259. V.V. Yaroshenko, S. Ratynskaia, J. Olson, N. Brenning, J.-E. Wahlund, M. Morooka, W.S. Kurth, D.A. Gurnett, G.E. Morfill, Characteristics of charged dust inferred from the Cassini RPWS measurements in the vicinity of Enceladus. Planet. Space Sci. 57, 1807–1812 (2009).  https://doi.org/10.1016/j.pss.2009.03.002 ADSCrossRefGoogle Scholar
  260. S.-Y. Ye, D.A. Gurnett, W.S. Kurth, T.F. Averkamp, M. Morooka, S. Sakai, J.-E. Wahlund, Electron density inside Enceladus plume inferred from plasma oscillations excited by dust impacts. J. Geophys. Res. Space Phys. 119, 3373–3380 (2014a).  https://doi.org/10.1002/2014JA019861 ADSCrossRefGoogle Scholar
  261. S.-Y. Ye, D.A. Gurnett, W.S. Kurth, T.F. Averkamp, S. Kempf, H.-W. Hsu, R. Srama, E. Grün, Properties of dust particles near Saturn inferred from voltage pulses induced by dust impacts on Cassini spacecraft. J. Geophys. Res. Space Phys. 119, 6294–6312 (2014b).  https://doi.org/10.1002/2014JA020024 ADSCrossRefGoogle Scholar
  262. S.-Y. Ye, D.A. Gurnett, W.S. Kurth, In-situ measurements of Saturn’s dusty rings based on dust impact signals detected by Cassini RPWS. Icarus 279, 51–61 (2016).  https://doi.org/10.1016/j.icarus.2016.05.006 ADSCrossRefGoogle Scholar
  263. M.Y. Zolotov, An oceanic composition on early and today’s Enceladus. Geophys. Res. Lett. 34, 23203 (2007).  https://doi.org/10.1029/2007GL031234 ADSCrossRefGoogle Scholar
  264. H.A. Zook, E. Grun, M. Baguhl, D.P. Hamilton, G. Linkert, J.-C. Liou, R. Forsyth, J.L. Phillips, Solar wind magnetic field bending of Jovian dust trajectories. Science 274, 1501–1503 (1996).  https://doi.org/10.1126/science.274.5292.1501 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Frank Spahn
    • 1
    Email author
  • Manuel Sachse
    • 1
  • Martin Seiß
    • 1
  • Hsiang-Wen Hsu
    • 2
  • Sascha Kempf
    • 2
  • Mihály Horányi
    • 2
  1. 1.Institut für Physik und AstronomieUniversität PotsdamPotsdamGermany
  2. 2.Department of PhysicsUniversity of Colorado BoulderBoulderUSA

Personalised recommendations