Hot Atmospheres, Cold Gas, AGN Feedback and the Evolution of Early Type Galaxies: A Topical Perspective
Abstract
Most galaxies comparable to or larger than the mass of the Milky Way host hot, X-ray emitting atmospheres, and many such galaxies are radio sources. Hot atmospheres and radio jets and lobes are the ingredients of radio-mechanical active galactic nucleus (AGN) feedback. While a consensus has emerged that such feedback suppresses cooling of hot cluster atmospheres, less attention has been paid to massive galaxies where similar mechanisms are at play. Observation indicates that the atmospheres of elliptical and S0 galaxies were accreted externally during the process of galaxy assembly and augmented significantly by stellar mass loss. Their atmospheres have entropy and cooling time profiles that are remarkably similar to those of central cluster galaxies. About half display filamentary or disky nebulae of cool and cold gas, much of which has likely cooled from the hot atmospheres. We review the observational and theoretical perspectives on thermal instabilities in galactic atmospheres and the evidence that AGN heating is able to roughly balance the atmospheric cooling. Such heating and cooling may be regulating star formation in all massive spheroids at late times.
Keywords
Elliptical galaxies Active galactic nuclei Interstellar mediumNotes
Acknowledgements
NW was supported by the Lendület LP2016-11 grant awarded by the Hungarian Academy of Sciences. BRM thanks the Natural Sciences and Engineering Research Council of Canada and the Canadian Space Agency for financial support.
References
- Z. Abdulla, J.E. Carlstrom, A.B. Mantz, D.P. Marrone, C.H. Greer, J.W. Lamb, E.M. Leitch, S. Muchovej, C. O’Donnell, T.J. Plagge, D. Woody, Constraints on the thermal contents of the X-ray cavities of cluster MS 0735.6+7421 with Sunyaev-Zel’dovich effect observations (2018). arXiv:1806.05050
- M. Ackermann, M. Ajello, A. Albert, et al., Search for cosmic-ray-induced gamma-ray emission in galaxy clusters. Astrophys. J. 787, 18 (2014). https://doi.org/10.1088/0004-637X/787/1/18 ADSCrossRefGoogle Scholar
- Planck Collaboration, P.A.R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. Balbi, A.J. Banday, et al., Planck intermediate results. XI. The gas content of dark matter halos: the Sunyaev-Zeldovich-stellar mass relation for locally brightest galaxies. Astron. Astrophys. 557, 52 (2013). https://doi.org/10.1051/0004-6361/201220941 CrossRefGoogle Scholar
- S.W. Allen, G.B. Taylor, P.E.J. Nulsen, R.M. Johnstone, L.P. David, S. Ettori, A.C. Fabian, W. Forman, C. Jones, B. McNamara, Chandra X-ray observations of the 3C 295 cluster core. Mon. Not. R. Astron. Soc. 324, 842–858 (2001). https://doi.org/10.1046/j.1365-8711.2001.04315.x ADSCrossRefGoogle Scholar
- S.W. Allen, R.J.H. Dunn, A.C. Fabian, G.B. Taylor, C.S. Reynolds, The relation between accretion rate and jet power in X-ray luminous elliptical galaxies. Mon. Not. R. Astron. Soc. 372, 21–30 (2006). https://doi.org/10.1111/j.1365-2966.2006.10778.x ADSCrossRefGoogle Scholar
- M.E. Anderson, J.N. Bregman, Detection of a hot gaseous halo around the Giant Spiral Galaxy NGC 1961. Astrophys. J. 737, 22 (2011). https://doi.org/10.1088/0004-637X/737/1/22 ADSCrossRefGoogle Scholar
- M.E. Anderson, R. Sunyaev, FUV line emission, gas kinematics, and discovery of [Fe XXI] \(\lambda\)1354.1 in the sightline toward a filament in M87. Astron. Astrophys. 617, 123 (2018). https://doi.org/10.1051/0004-6361/201732510 ADSCrossRefGoogle Scholar
- M.E. Anderson, E. Churazov, J.N. Bregman, A deep XMM-Newton study of the hot gaseous halo around NGC 1961. Mon. Not. R. Astron. Soc. 455, 227–243 (2016). https://doi.org/10.1093/mnras/stv2314 ADSCrossRefGoogle Scholar
- M. Arnaud, A.E. Evrard, The L_X-T relation and intracluster gas fractions of X-ray clusters. Mon. Not. R. Astron. Soc. 305, 631–640 (1999). https://doi.org/10.1046/j.1365-8711.1999.02442.x ADSCrossRefGoogle Scholar
- S. Arnouts, D. Schiminovich, O. Ilbert, L. Tresse, B. Milliard, M. Treyer, S. Bardelli, T. Budavari, T.K. Wyder, E. Zucca, O. Le Fèvre, D.C. Martin, G. Vettolani, C. Adami, M. Arnaboldi, T. Barlow, L. Bianchi, M. Bolzonella, D. Bottini, Y.-I. Byun, A. Cappi, S. Charlot, T. Contini, J. Donas, K. Forster, S. Foucaud, P. Franzetti, P.G. Friedman, B. Garilli, I. Gavignaud, L. Guzzo, T.M. Heckman, C. Hoopes, A. Iovino, P. Jelinsky, V. Le Brun, Y.-W. Lee, D. Maccagni, B.F. Madore, R. Malina, B. Marano, C. Marinoni, H.J. McCracken, A. Mazure, B. Meneux, R. Merighi, P. Morrissey, S. Neff, S. Paltani, R. Pellò, J.P. Picat, A. Pollo, L. Pozzetti, M. Radovich, R.M. Rich, R. Scaramella, M. Scodeggio, M. Seibert, O. Siegmund, T. Small, A.S. Szalay, B. Welsh, C.K. Xu, G. Zamorani, A. Zanichelli, The GALEX VIMOS-VLT deep survey measurement of the evolution of the 1500 Å luminosity function. Astrophys. J. Lett. 619, 43–46 (2005). https://doi.org/10.1086/426733 ADSCrossRefGoogle Scholar
- A. Babul, M.L. Balogh, G.F. Lewis, G.B. Poole, Physical implications of the X-ray properties of galaxy groups and clusters. Mon. Not. R. Astron. Soc. 330, 329–343 (2002). https://doi.org/10.1046/j.1365-8711.2002.05044.x ADSCrossRefGoogle Scholar
- I.V. Babyk, B.R. McNamara, P.E.J. Nulsen, H.R. Russell, A.N. Vantyghem, M.T. Hogan, F.A. Pulido, A universal entropy profile for the hot atmospheres of galaxies and clusters within R 2500. Astrophys. J. 862, 39 (2018a). https://doi.org/10.3847/1538-4357/aacce5 ADSCrossRefGoogle Scholar
- I.V. Babyk, B.R. McNamara, P.D. Tamhane, P.E.J. Nulsen, H.R. Russell, A.C. Edge, Origins of molecular clouds in early-type galaxies (2018b). arXiv:1810.11465
- I.V. Babyk, B.R. McNamara, P.E.J. Nulsen, M.T. Hogan, A.N. Vantyghem, H.R. Russell, F.A. Pulido, A.C. Edge, X-ray scaling relations of early-type galaxies. Astrophys. J. 857, 32 (2018c). https://doi.org/10.3847/1538-4357/aab3c9 ADSCrossRefGoogle Scholar
- S.A. Balbus, N. Soker, Theory of local thermal instability in spherical systems. Astrophys. J. 341, 611–630 (1989). https://doi.org/10.1086/167521 ADSCrossRefGoogle Scholar
- S.A. Balbus, N. Soker, Resonant excitation of internal gravity waves in cluster cooling flows. Astrophys. J. 357, 353–366 (1990). https://doi.org/10.1086/168926 ADSCrossRefGoogle Scholar
- A. Baldi, W. Forman, C. Jones, R. Kraft, P. Nulsen, E. Churazov, L. David, S. Giacintucci, The unusual X-ray morphology of NGC 4636 revealed by deep Chandra observations: cavities and shocks created by past active galactic nucleus outbursts. Astrophys. J. 707, 1034–1043 (2009). https://doi.org/10.1088/0004-637X/707/2/1034 ADSCrossRefGoogle Scholar
- M.L. Balogh, A. Babul, D.R. Patton, Pre-heated isentropic gas in groups of galaxies. Mon. Not. R. Astron. Soc. 307, 463–479 (1999). https://doi.org/10.1046/j.1365-8711.1999.02608.x ADSCrossRefGoogle Scholar
- C.J. Bambic, B.J. Morsony, C.S. Reynolds, Suppression of AGN-driven turbulence by magnetic fields in a magnetohydrodynamic model of the intracluster medium. Astrophys. J. 857, 84 (2018). https://doi.org/10.3847/1538-4357/aab558 ADSCrossRefGoogle Scholar
- M.C. Begelman, Impact of active galactic nuclei on the surrounding medium, in Gas and Galaxy Evolution, ed. by J.E. Hibbard, M. Rupen, J.H. van Gorkom. Astronomical Society of the Pacific Conference Series, vol. 240 (2001), p. 363 Google Scholar
- J. Bergeron, G. Stasińska, Absorption line systems in QSO spectra—properties derived from observations and from photoionization models. Astron. Astrophys. 169, 1–13 (1986) ADSGoogle Scholar
- P.N. Best, C.R. Kaiser, T.M. Heckman, G. Kauffmann, AGN-controlled cooling in elliptical galaxies. Mon. Not. R. Astron. Soc. 368, 67–71 (2006). https://doi.org/10.1111/j.1745-3933.2006.00159.x ADSCrossRefGoogle Scholar
- G.V. Bicknell, M.C. Begelman, Understanding the kiloparsec-scale structure of M87. Astrophys. J. 467, 597 (1996). https://doi.org/10.1086/177636 ADSCrossRefGoogle Scholar
- V. Biffi, F. Mernier, P. Medvedev, Enrichment of the hot intracluster medium: numerical simulations. Space Sci. Rev. 214(8), 123 (2018). https://doi.org/10.1007/s11214-018-0557-7 ADSCrossRefGoogle Scholar
- J. Binney, The physics of dissipational galaxy formation. Astrophys. J. 215, 483–491 (1977). https://doi.org/10.1086/155378 ADSCrossRefGoogle Scholar
- J. Binney, On the origin of the galaxy luminosity function. Mon. Not. R. Astron. Soc. 347, 1093–1096 (2004). https://doi.org/10.1111/j.1365-2966.2004.07277.x ADSCrossRefGoogle Scholar
- J. Binney, G. Tabor, Evolving cooling flows. Mon. Not. R. Astron. Soc. 276, 663 (1995). https://doi.org/10.1093/mnras/276.2.663 ADSCrossRefGoogle Scholar
- L. Bîrzan, D.A. Rafferty, B.R. McNamara, M.W. Wise, P.E.J. Nulsen, A systematic study of radio-induced X-ray cavities in clusters, groups, and galaxies. Astrophys. J. 607, 800–809 (2004). https://doi.org/10.1086/383519 ADSCrossRefGoogle Scholar
- J. Bland-Hawthorn, O. Gerhard, The galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016). https://doi.org/10.1146/annurev-astro-081915-023441 ADSCrossRefGoogle Scholar
- H. Boehringer, G.E. Morfill, On the dynamical role of cosmic rays in cooling flows in clusters of galaxies. Astrophys. J. 330, 609–619 (1988). https://doi.org/10.1086/166497 ADSCrossRefGoogle Scholar
- H. Boehringer, W. Voges, A.C. Fabian, A.C. Edge, D.M. Neumann, A ROSAT HRI study of the interaction of the X-ray-emitting gas and radio lobes of NGC 1275. Mon. Not. R. Astron. Soc. 264, 25–28 (1993). https://doi.org/10.1093/mnras/264.1.L25 ADSCrossRefGoogle Scholar
- Á. Bogdán, W.R. Forman, R.P. Kraft, C. Jones, Detection of a luminous hot X-ray corona around the massive spiral galaxy NGC 266. Astrophys. J. 772, 98 (2013a). https://doi.org/10.1088/0004-637X/772/2/98 ADSCrossRefGoogle Scholar
- Á. Bogdán, W.R. Forman, M. Vogelsberger, H. Bourdin, D. Sijacki, P. Mazzotta, R.P. Kraft, C. Jones, M. Gilfanov, E. Churazov, L.P. David, Hot X-ray coronae around massive spiral galaxies: a unique probe of structure formation models. Astrophys. J. 772, 97 (2013b). https://doi.org/10.1088/0004-637X/772/2/97 ADSCrossRefGoogle Scholar
- Á. Bogdán, H. Bourdin, W.R. Forman, R.P. Kraft, M. Vogelsberger, L. Hernquist, V. Springel, Probing the hot X-ray corona around the massive spiral galaxy, NGC 6753, using deep XMM-Newton observations. Astrophys. J. 850, 98 (2017). https://doi.org/10.3847/1538-4357/aa9523 ADSCrossRefGoogle Scholar
- H. Bohringer, P.E.J. Nulsen, R. Braun, A.C. Fabian, The interaction of the radio halo of M87 with the cooling intracluster medium of the Virgo cluster. Mon. Not. R. Astron. Soc. 274, 67–71 (1995). https://doi.org/10.1093/mnras/274.1.L67 ADSCrossRefGoogle Scholar
- H. Böhringer, K. Matsushita, E. Churazov, Y. Ikebe, Y. Chen, The new emerging model for the structure of cooling cores in clusters of galaxies. Astron. Astrophys. 382, 804–820 (2002). https://doi.org/10.1051/0004-6361:20011708 ADSCrossRefGoogle Scholar
- H. Bondi, On spherically symmetrical accretion. Mon. Not. R. Astron. Soc. 112, 195 (1952) ADSMathSciNetCrossRefGoogle Scholar
- B.C.J. Borguet, N. Arav, D. Edmonds, C. Chamberlain, C. Benn, Major contributor to AGN feedback: VLT X-shooter observations of S IV BALQSO outflows. Astrophys. J. 762, 49 (2013). https://doi.org/10.1088/0004-637X/762/1/49 ADSCrossRefGoogle Scholar
- B. Boroson, D.-W. Kim, G. Fabbiano, Revisiting with Chandra the scaling relations of the X-ray emission components (binaries, nuclei, and hot gas) of early-type galaxies. Astrophys. J. 729, 12 (2011). https://doi.org/10.1088/0004-637X/729/1/12 ADSCrossRefGoogle Scholar
- S. Borthakur, T. Heckman, J. Tumlinson, R. Bordoloi, G. Kauffmann, B. Catinella, D. Schiminovich, R. Davé, S.M. Moran, A. Saintonge, The properties of the circumgalactic medium in red and blue galaxies: results from the COS-GASS+COS-halos surveys. Astrophys. J. 833, 259 (2016). https://doi.org/10.3847/1538-4357/833/2/259 ADSCrossRefGoogle Scholar
- A. Boselli, M. Fossati, A. Longobardi, G. Consolandi, P. Amram, M. Sun, P. Andreani, M. Boquien, J. Braine, F. Combes, P. Cote, J.C. Cuillandre, P.A. Duc, E. Emsellem, L. Ferrarese, G. Gavazzi, S. Gwyn, G. Hensler, E.W. Peng, H. Plana, J. Roediger, R. Sanchez-Janssen, M. Sarzi, P. Serra, G. Trinchieri, A Virgo environmental survey tracing ionised gas emission (VESTIGE).V. Properties of the ionised gas filament of M87 (2018). arXiv:1810.09804
- J.N. Bregman, E.D. Miller, A.E. Athey, J.A. Irwin, On VI in elliptical galaxies: indicators of cooling flows. Astrophys. J. 635, 1031–1043 (2005). https://doi.org/10.1086/497421 ADSCrossRefGoogle Scholar
- J.N. Bregman, M.E. Anderson, X. Dai, Metal production in galaxy clusters: the non-galactic component. Astrophys. J. Lett. 716, 63–67 (2010). https://doi.org/10.1088/2041-8205/716/1/L63 ADSCrossRefGoogle Scholar
- J.N. Bregman, M.E. Anderson, M.J. Miller, E. Hodges-Kluck, X. Dai, J.-T. Li, Y. Li, Z. Qu, The extended distribution of baryons around galaxies. Astrophys. J. 862, 3 (2018). https://doi.org/10.3847/1538-4357/aacafe ADSCrossRefGoogle Scholar
- F. Brighenti, W.G. Mathews, Entropy evolution in galaxy groups and clusters: a comparison of external and internal heating. Astrophys. J. 553, 103–120 (2001). https://doi.org/10.1086/320664 ADSCrossRefGoogle Scholar
- F. Brighenti, W.G. Mathews, Stopping cooling flows with jets. Astrophys. J. 643, 120–127 (2006). https://doi.org/10.1086/502645 ADSCrossRefGoogle Scholar
- M. Brüggen, C.R. Kaiser, Hot bubbles from active galactic nuclei as a heat source in cooling-flow clusters. Nature 418, 301–303 (2002). https://doi.org/10.1038/nature00857 ADSCrossRefGoogle Scholar
- D.A. Buote, A.J. Barth, The luminous X-ray halos of two compact elliptical galaxies. Astrophys. J. 854, 143 (2018). https://doi.org/10.3847/1538-4357/aaa971 ADSCrossRefGoogle Scholar
- R.E.A. Canning, G.J. Ferland, A.C. Fabian, R.M. Johnstone, P.A.M. van Hoof, R.L. Porter, N. Werner, R.J.R. Williams, Collisional excitation of [C II], [O I] and CO in massive galaxies. Mon. Not. R. Astron. Soc. 455, 3042–3057 (2016). https://doi.org/10.1093/mnras/stv2390 ADSCrossRefGoogle Scholar
- A. Cattaneo, S.M. Faber, J. Binney, A. Dekel, J. Kormendy, R. Mushotzky, A. Babul, P.N. Best, M. Brüggen, A.C. Fabian, C.S. Frenk, A. Khalatyan, H. Netzer, A. Mahdavi, J. Silk, M. Steinmetz, L. Wisotzki, The role of black holes in galaxy formation and evolution. Nature 460, 213–219 (2009). https://doi.org/10.1038/nature08135 ADSCrossRefGoogle Scholar
- K.W. Cavagnolo, M. Donahue, G.M. Voit, M. Sun, An entropy threshold for strong H\(\upalpha\) and radio emission in the cores of galaxy clusters. Astrophys. J. Lett. 683, 107–110 (2008). https://doi.org/10.1086/591665 ADSCrossRefGoogle Scholar
- A. Cavaliere, N. Menci, P. Tozzi, Diffuse baryons in groups and clusters of galaxies. Astrophys. J. 501, 493–508 (1998). https://doi.org/10.1086/305839 ADSCrossRefGoogle Scholar
- G. Chartas, W.N. Brandt, S.C. Gallagher, D. Proga, XMM-Newton and Chandra spectroscopy of the variable high-energy absorption of PG 1115+080: refined outflow constraints. Astron. J. 133, 1849–1860 (2007). https://doi.org/10.1086/512364 ADSCrossRefGoogle Scholar
- H.-W. Chen, F.S. Zahedy, S.D. Johnson, R.M. Pierce, Y.-H. Huang, B.J. Weiner, J.-R. Gauthier, Characterizing circumgalactic gas around massive ellipticals at \(z\sim0.4\) - I. Initial results. Mon. Not. R. Astron. Soc. 479, 2547–2563 (2018). https://doi.org/10.1093/mnras/sty1541 ADSCrossRefGoogle Scholar
- N.E. Chisari, M.L.A. Richardson, J. Devriendt, Y. Dubois, A. Schneider, A.M.C. Le Brun, R.S. Beckmann, S. Peirani, A. Slyz, C. Pichon, The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation. Mon. Not. R. Astron. Soc. 480, 3962–3977 (2018). https://doi.org/10.1093/mnras/sty2093 ADSCrossRefGoogle Scholar
- J. Chisholm, C.A. Tremonti, C. Leitherer, Y. Chen, The mass and momentum outflow rates of photoionized galactic outflows. Mon. Not. R. Astron. Soc. 469, 4831–4849 (2017). https://doi.org/10.1093/mnras/stx1164 ADSCrossRefGoogle Scholar
- E. Choi, J.P. Ostriker, T. Naab, L. Oser, B.P. Moster, The impact of mechanical AGN feedback on the formation of massive early-type galaxies. Mon. Not. R. Astron. Soc. 449, 4105–4116 (2015). https://doi.org/10.1093/mnras/stv575 ADSCrossRefGoogle Scholar
- P.P. Choudhury, P. Sharma, Cold gas in cluster cores: global stability analysis and non-linear simulations of thermal instability. Mon. Not. R. Astron. Soc. 457, 2554–2568 (2016). https://doi.org/10.1093/mnras/stw152 ADSCrossRefGoogle Scholar
- E. Churazov, W. Forman, C. Jones, H. Böhringer, Asymmetric, arc minute scale structures around NGC 1275. Astron. Astrophys. 356, 788–794 (2000) ADSGoogle Scholar
- E. Churazov, M. Brüggen, C.R. Kaiser, H. Böhringer, W. Forman, Evolution of buoyant bubbles in M87. Astrophys. J. 554, 261–273 (2001). https://doi.org/10.1086/321357 ADSCrossRefGoogle Scholar
- E. Churazov, R. Sunyaev, W. Forman, H. Böhringer, Cooling flows as a calorimeter of active galactic nucleus mechanical power. Mon. Not. R. Astron. Soc. 332, 729–734 (2002). https://doi.org/10.1046/j.1365-8711.2002.05332.x ADSCrossRefGoogle Scholar
- E. Churazov, S. Sazonov, R. Sunyaev, W. Forman, C. Jones, H. Böhringer, Supermassive black holes in elliptical galaxies: switching from very bright to very dim. Mon. Not. R. Astron. Soc. 363, 91–95 (2005). https://doi.org/10.1111/j.1745-3933.2005.00093.x ADSCrossRefGoogle Scholar
- E. Churazov, S. Tremaine, W. Forman, O. Gerhard, P. Das, A. Vikhlinin, C. Jones, H. Böhringer, K. Gebhardt, Comparison of approximately isothermal gravitational potentials of elliptical galaxies based on X-ray and optical data. Mon. Not. R. Astron. Soc. 404, 1165–1185 (2010a). https://doi.org/10.1111/j.1365-2966.2010.16377.x ADSCrossRefGoogle Scholar
- E. Churazov, I. Zhuravleva, S. Sazonov, R. Sunyaev, Resonant scattering of X-ray emission lines in the hot intergalactic medium. Space Sci. Rev. 157, 193–209 (2010b). https://doi.org/10.1007/s11214-010-9685-4 ADSCrossRefGoogle Scholar
- E. Churazov, M. Ruszkowski, A. Schekochihin, Powering of cool filaments in cluster cores by buoyant bubbles—I. Qualitative model. Mon. Not. R. Astron. Soc. 436, 526–530 (2013). https://doi.org/10.1093/mnras/stt1594 ADSCrossRefGoogle Scholar
- L. Ciotti, J.P. Ostriker, Radiative feedback from massive black holes in elliptical galaxies: AGN flaring and central starburst fueled by recycled gas. Astrophys. J. 665, 1038–1056 (2007). https://doi.org/10.1086/519833 ADSCrossRefGoogle Scholar
- L. Ciotti, S. Pellegrini, A. Negri, J.P. Ostriker, The effect of the AGN feedback on the interstellar medium of early-type galaxies:2D hydrodynamical simulations of the low-rotation case. Astrophys. J. 835, 15 (2017). https://doi.org/10.3847/1538-4357/835/1/15 ADSCrossRefGoogle Scholar
- C. Conroy, G.J. Graves, P.G. van Dokkum, Early-type galaxy archeology: ages, abundance ratios, and effective temperatures from full-spectrum fitting. Astrophys. J. 780, 33 (2014). https://doi.org/10.1088/0004-637X/780/1/33 ADSCrossRefGoogle Scholar
- C.A. Correa, J. Schaye, J.S.B. Wyithe, A.R. Duffy, T. Theuns, R.A. Crain, R.G. Bower, The formation of hot gaseous haloes around galaxies. Mon. Not. R. Astron. Soc. 473, 538–559 (2018). https://doi.org/10.1093/mnras/stx2332 ADSCrossRefGoogle Scholar
- D.J. Croton, V. Springel, S.D.M. White, G. De Lucia, C.S. Frenk, L. Gao, A. Jenkins, G. Kauffmann, J.F. Navarro, N. Yoshida, The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006). https://doi.org/10.1111/j.1365-2966.2005.09675.x ADSCrossRefGoogle Scholar
- E. Daddi, A. Renzini, N. Pirzkal, A. Cimatti, S. Malhotra, M. Stiavelli, C. Xu, A. Pasquali, J.E. Rhoads, M. Brusa, S. di Serego Alighieri, H.C. Ferguson, A.M. Koekemoer, L.A. Moustakas, N. Panagia, R.A. Windhorst, Passively evolving early-type galaxies at \(1.4< z<2.5\) in the Hubble ultra deep field. Astrophys. J. 626, 680–697 (2005). https://doi.org/10.1086/430104 ADSCrossRefGoogle Scholar
- X. Dai, M.E. Anderson, J.N. Bregman, J.M. Miller, XMM-Newton detects a hot gaseous halo in the fastest rotating spiral galaxy UGC 12591. Astrophys. J. 755, 107 (2012). https://doi.org/10.1088/0004-637X/755/2/107 ADSCrossRefGoogle Scholar
- R. Davé, R. Cen, J.P. Ostriker, G.L. Bryan, L. Hernquist, N. Katz, D.H. Weinberg, M.L. Norman, B. O’Shea, Baryons in the warm-hot intergalactic medium. Astrophys. J. 552, 473–483 (2001) ADSCrossRefGoogle Scholar
- L.P. David, A. Slyz, C. Jones, W. Forman, S.D. Vrtilek, K.A. Arnaud, A catalog of intracluster gas temperatures. Astrophys. J. 412, 479–488 (1993). https://doi.org/10.1086/172936 ADSCrossRefGoogle Scholar
- L.P. David, J. Lim, W. Forman, J. Vrtilek, F. Combes, P. Salome, A. Edge, S. Hamer, C. Jones, M. Sun, E. O’Sullivan, F. Gastaldello, S. Bardelli, P. Temi, H. Schmitt, Y. Ohyama, W. Mathews, F. Brighenti, S. Giacintucci, D.-V. Trung, Molecular gas in the X-ray bright group NGC 5044 as revealed by ALMA. Astrophys. J. 792, 94 (2014). https://doi.org/10.1088/0004-637X/792/2/94 ADSCrossRefGoogle Scholar
- M. de Kool, N. Arav, R.H. Becker, M.D. Gregg, R.L. White, S.A. Laurent-Muehleisen, T. Price, K.T. Korista, Keck HIRES observations of the QSO FIRST J104459.6+365605: evidence for a large-scale outflow. Astrophys. J. 548, 609–623 (2001). https://doi.org/10.1086/318996 ADSCrossRefGoogle Scholar
- J. de Plaa, I. Zhuravleva, N. Werner, J.S. Kaastra, E. Churazov, R.K. Smith, A.J.J. Raassen, Y.G. Grange, Estimating turbulent velocities in the elliptical galaxies NGC 5044 and NGC 5813. Astron. Astrophys. 539, 34 (2012). https://doi.org/10.1051/0004-6361/201118404 CrossRefGoogle Scholar
- J. de Plaa, J.S. Kaastra, N. Werner, C. Pinto, P. Kosec, Y.-Y. Zhang, F. Mernier, L. Lovisari, H. Akamatsu, G. Schellenberger, F. Hofmann, T.H. Reiprich, A. Finoguenov, J. Ahoranta, J.S. Sanders, A.C. Fabian, O. Pols, A. Simionescu, J. Vink, H. Böhringer, CHEERS: the chemical evolution RGS sample. Astron. Astrophys. 607, 98 (2017). https://doi.org/10.1051/0004-6361/201629926 CrossRefGoogle Scholar
- T.J. Dennis, B.D.G. Chandran, Turbulent heating of galaxy-cluster plasmas. Astrophys. J. 622, 205–216 (2005). https://doi.org/10.1086/427424 ADSCrossRefGoogle Scholar
- T. Di Matteo, S.W. Allen, A.C. Fabian, A.S. Wilson, A.J. Young, Accretion onto the supermassive black hole in M87. Astrophys. J. 582, 133–140 (2003). https://doi.org/10.1086/344504 ADSCrossRefGoogle Scholar
- T. Di Matteo, J. Colberg, V. Springel, L. Hernquist, D. Sijacki, Direct cosmological simulations of the growth of black holes and galaxies. Astrophys. J. 676, 33–53 (2008). https://doi.org/10.1086/524921 ADSCrossRefGoogle Scholar
- R.J.H. Dunn, S.W. Allen, G.B. Taylor, K.F. Shurkin, G. Gentile, A.C. Fabian, C.S. Reynolds, The radio properties of a complete, X-ray selected sample of nearby, massive elliptical galaxies. Mon. Not. R. Astron. Soc. 6404(1), 180–197 (2010) ADSGoogle Scholar
- L.J. Dursi, C. Pfrommer, Draping of cluster magnetic fields over bullets and bubbles-morphology and dynamic effects. Astrophys. J. 677, 993–1018 (2008). https://doi.org/10.1086/529371 ADSCrossRefGoogle Scholar
- A.C. Edge, R.J. Wilman, R.M. Johnstone, C.S. Crawford, A.C. Fabian, S.W. Allen, A survey of molecular hydrogen in the central galaxies of cooling flows. Mon. Not. R. Astron. Soc. 337, 49–62 (2002). https://doi.org/10.1046/j.1365-8711.2002.05790.x ADSCrossRefGoogle Scholar
- D.J. Eisenstein, J. Annis, J.E. Gunn, A.S. Szalay, A.J. Connolly, R.C. Nichol, N.A. Bahcall, M. Bernardi, S. Burles, F.J. Castander, M. Fukugita, D.W. Hogg, Ž. Ivezić, G.R. Knapp, R.H. Lupton, V. Narayanan, M. Postman, D.E. Reichart, M. Richmond, D.P. Schneider, D.J. Schlegel, M.A. Strauss, M. SubbaRao, D.L. Tucker, D. Vanden Berk, M.S. Vogeley, D.H. Weinberg, B. Yanny, Spectroscopic target selection for the sloan digital sky survey: the luminous red galaxy sample. Astron. J. 122, 2267–2280 (2001). https://doi.org/10.1086/323717 ADSCrossRefGoogle Scholar
- T.A. Enßlin, On the escape of cosmic rays from radio galaxy cocoons. Astron. Astrophys. 399, 409–420 (2003). https://doi.org/10.1051/0004-6361:20021827 ADSCrossRefGoogle Scholar
- P.B. Eskridge, G. Fabbiano, D.-W. Kim, A multiparametric analysis of the Einstein sample of early-type galaxies. 2: Galaxy formation history and properties of the interstellar medium. Astrophys. J. 442, 523–537 (1995). https://doi.org/10.1086/175458 ADSCrossRefGoogle Scholar
- A.E. Evrard, J.P. Henry, Expectations for X-ray cluster observations by the ROSAT satellite. Astrophys. J. 383, 95–103 (1991). https://doi.org/10.1086/170767 ADSCrossRefGoogle Scholar
- A.C. Fabian, Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012). https://doi.org/10.1146/annurev-astro-081811-125521 ADSCrossRefGoogle Scholar
- A.C. Fabian, P.E.J. Nulsen, Subsonic accretion of cooling gas in clusters of galaxies. Mon. Not. R. Astron. Soc. 180, 479–484 (1977). https://doi.org/10.1093/mnras/180.3.479 ADSCrossRefGoogle Scholar
- A.C. Fabian, J.S. Sanders, S.W. Allen, C.S. Crawford, K. Iwasawa, R.M. Johnstone, R.W. Schmidt, G.B. Taylor, A deep Chandra observation of the Perseus cluster: shocks and ripples. Mon. Not. R. Astron. Soc. 344, 43–47 (2003). https://doi.org/10.1046/j.1365-8711.2003.06902.x ADSCrossRefGoogle Scholar
- A.C. Fabian, J.S. Sanders, G.B. Taylor, S.W. Allen, C.S. Crawford, R.M. Johnstone, K. Iwasawa, A very deep Chandra observation of the Perseus cluster: shocks, ripples and conduction. Mon. Not. R. Astron. Soc. 366, 417–428 (2006). https://doi.org/10.1111/j.1365-2966.2005.09896.x ADSCrossRefGoogle Scholar
- A.C. Fabian, R.M. Johnstone, J.S. Sanders, C.J. Conselice, C.S. Crawford, J.S. Gallagher III, E. Zweibel, Magnetic support of the optical emission line filaments in NGC 1275. Nature 454, 968–970 (2008). https://doi.org/10.1038/nature07169 ADSCrossRefGoogle Scholar
- A.C. Fabian, J.S. Sanders, R.J.R. Williams, A. Lazarian, G.J. Ferland, R.M. Johnstone, The energy source of the filaments around the giant galaxy NGC 1275. Mon. Not. R. Astron. Soc. 417, 172–177 (2011). https://doi.org/10.1111/j.1365-2966.2011.19034.x ADSCrossRefGoogle Scholar
- A.C. Fabian, S.A. Walker, H.R. Russell, C. Pinto, J.S. Sanders, C.S. Reynolds, Do sound waves transport the AGN energy in the Perseus cluster? Mon. Not. R. Astron. Soc. 464, 1–5 (2017). https://doi.org/10.1093/mnrasl/slw170 ADSCrossRefGoogle Scholar
- L. Feretti, D. Dallacasa, F. Govoni, G. Giovannini, G.B. Taylor, U. Klein, The radio galaxies and the magnetic field in Abell 119. Astron. Astrophys. 344, 472–482 (1999) ADSGoogle Scholar
- G.J. Ferland, A.C. Fabian, N.A. Hatch, R.M. Johnstone, R.L. Porter, P.A.M. van Hoof, R.J.R. Williams, The origin of molecular hydrogen emission in cooling-flow filaments. Mon. Not. R. Astron. Soc. 386, 72–76 (2008). https://doi.org/10.1111/j.1745-3933.2008.00463.x ADSCrossRefGoogle Scholar
- G.J. Ferland, A.C. Fabian, N.A. Hatch, R.M. Johnstone, R.L. Porter, P.A.M. van Hoof, R.J.R. Williams, Collisional heating as the origin of filament emission in galaxy clusters. Mon. Not. R. Astron. Soc. 392, 1475–1502 (2009). https://doi.org/10.1111/j.1365-2966.2008.14153.x ADSCrossRefGoogle Scholar
- A. Ferré-Mateu, I. Trujillo, I. Martín-Navarro, A. Vazdekis, M. Mezcua, M. Balcells, L. Domínguez, Two new confirmed massive relic galaxies: red nuggets in the present-day Universe. Mon. Not. R. Astron. Soc. 467, 1929–1939 (2017). https://doi.org/10.1093/mnras/stx171 ADSCrossRefGoogle Scholar
- A. Finoguenov, C. Jones, Chandra observation of M84, a radio lobe elliptical galaxy in the Virgo cluster. Astrophys. J. Lett. 547, 107–110 (2001). https://doi.org/10.1086/318910 ADSCrossRefGoogle Scholar
- A. Finoguenov, M. Ruszkowski, C. Jones, M. Brüggen, A. Vikhlinin, E. Mandel, In-depth Chandra study of the AGN feedback in Virgo elliptical galaxy M84. Astrophys. J. 686, 911–917 (2008). https://doi.org/10.1086/591662 ADSCrossRefGoogle Scholar
- A. Fontana, L. Pozzetti, I. Donnarumma, A. Renzini, A. Cimatti, G. Zamorani, N. Menci, E. Daddi, E. Giallongo, M. Mignoli, C. Perna, S. Salimbeni, P. Saracco, T. Broadhurst, S. Cristiani, S. D’Odorico, R. Gilmozzi, The K20 survey. VI. The distribution of the stellar masses in galaxies up to z ≈ 2. Astron. Astrophys. 424, 23–42 (2004). https://doi.org/10.1051/0004-6361:20035626 ADSCrossRefGoogle Scholar
- D.A. Forbes, A. Alabi, A.J. Romanowsky, D.-W. Kim, J.P. Brodie, G. Fabbiano, The SLUGGS survey: revisiting the correlation between X-ray luminosity and total mass of massive early-type galaxies. Mon. Not. R. Astron. Soc. 464, 26–30 (2017). https://doi.org/10.1093/mnrasl/slw176 ADSCrossRefGoogle Scholar
- H.A. Ford, J.N. Bregman, Direct detections of young stars in nearby elliptical galaxies. Astrophys. J. 770, 137 (2013). https://doi.org/10.1088/0004-637X/770/2/137 ADSCrossRefGoogle Scholar
- H.C. Ford, H. Butcher, The system of filaments in M87—evidence for matter falling into an active nucleus. Astrophys. J. Suppl. Ser. 41, 147–172 (1979). https://doi.org/10.1086/190613 ADSCrossRefGoogle Scholar
- H.C. Ford, R.J. Harms, Z.I. Tsvetanov, G.F. Hartig, L.L. Dressel, G.A. Kriss, R.C. Bohlin, A.F. Davidsen, B. Margon, A.K. Kochhar, Narrowband HST images of M87: evidence for a disk of ionized gas around a massive black hole. Astrophys. J. Lett. 435, 27–30 (1994). https://doi.org/10.1086/187586 ADSCrossRefGoogle Scholar
- W. Forman, C. Jones, W. Tucker, Hot coronae around early-type galaxies. Astrophys. J. 293, 102–119 (1985). https://doi.org/10.1086/163218 ADSCrossRefGoogle Scholar
- W. Forman, C. Jones, E. Churazov, M. Markevitch, P. Nulsen, A. Vikhlinin, M. Begelman, H. Böhringer, J. Eilek, S. Heinz, R. Kraft, F. Owen, M. Pahre, Filaments, bubbles, and weak shocks in the gaseous atmosphere of M87. Astrophys. J. 665, 1057–1066 (2007). https://doi.org/10.1086/519480 ADSCrossRefGoogle Scholar
- W. Forman, E. Churazov, C. Jones, S. Heinz, R. Kraft, A. Vikhlinin, Partitioning the outburst energy of a low eddington accretion rate AGN at the center of an elliptical galaxy: the recent 12 myr history of the supermassive black hole in M87. Astrophys. J. 844, 122 (2017). https://doi.org/10.3847/1538-4357/aa70e4 ADSCrossRefGoogle Scholar
- A. Franceschini, V. Braito, M. Persic, R. Della Ceca, L. Bassani, M. Cappi, P. Malaguti, G.G.C. Palumbo, G. Risaliti, M. Salvati, P. Severgnini, An XMM-Newton hard X-ray survey of ultraluminous infrared galaxies. Mon. Not. R. Astron. Soc. 343, 1181–1194 (2003). https://doi.org/10.1046/j.1365-8711.2003.06744.x ADSCrossRefGoogle Scholar
- Y. Fujita, Y. Ohira, Stable heating of cluster cooling flows by cosmic-ray streaming. Astrophys. J. 738, 182 (2011). https://doi.org/10.1088/0004-637X/738/2/182 ADSCrossRefGoogle Scholar
- M. Fukugita, P.J.E. Peebles, Massive coronae of galaxies. Astrophys. J. 639, 590–599 (2006). https://doi.org/10.1086/499556 ADSCrossRefGoogle Scholar
- M. Fukugita, C.J. Hogan, P.J.E. Peebles, The cosmic baryon budget. Astrophys. J. 503, 518–530 (1998). https://doi.org/10.1086/306025 ADSCrossRefGoogle Scholar
- M. Gaspari, F. Brighenti, P. Temi, Mechanical AGN feedback: controlling the thermodynamical evolution of elliptical galaxies. Mon. Not. R. Astron. Soc. 424, 190–209 (2012a). https://doi.org/10.1111/j.1365-2966.2012.21183.x ADSCrossRefGoogle Scholar
- M. Gaspari, M. Ruszkowski, P. Sharma, Cause and effect of feedback: multiphase gas in cluster cores heated by AGN jets. Astrophys. J. 746, 94 (2012b). https://doi.org/10.1088/0004-637X/746/1/94 ADSCrossRefGoogle Scholar
- M. Gaspari, M. Ruszkowski, S.P. Oh, Chaotic cold accretion on to black holes. Mon. Not. R. Astron. Soc. 432, 3401–3422 (2013). https://doi.org/10.1093/mnras/stt692 ADSCrossRefGoogle Scholar
- M. Gaspari, M. McDonald, S.L. Hamer, F. Brighenti, P. Temi, M. Gendron-Marsolais, J. Hlavacek-Larrondo, A.C. Edge, N. Werner, P. Tozzi, M. Sun, J.M. Stone, G.R. Tremblay, M.T. Hogan, D. Eckert, S. Ettori, H. Yu, V. Biffi, S. Planelles, Shaken snow globes: kinematic tracers of the multiphase condensation cascade in massive galaxies, groups, and clusters. Astrophys. J. 854, 167 (2018). https://doi.org/10.3847/1538-4357/aaaa1b ADSCrossRefGoogle Scholar
- J.-R. Gauthier, H.-W. Chen, J.L. Tinker, The clustering of Mg ii absorption systems at ∼0.5 and detection of cold gas in massive halos. Astrophys. J. 702, 50–62 (2009). https://doi.org/10.1088/0004-637X/702/1/50 ADSCrossRefGoogle Scholar
- J.-R. Gauthier, H.-W. Chen, J.L. Tinker, The incidence of cool gas in \(\sim10^{13}~\mbox{m}^{13}~M_{\odot}\) halos. Astrophys. J. 716, 1263–1268 (2010). https://doi.org/10.1088/0004-637X/716/2/1263 ADSCrossRefGoogle Scholar
- K. Gebhardt, J. Adams, D. Richstone, T.R. Lauer, S.M. Faber, K. Gültekin, J. Murphy, S. Tremaine, The black hole mass in M87 from Gemini/NIFS adaptive optics observations. Astrophys. J. 729, 119 (2011). https://doi.org/10.1088/0004-637X/729/2/119 ADSCrossRefGoogle Scholar
- R. Genzel, L.J. Tacconi, D. Rigopoulou, D. Lutz, M. Tecza, Ultraluminous infrared mergers: elliptical galaxies in formation? Astrophys. J. 563, 527–545 (2001). https://doi.org/10.1086/323772 ADSCrossRefGoogle Scholar
- M.R. Gilfanov, R.A. Sunyaev, E.M. Churazov, Radial brightness profiles of resonance X-ray lines in galaxy clusters. Sov. Astron. Lett. 13, 3–7 (1987) ADSGoogle Scholar
- K. Glazebrook, R.G. Abraham, P.J. McCarthy, S. Savaglio, H.-W. Chen, D. Crampton, R. Murowinski, I. Jørgensen, K. Roth, I. Hook, R.O. Marzke, R.G. Carlberg, A high abundance of massive galaxies 3-6 billion years after the Big Bang. Nature 430, 181–184 (2004). https://doi.org/10.1038/nature02667 ADSCrossRefGoogle Scholar
- P. Goudfrooij, L. Hansen, H.E. Jorgensen, H.U. Norgaard-Nielsen, Interstellar matter in Shapley-Ames elliptical galaxies. II. The distribution of dust and ionized gas. Astron. Astrophys. Suppl. Ser. 105, 341–383 (1994) ADSGoogle Scholar
- A.D. Goulding, J.E. Greene, C.-P. Ma, M. Veale, A. Bogdan, K. Nyland, J.P. Blakeslee, N.J. McConnell, J. Thomas, The MASSIVE survey. IV. The X-ray halos of the most massive early-type galaxies in the nearby Universe. Astrophys. J. 826, 167 (2016). https://doi.org/10.3847/0004-637X/826/2/167 ADSCrossRefGoogle Scholar
- G.L. Granato, G. De Zotti, L. Silva, A. Bressan, L. Danese, A physical model for the coevolution of QSOs and their spheroidal hosts. Astrophys. J. 600, 580–594 (2004). https://doi.org/10.1086/379875 ADSCrossRefGoogle Scholar
- J.P. Greco, J.C. Hill, D.N. Spergel, N. Battaglia, The stacked thermal Sunyaev-Zel’dovich signal of locally brightest galaxies in Planck full mission data: evidence for galaxy feedback? Astrophys. J. 808, 151 (2015). https://doi.org/10.1088/0004-637X/808/2/151 ADSCrossRefGoogle Scholar
- S.F. Gull, K.J.E. Northover, Bubble model of extragalactic radio sources. Nature 244, 80–83 (1973). https://doi.org/10.1038/244080a0 ADSCrossRefGoogle Scholar
- F. Guo, S.P. Oh, Feedback heating by cosmic rays in clusters of galaxies. Mon. Not. R. Astron. Soc. 384, 251–266 (2008). https://doi.org/10.1111/j.1365-2966.2007.12692.x ADSCrossRefGoogle Scholar
- A. Gupta, S. Mathur, Y. Krongold, F. Nicastro, M. Galeazzi, A huge reservoir of ionized gas around the Milky Way: accounting for the missing mass? Astrophys. J. Lett. 756, 8 (2012). https://doi.org/10.1088/2041-8205/756/1/L8 ADSCrossRefGoogle Scholar
- S.L. Hamer, A.C. Edge, A.M. Swinbank, R.J. Wilman, F. Combes, P. Salomé, A.C. Fabian, C.S. Crawford, H.R. Russell, J. Hlavacek-Larrondo, B.R. McNamara, M.N. Bremer, Optical emission line nebulae in galaxy cluster cores 1: the morphological, kinematic and spectral properties of the sample. Mon. Not. R. Astron. Soc. 460, 1758–1789 (2016). https://doi.org/10.1093/mnras/stw1054 ADSCrossRefGoogle Scholar
- C.M. Harrison, Impact of supermassive black hole growth on star formation. Nat. Astron. 1, 0165 (2017). https://doi.org/10.1038/s41550-017-0165 ADSCrossRefGoogle Scholar
- T.M. Heckman, S.A. Baum, W.J.M. van Breugel, P. McCarthy, Dynamical, physical, and chemical properties of emission-line nebulae in cooling flows. Astrophys. J. 338, 48–77 (1989). https://doi.org/10.1086/167181 ADSCrossRefGoogle Scholar
- S. Heinz, C.S. Reynolds, M.C. Begelman, X-ray signatures of evolving radio galaxies. Astrophys. J. 501, 126–136 (1998). https://doi.org/10.1086/305807 ADSCrossRefGoogle Scholar
- S.F. Helsdon, T.J. Ponman, The intragroup medium in loose groups of galaxies. Mon. Not. R. Astron. Soc. 315, 356–370 (2000). https://doi.org/10.1046/j.1365-8711.2000.03396.x ADSCrossRefGoogle Scholar
- D.B. Henley, R.L. Shelton, An XMM-Newton survey of the soft X-ray background. I. The O vii and O viii lines between \(l = 120\) and \(l = 240\). Astrophys. J. Suppl. Ser. 187, 388–408 (2010). https://doi.org/10.1088/0067-0049/187/2/388 ADSCrossRefGoogle Scholar
- D.B. Henley, R.L. Shelton, An XMM-Newton survey of the soft X-ray background. II. An all-sky catalog of diffuse O vii and O viii emission intensities. Astrophys. J. Suppl. Ser. 202, 14 (2012). https://doi.org/10.1088/0067-0049/202/2/14 ADSCrossRefGoogle Scholar
- S. Hillel, N. Soker, Heating the intracluster medium by jet-inflated bubbles. Mon. Not. R. Astron. Soc. 455, 2139–2148 (2016). https://doi.org/10.1093/mnras/stv2483 ADSCrossRefGoogle Scholar
- J. Hlavacek-Larrondo, A.C. Fabian, A.C. Edge, H. Ebeling, J.S. Sanders, M.T. Hogan, G.B. Taylor, Extreme AGN feedback in the MAssive cluster survey: a detailed study of X-ray cavities at \(z>0.3\). Mon. Not. R. Astron. Soc. 421, 1360–1384 (2012). https://doi.org/10.1111/j.1365-2966.2011.20405.x ADSCrossRefGoogle Scholar
- J. Hlavacek-Larrondo, M. McDonald, B.A. Benson, W.R. Forman, S.W. Allen, L.E. Bleem, M.L.N. Ashby, S. Bocquet, M. Brodwin, J.P. Dietrich, C. Jones, J. Liu, C.L. Reichardt, B.R. Saliwanchik, A. Saro, T. Schrabback, J. Song, B. Stalder, A. Vikhlinin, A. Zenteno, X-ray cavities in a sample of 83 SPT-selected clusters of galaxies: tracing the evolution of AGN feedback in clusters of galaxies out to \(z=1.2\). Astrophys. J. 805, 35 (2015). https://doi.org/10.1088/0004-637X/805/1/35 ADSCrossRefGoogle Scholar
- M.T. Hogan, B.R. McNamara, F. Pulido, P.E.J. Nulsen, H.R. Russell, A.N. Vantyghem, A.C. Edge, R.A. Main, Mass distribution in galaxy cluster cores. Astrophys. J. 837, 51 (2017a). https://doi.org/10.3847/1538-4357/aa5f56 ADSCrossRefGoogle Scholar
- M.T. Hogan, B.R. McNamara, F.A. Pulido, P.E.J. Nulsen, A.N. Vantyghem, H.R. Russell, A.C. Edge, I. Babyk, R.A. Main, M. McDonald, The onset of thermally unstable cooling from the hot atmospheres of giant galaxies in clusters: constraints on feedback models. Astrophys. J. 851, 66 (2017b). https://doi.org/10.3847/1538-4357/aa9af3 ADSCrossRefGoogle Scholar
- P.F. Hopkins, K. Bundy, N. Murray, E. Quataert, T.R. Lauer, C.-P. Ma, Compact high-redshift galaxies are the cores of the most massive present-day spheroids. Mon. Not. R. Astron. Soc. 398, 898–910 (2009). https://doi.org/10.1111/j.1365-2966.2009.15062.x ADSCrossRefGoogle Scholar
- Y.-H. Huang, H.-W. Chen, S.D. Johnson, B.J. Weiner, Characterizing the chemically enriched circumgalactic medium of ∼38 000 luminous red galaxies in SDSS DR12. Mon. Not. R. Astron. Soc. 455, 1713–1727 (2016). https://doi.org/10.1093/mnras/stv2327 ADSCrossRefGoogle Scholar
- P.J. Humphrey, D.A. Buote, C.R. Canizares, A.C. Fabian, J.M. Miller, A census of baryons and dark matter in an isolated, Milky Way sized elliptical galaxy. Astrophys. J. 729, 53 (2011). https://doi.org/10.1088/0004-637X/729/1/53 ADSCrossRefGoogle Scholar
- P.J. Humphrey, D.A. Buote, E. O’Sullivan, T.J. Ponman, The ElIXr galaxy survey. II. Baryons and dark matter in an isolated elliptical galaxy. Astrophys. J. 755, 166 (2012a). https://doi.org/10.1088/0004-637X/755/2/166 ADSCrossRefGoogle Scholar
- P.J. Humphrey, D.A. Buote, F. Brighenti, H.M.L.G. Flohic, F. Gastaldello, W.G. Mathews, Tracing the gas to the virial radius (R 100) in a fossil group. Astrophys. J. 748, 11 (2012b). https://doi.org/10.1088/0004-637X/748/1/11 ADSCrossRefGoogle Scholar
- S. Ichimaru, Bimodal behavior of accretion disks— theory and application to Cygnus X-1 transitions. Astrophys. J. 214, 840–855 (1977). https://doi.org/10.1086/155314 ADSCrossRefGoogle Scholar
- N. James, D.-W. Kim, G. Fabbiano, D. Forbes, A. Alabi, The mass of the globular cluster systems of early type galaxies as proxy for the total galaxy mass (2018). arXiv:1810.09475
- R.M. Johnstone, A.C. Fabian, P.E.J. Nulsen, The optical spectra of central galaxies in southern clusters evidence for star formation. Mon. Not. R. Astron. Soc. 224, 75–91 (1987) ADSCrossRefGoogle Scholar
- C. Jones, W. Forman, A. Vikhlinin, M. Markevitch, L. David, A. Warmflash, S. Murray, P.E.J. Nulsen, Chandra observations of NGC 4636-an elliptical galaxy in turmoil. Astrophys. J. Lett. 567, 115–118 (2002). https://doi.org/10.1086/340114 ADSCrossRefGoogle Scholar
- N. Kaiser, Evolution of clusters of galaxies. Astrophys. J. 383, 104–111 (1991). https://doi.org/10.1086/170768 ADSCrossRefGoogle Scholar
- G. Kauffmann, S.D.M. White, B. Guiderdoni, The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201 (1993). https://doi.org/10.1093/mnras/264.1.201 ADSCrossRefGoogle Scholar
- D. Kereš, N. Katz, D.H. Weinberg, R. Davé, How do galaxies get their gas? Mon. Not. R. Astron. Soc. 363, 2–28 (2005). https://doi.org/10.1111/j.1365-2966.2005.09451.x ADSCrossRefGoogle Scholar
- A. Khalatyan, A. Cattaneo, M. Schramm, S. Gottlöber, M. Steinmetz, L. Wisotzki, Is AGN feedback necessary to form red elliptical galaxies? Mon. Not. R. Astron. Soc. 387, 13–30 (2008). https://doi.org/10.1111/j.1365-2966.2008.13093.x ADSCrossRefGoogle Scholar
- D.-W. Kim, G. Fabbiano, X-ray scaling relation in early-type galaxies: dark matter as a primary factor in retaining hot gas. Astrophys. J. 776, 116 (2013). https://doi.org/10.1088/0004-637X/776/2/116 ADSCrossRefGoogle Scholar
- D.-W. Kim, G. Fabbiano, X-ray scaling relations of ‘core’ and ‘coreless’ E and S0 galaxies. Astrophys. J. 812, 127 (2015). https://doi.org/10.1088/0004-637X/812/2/127 ADSCrossRefGoogle Scholar
- A. King, Black holes, galaxy formation, and the \(\text{m}_{\text{BH}}\mbox{-}{\sigma}\) relation. Astrophys. J. Lett. 596, 27–29 (2003). https://doi.org/10.1086/379143 ADSCrossRefGoogle Scholar
- G.R. Knapp, M.P. Rupen, Molecular gas in elliptical galaxies: CO observations of an IRAS flux-limited sample. Astrophys. J. 460, 271 (1996). https://doi.org/10.1086/176967 ADSCrossRefGoogle Scholar
- G.R. Knapp, E.L. Turner, P.E. Cunniffe, The statistical distribution of the neutral-hydrogen content of elliptical galaxies. Astron. J. 90, 454–468 (1985). https://doi.org/10.1086/113751 ADSCrossRefGoogle Scholar
- G.R. Knapp, P. Guhathakurta, D.-W. Kim, M.A. Jura, Interstellar matter in early-type galaxies. I—IRAS flux densities. Astrophys. J. Suppl. Ser. 70, 329–387 (1989). https://doi.org/10.1086/191342 ADSCrossRefGoogle Scholar
- J. Kormendy, L.C. Ho, Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013). https://doi.org/10.1146/annurev-astro-082708-101811 ADSCrossRefGoogle Scholar
- J. Kormendy, D.B. Fisher, M.E. Cornell, R. Bender, Structure and formation of elliptical and spheroidal galaxies. Astrophys. J. Suppl. Ser. 182, 216–309 (2009). https://doi.org/10.1088/0067-0049/182/1/216 ADSCrossRefGoogle Scholar
- C. Lacey, S. Cole, Merger rates in hierarchical models of galaxy formation. Mon. Not. R. Astron. Soc. 262, 627–649 (1993). https://doi.org/10.1093/mnras/262.3.627 ADSCrossRefGoogle Scholar
- K. Lakhchaura, N. Werner, M. Sun, R.E.A. Canning, M. Gaspari, S.W. Allen, T. Connor, M. Donahue, C. Sarazin, Thermodynamic properties, multiphase gas and AGN feedback in a large sample of giant ellipticals. Mon. Not. R. Astron. Soc. 481(4), 4472–4504 (2018). https://doi.org/10.1093/mnras/sty2565 ADSCrossRefGoogle Scholar
- J.-T. Li, J.N. Bregman, Q.D. Wang, R.A. Crain, M.E. Anderson, S. Zhang, The circum-galactic medium of massive spirals. II. Probing the nature of hot gaseous halo around the most massive isolated spiral galaxies. Astrophys. J. Suppl. Ser. 233, 20 (2017). https://doi.org/10.3847/1538-4365/aa96fc ADSCrossRefGoogle Scholar
- J.-T. Li, J.N. Bregman, Q.D. Wang, R.A. Crain, M.E. Anderson, Baryon budget of the hot circumgalactic medium of massive spiral galaxies. Astrophys. J. Lett. 855, 24 (2018). https://doi.org/10.3847/2041-8213/aab2af ADSCrossRefGoogle Scholar
- M. Loewenstein, E.G. Zweibel, M.C. Begelman, Cosmic-ray heating of cooling flows—a critical analysis. Astrophys. J. 377, 392–402 (1991). https://doi.org/10.1086/170369 ADSCrossRefGoogle Scholar
- C.J. Lonsdale, D. Farrah, H.E. Smith, in Ultraluminous Infrared Galaxies, ed. by J.W. Mason (2006), p. 285. https://doi.org/10.1007/3-540-30313-8_9 CrossRefGoogle Scholar
- N. Lyskova, E. Churazov, A. Moiseev, O. Sil’chenko, I. Zhuravleva, Stellar kinematics of X-ray bright massive elliptical galaxies. Mon. Not. R. Astron. Soc. 441, 2013–2033 (2014). https://doi.org/10.1093/mnras/stu717 ADSCrossRefGoogle Scholar
- M. Lyutikov, Magnetic draping of merging cores and radio bubbles in clusters of galaxies. Mon. Not. R. Astron. Soc. 373, 73–78 (2006). https://doi.org/10.1111/j.1365-2966.2006.10835.x ADSCrossRefGoogle Scholar
- C.-P. Ma, J.E. Greene, N. McConnell, R. Janish, J.P. Blakeslee, J. Thomas, J.D. Murphy, The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 mpc. Astrophys. J. 795, 158 (2014). https://doi.org/10.1088/0004-637X/795/2/158 ADSCrossRefGoogle Scholar
- F. Macchetto, M. Pastoriza, N. Caon, W.B. Sparks, M. Giavalisco, R. Bender, M. Capaccioli, A survey of the ISM in early-type galaxies. I. The ionized gas. Astron. Astrophys. Suppl. Ser. 120, 463–488 (1996) ADSCrossRefGoogle Scholar
- M. Machacek, P.E.J. Nulsen, C. Jones, W.R. Forman, Chandra observations of nuclear outflows in the elliptical galaxy NGC 4552 in the Virgo cluster. Astrophys. J. 648, 947–955 (2006). https://doi.org/10.1086/505963 ADSCrossRefGoogle Scholar
- J. Magorrian, S. Tremaine, D. Richstone, R. Bender, G. Bower, A. Dressler, S.M. Faber, K. Gebhardt, R. Green, C. Grillmair, J. Kormendy, T. Lauer, The demography of massive dark objects in galaxy centers. Astron. J. 115, 2285–2305 (1998). https://doi.org/10.1086/300353 ADSCrossRefGoogle Scholar
- A. Malagoli, R. Rosner, G. Bodo, On the thermal instability of galactic and cluster halos. Astrophys. J. 319, 632–636 (1987). https://doi.org/10.1086/165483 ADSCrossRefGoogle Scholar
- C.L. Martin, A.E. Shapley, A.L. Coil, K.A. Kornei, N. Murray, A. Pancoast, Scattered emission from \(z \sim 1\) galactic outflows. Astrophys. J. 770, 41 (2013). https://doi.org/10.1088/0004-637X/770/1/41 ADSCrossRefGoogle Scholar
- W.G. Mathews, J.N. Bregman, Radiative accretion flow onto giant galaxies in clusters. Astrophys. J. 224, 308–319 (1978). https://doi.org/10.1086/156379 ADSCrossRefGoogle Scholar
- W.G. Mathews, F. Brighenti, Hot gas in and around elliptical galaxies. Annu. Rev. Astron. Astrophys. 41, 191–239 (2003). https://doi.org/10.1146/annurev.astro.41.090401.094542 ADSCrossRefGoogle Scholar
- W.G. Mathews, A. Faltenbacher, F. Brighenti, Heating cooling flows with weak shock waves. Astrophys. J. 638, 659–667 (2006). https://doi.org/10.1086/499119 ADSCrossRefGoogle Scholar
- M. McCourt, I.J. Parrish, P. Sharma, E. Quataert, Can conduction induce convection? On the non-linear saturation of buoyancy instabilities in dilute plasmas. Mon. Not. R. Astron. Soc. 413, 1295–1310 (2011). https://doi.org/10.1111/j.1365-2966.2011.18216.x ADSCrossRefGoogle Scholar
- M. McCourt, P. Sharma, E. Quataert, I.J. Parrish, Thermal instability in gravitationally stratified plasmas: implications for multiphase structure in clusters and galaxy haloes. Mon. Not. R. Astron. Soc. 419, 3319–3337 (2012). https://doi.org/10.1111/j.1365-2966.2011.19972.x ADSCrossRefGoogle Scholar
- M. McDonald, L.H. Wei, S. Veilleux, Cold molecular gas along the cooling X-ray filament in A1795. Astrophys. J. Lett. 755, 24 (2012). https://doi.org/10.1088/2041-8205/755/2/L24 ADSCrossRefGoogle Scholar
- B.R. McNamara, P.E.J. Nulsen, Mechanical feedback from active galactic nuclei in galaxies, groups and clusters. New J. Phys. 14(5), 055023 (2012). https://doi.org/10.1088/1367-2630/14/5/055023 ADSCrossRefGoogle Scholar
- B.R. McNamara, R.W. O’Connell, Star formation in cooling flows in clusters of galaxies. Astron. J. 98, 2018–2043 (1989). https://doi.org/10.1086/115275 ADSCrossRefGoogle Scholar
- B.R. McNamara, M. Wise, P.E.J. Nulsen, L.P. David, C.L. Sarazin, M. Bautz, M. Markevitch, A. Vikhlinin, W.R. Forman, C. Jones, D.E. Harris, Chandra X-ray observations of the hydra a cluster: an interaction between the radio source and the X-ray-emitting gas. Astrophys. J. Lett. 534, 135–138 (2000). https://doi.org/10.1086/312662 ADSCrossRefGoogle Scholar
- B.R. McNamara, M. Rohanizadegan, P.E.J. Nulsen, Are radio active galactic nuclei powered by accretion or black hole spin? Astrophys. J. 727, 39 (2011). https://doi.org/10.1088/0004-637X/727/1/39 ADSCrossRefGoogle Scholar
- B.R. McNamara, H.R. Russell, P.E.J. Nulsen, M.T. Hogan, A.C. Fabian, F. Pulido, A.C. Edge, A mechanism for stimulating AGN feedback by lifting gas in massive galaxies. Astrophys. J. 830, 79 (2016). https://doi.org/10.3847/0004-637X/830/2/79 ADSCrossRefGoogle Scholar
- A. Merloni, S. Heinz, T. di Matteo, A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057–1076 (2003). https://doi.org/10.1046/j.1365-2966.2003.07017.x ADSCrossRefGoogle Scholar
- F. Mernier, V. Biffi, H. Yamaguchi, P. Medvedev, A. Simionescu, S. Ettori, N. Werner, J.S. Kaastra, J. de Plaa, L. Gu, Enrichment of the hot intracluster medium: observations. Space Sci. Rev. 214(8), 129 (2018a). https://doi.org/10.1007/s11214-018-0565-7 ADSCrossRefGoogle Scholar
- F. Mernier, J. de Plaa, N. Werner, J.S. Kaastra, A.J.J. Raassen, L. Gu, J. Mao, I. Urdampilleta, N. Truong, A. Simionescu, Mass-invariance of the iron enrichment in the hot haloes of massive ellipticals, groups, and clusters of galaxies. Mon. Not. R. Astron. Soc. 478, 116–121 (2018b). https://doi.org/10.1093/mnrasl/sly080 ADSCrossRefGoogle Scholar
- M.J. Miller, J.N. Bregman, The structure of the Milky Way’s hot gas halo. Astrophys. J. 770, 118 (2013). https://doi.org/10.1088/0004-637X/770/2/118 ADSCrossRefGoogle Scholar
- M.J. Miller, J.N. Bregman, Constraining the Milky Way’s hot gas halo with O VII and O VIII emission lines. Astrophys. J. 800, 14 (2015). https://doi.org/10.1088/0004-637X/800/1/14 ADSCrossRefGoogle Scholar
- B.P. Moster, T. Naab, S.D.M. White, Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 428, 3121–3138 (2013). https://doi.org/10.1093/mnras/sts261 ADSCrossRefGoogle Scholar
- T. Naab, J.P. Ostriker, Theoretical challenges in galaxy formation. Annu. Rev. Astron. Astrophys. 55, 59–109 (2017). https://doi.org/10.1146/annurev-astro-081913-040019 ADSCrossRefGoogle Scholar
- R. Narayan, I. Yi, Advection-dominated accretion: a self-similar solution. Astrophys. J. Lett. 428, 13–16 (1994). https://doi.org/10.1086/187381 ADSCrossRefGoogle Scholar
- J.F. Navarro, C.S. Frenk, S.D.M. White, A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997). https://doi.org/10.1086/304888 ADSCrossRefGoogle Scholar
- A. Negri, L. Ciotti, S. Pellegrini, The effects of stellar dynamics on the X-ray emission of flat early-type galaxies. Mon. Not. R. Astron. Soc. 439, 823–844 (2014a). https://doi.org/10.1093/mnras/stt2505 ADSCrossRefGoogle Scholar
- A. Negri, S. Posacki, S. Pellegrini, L. Ciotti, The effects of galaxy shape and rotation on the X-ray haloes of early-type galaxies - II. Numerical simulations. Mon. Not. R. Astron. Soc. 445, 1351–1369 (2014b). https://doi.org/10.1093/mnras/stu1834 ADSCrossRefGoogle Scholar
- R.S. Nemmen, A. Tchekhovskoy, On the efficiency of jet production in radio galaxies. Mon. Not. R. Astron. Soc. 449, 316–327 (2015). https://doi.org/10.1093/mnras/stv260 ADSCrossRefGoogle Scholar
- P.E.J. Nulsen, Thermal instability in cooling flows. Mon. Not. R. Astron. Soc. 221, 377–392 (1986) ADSCrossRefGoogle Scholar
- P. Nulsen, C. Jones, W. Forman, E. Churazov, B. McNamara, L. David, S. Murray, Radio mode outbursts in giant elliptical galaxies, in American Institute of Physics Conference Series, ed. by S. Heinz, E. Wilcots. American Institute of Physics Conference Series, vol. 1201 (2009), pp. 198–201. https://doi.org/10.1063/1.3293033 CrossRefGoogle Scholar
- R.W. O’Connell, Far-ultraviolet radiation from elliptical galaxies. Annu. Rev. Astron. Astrophys. 37, 603–648 (1999). https://doi.org/10.1146/annurev.astro.37.1.603 ADSCrossRefGoogle Scholar
- A. Ogorzalek, I. Zhuravleva, S.W. Allen, C. Pinto, N. Werner, A.B. Mantz, R.E.A. Canning, A.C. Fabian, J.S. Kaastra, J. de Plaa, Improved measurements of turbulence in the hot gaseous atmospheres of nearby giant elliptical galaxies. Mon. Not. R. Astron. Soc. 472, 1659–1676 (2017). https://doi.org/10.1093/mnras/stx2030 ADSCrossRefGoogle Scholar
- H. Omma, J. Binney, G. Bryan, A. Slyz, Heating cooling flows with jets. Mon. Not. R. Astron. Soc. 348, 1105–1119 (2004). https://doi.org/10.1111/j.1365-2966.2004.07382.x ADSCrossRefGoogle Scholar
- L. Oser, T. Naab, J.P. Ostriker, P.H. Johansson, The cosmological size and velocity dispersion evolution of massive early-type galaxies. Astrophys. J. 744, 63 (2012). https://doi.org/10.1088/0004-637X/744/1/63 ADSCrossRefGoogle Scholar
- E. O’Sullivan, T.J. Ponman, The isolated elliptical NGC 4555 observed with Chandra. Mon. Not. R. Astron. Soc. 354, 935–944 (2004). https://doi.org/10.1111/j.1365-2966.2004.08257.x ADSCrossRefGoogle Scholar
- E. O’Sullivan, A.J.R. Sanderson, T.J. Ponman, The dark haloes of early-type galaxies in low-density environments: XMM-Newton and Chandra observations of NGC 57, 7796 and IC 1531. Mon. Not. R. Astron. Soc. 380, 1409–1421 (2007). https://doi.org/10.1111/j.1365-2966.2007.12229.x ADSCrossRefGoogle Scholar
- F. Paerels, A. Rasmussen, S. Kahn, J.W. Herder, C. Vries, X-ray absorption and emission spectroscopy of the intergalactic medium at small redshift, in XEUS—Studying the Evolution of the Hot Universe, ed. by G. Hasinger, T. Boller, A.N. Parmer (2003), p. 57 Google Scholar
- E.K. Panagoulia, A.C. Fabian, J.S. Sanders, A volume-limited sample of X-ray galaxy groups and clusters—I. Radial entropy and cooling time profiles. Mon. Not. R. Astron. Soc. 438, 2341–2354 (2014). https://doi.org/10.1093/mnras/stt2349 ADSCrossRefGoogle Scholar
- P. Panuzzo, R. Rampazzo, A. Bressan, O. Vega, F. Annibali, L.M. Buson, M.S. Clemens, W.W. Zeilinger, Nearby early-type galaxies with ionized gas. VI. The spitzer-IRS view. Basic data set analysis and empirical spectral classification. Astron. Astrophys. 528, 10 (2011). https://doi.org/10.1051/0004-6361/201015908 ADSCrossRefGoogle Scholar
- A. Pedlar, H.S. Ghataure, R.D. Davies, B.A. Harrison, R. Perley, P.C. Crane, S.W. Unger, The radio structure of NGC1275. Mon. Not. R. Astron. Soc. 246, 477 (1990) ADSGoogle Scholar
- S. Pellegrini, Hot gas flows on global and nuclear galactic scales, in Astrophys. Space Sci. Library, ed. by D.-W. Kim, S. Pellegrini. Astrophys. Space Sci. Library, vol. 378 (2012), p. 21. https://doi.org/10.1007/978-1-4614-0580-1_2 CrossRefGoogle Scholar
- S. Pellegrini, L. Ciotti, A. Negri, J.P. Ostriker, Active galactic nuclei feedback and the origin and fate of the hot gas in early-type galaxies. Astrophys. J. 856, 115 (2018). https://doi.org/10.3847/1538-4357/aaae07 ADSCrossRefGoogle Scholar
- M. Pettini, A.E. Shapley, C.C. Steidel, J.-G. Cuby, M. Dickinson, A.F.M. Moorwood, K.L. Adelberger, M. Giavalisco, The rest-frame optical spectra of Lyman break galaxies: star formation, extinction, abundances, and kinematics. Astrophys. J. 554, 981–1000 (2001). https://doi.org/10.1086/321403 ADSCrossRefGoogle Scholar
- C. Pfrommer, Toward a comprehensive model for feedback by active galactic nuclei: new insights from M87 observations by LOFAR, Fermi, and H.E.S.S. Astrophys. J. 779, 10 (2013). https://doi.org/10.1088/0004-637X/779/1/10 ADSCrossRefGoogle Scholar
- C. Pfrommer, T.A. Enßlin, C.L. Sarazin, Unveiling the composition of radio plasma bubbles in galaxy clusters with the Sunyaev-Zel’dovich effect. Astron. Astrophys. 430, 799–810 (2005). https://doi.org/10.1051/0004-6361:20041576 ADSCrossRefGoogle Scholar
- C. Pinto, J.S. Sanders, N. Werner, J. de Plaa, A.C. Fabian, Y.-Y. Zhang, J.S. Kaastra, A. Finoguenov, J. Ahoranta, Chemical enrichment RGS cluster sample (CHEERS): constraints on turbulence. Astron. Astrophys. 575, 38 (2015). https://doi.org/10.1051/0004-6361/201425278 CrossRefGoogle Scholar
- F. Pizzolato, N. Soker, On the nature of feedback heating in cooling flow clusters. Astrophys. J. 632, 821–830 (2005). https://doi.org/10.1086/444344 ADSCrossRefGoogle Scholar
- D. Prasad, P. Sharma, A. Babul, Cool core cycles: cold gas and AGN jet feedback in cluster cores. Astrophys. J. 811, 108 (2015). https://doi.org/10.1088/0004-637X/811/2/108 ADSCrossRefGoogle Scholar
- D. Prasad, P. Sharma, A. Babul, AGN jet-driven stochastic cold accretion in cluster cores. Mon. Not. R. Astron. Soc. 471, 1531–1542 (2017). https://doi.org/10.1093/mnras/stx1698 ADSCrossRefGoogle Scholar
- M.A. Prieto, J.A. Fernández-Ontiveros, S. Markoff, D. Espada, O. González-Martín, The central parsecs of M87: jet emission and an elusive accretion disc. Mon. Not. R. Astron. Soc. 457, 3801–3816 (2016). https://doi.org/10.1093/mnras/stw166 ADSCrossRefGoogle Scholar
- D.A. Prokhorov, E.M. Churazov, Counting gamma rays in the directions of galaxy clusters. Astron. Astrophys. 567, 93 (2014). https://doi.org/10.1051/0004-6361/201322454 ADSCrossRefGoogle Scholar
- D.A. Prokhorov, E.M. Churazov, Confinement and diffusion time-scales of CR hadrons in AGN-inflated bubbles. Mon. Not. R. Astron. Soc. 470, 3388–3394 (2017). https://doi.org/10.1093/mnras/stx1404 ADSCrossRefGoogle Scholar
- D.A. Prokhorov, V. Antonuccio-Delogu, J. Silk, Comptonization of the cosmic microwave background by high energy particles residing in AGN cocoons. Astron. Astrophys. 520, 106 (2010). https://doi.org/10.1051/0004-6361/200913920 ADSCrossRefGoogle Scholar
- F.A. Pulido, B.R. McNamara, A.C. Edge, M.T. Hogan, A.N. Vantyghem, H.R. Russell, P.E.J. Nulsen, I. Babyk, P. Salomé, The origin of molecular clouds in central galaxies. Astrophys. J. 853, 177 (2018). https://doi.org/10.3847/1538-4357/aaa54b ADSCrossRefGoogle Scholar
- V. Quilis, I. Trujillo, Expected number of massive galaxy relics in the present day Universe. Astrophys. J. Lett. 773, 8 (2013). https://doi.org/10.1088/2041-8205/773/1/L8 ADSCrossRefGoogle Scholar
- D.A. Rafferty, B.R. McNamara, P.E.J. Nulsen, M.W. Wise, The feedback-regulated growth of black holes and bulges through gas accretion and starbursts in cluster central dominant galaxies. Astrophys. J. 652, 216–231 (2006). https://doi.org/10.1086/507672 ADSCrossRefGoogle Scholar
- D.A. Rafferty, B.R. McNamara, P.E.J. Nulsen, The regulation of cooling and star formation in luminous galaxies by active galactic nucleus feedback and the cooling-time/entropy threshold for the onset of star formation. Astrophys. J. 687, 899–918 (2008). https://doi.org/10.1086/591240 ADSCrossRefGoogle Scholar
- S.W. Randall, W.R. Forman, S. Giacintucci, P.E.J. Nulsen, M. Sun, C. Jones, E. Churazov, L.P. David, R. Kraft, M. Donahue, E.L. Blanton, A. Simionescu, N. Werner, Shocks and cavities from multiple outbursts in the galaxy group NGC 5813: a window to active galactic nucleus feedback. Astrophys. J. 726, 86 (2011). https://doi.org/10.1088/0004-637X/726/2/86 ADSCrossRefGoogle Scholar
- S.W. Randall, P.E.J. Nulsen, C. Jones, W.R. Forman, E. Bulbul, T.E. Clarke, R. Kraft, E.L. Blanton, L. David, N. Werner, M. Sun, M. Donahue, S. Giacintucci, A. Simionescu, A very deep Chandra observation of the galaxy group NGC 5813: AGN shocks, feedback, and outburst history. Astrophys. J. 805, 112 (2015). https://doi.org/10.1088/0004-637X/805/2/112 ADSCrossRefGoogle Scholar
- S.M. Rao, D.A. Turnshek, D.B. Nestor, Damped Ly\(\upalpha\) systems at \(z<1.65\): the expanded Sloan Digital Sky Survey Hubble Space Telescope sample. Astrophys. J. 636, 610–630 (2006). https://doi.org/10.1086/498132 ADSCrossRefGoogle Scholar
- J. Rasmussen, T.J. Ponman, Temperature and abundance profiles of hot gas in galaxy groups—II. Implications for feedback and ICM enrichment. Mon. Not. R. Astron. Soc. 399, 239–263 (2009). https://doi.org/10.1111/j.1365-2966.2009.15244.x ADSCrossRefGoogle Scholar
- M.J. Rees, J.P. Ostriker, Cooling, dynamics and fragmentation of massive gas clouds—clues to the masses and radii of galaxies and clusters. Mon. Not. R. Astron. Soc. 179, 541–559 (1977). https://doi.org/10.1093/mnras/179.4.541 ADSCrossRefGoogle Scholar
- M.J. Rees, M.C. Begelman, R.D. Blandford, E.S. Phinney, Ion-supported tori and the origin of radio jets. Nature 295, 17–21 (1982). https://doi.org/10.1038/295017a0 ADSCrossRefGoogle Scholar
- C.S. Reynolds, A.C. Fabian, A. Celotti, M.J. Rees, The matter content of the jet in M87: evidence for an electron-positron jet. Mon. Not. R. Astron. Soc. 283, 873–880 (1996). https://doi.org/10.1093/mnras/283.3.873 ADSCrossRefGoogle Scholar
- C.S. Reynolds, B. McKernan, A.C. Fabian, J.M. Stone, J.C. Vernaleo, Buoyant radio lobes in a viscous intracluster medium. Mon. Not. R. Astron. Soc. 357, 242–250 (2005). https://doi.org/10.1111/j.1365-2966.2005.08643.x ADSCrossRefGoogle Scholar
- C.S. Reynolds, S.A. Balbus, A.A. Schekochihin, Inefficient driving of bulk turbulence by active galactic nuclei in a hydrodynamic model of the intracluster medium. Astrophys. J. 815, 41 (2015). https://doi.org/10.1088/0004-637X/815/1/41 ADSCrossRefGoogle Scholar
- H.R. Russell, A.C. Fabian, J.S. Sanders, R.M. Johnstone, K.M. Blundell, W.N. Brandt, C.S. Crawford, The X-ray luminous cluster underlying the bright radio-quiet quasar H1821+643. Mon. Not. R. Astron. Soc. 402, 1561–1579 (2010). https://doi.org/10.1111/j.1365-2966.2009.16027.x ADSCrossRefGoogle Scholar
- H.R. Russell, B.R. McNamara, A.C. Edge, M.T. Hogan, R.A. Main, A.N. Vantyghem, Radiative efficiency, variability and Bondi accretion on to massive black holes: the transition from radio AGN to quasars in brightest cluster galaxies. Mon. Not. R. Astron. Soc. 432, 530–553 (2013). https://doi.org/10.1093/mnras/stt490 ADSCrossRefGoogle Scholar
- H.R. Russell, A.C. Fabian, B.R. McNamara, A.E. Broderick, Inside the Bondi radius of M87. Mon. Not. R. Astron. Soc. 451, 588–600 (2015). https://doi.org/10.1093/mnras/stv954 ADSCrossRefGoogle Scholar
- H.R. Russell, M. McDonald, B.R. McNamara, A.C. Fabian, P.E.J. Nulsen, M.B. Bayliss, B.A. Benson, M. Brodwin, J.E. Carlstrom, A.C. Edge, J. Hlavacek-Larrondo, D.P. Marrone, C.L. Reichardt, J.D. Vieira, Alma observations of massive molecular gas filaments encasing radio bubbles in the Phoenix cluster. Astrophys. J. 836, 130 (2017). https://doi.org/10.3847/1538-4357/836/1/130 ADSCrossRefGoogle Scholar
- H.R. Russell, A.C. Fabian, B.R. McNamara, J.M. Miller, P.E.J. Nulsen, J.M. Piotrowska, C.S. Reynolds, The imprints of AGN feedback within a supermassive black hole’s sphere of influence. Mon. Not. R. Astron. Soc. (2018). https://doi.org/10.1093/mnras/sty835 CrossRefGoogle Scholar
- M. Ruszkowski, M. Brüggen, M.C. Begelman, Cluster heating by viscous dissipation of sound waves. Astrophys. J. 611, 158–163 (2004). https://doi.org/10.1086/422158 ADSCrossRefGoogle Scholar
- M. Ruszkowski, T.A. Enßlin, M. Brüggen, S. Heinz, C. Pfrommer, Impact of tangled magnetic fields on fossil radio bubbles. Mon. Not. R. Astron. Soc. 378, 662–672 (2007). https://doi.org/10.1111/j.1365-2966.2007.11801.x ADSCrossRefGoogle Scholar
- M. Ruszkowski, T.A. Enßlin, M. Brüggen, M.C. Begelman, E. Churazov, Cosmic ray confinement in fossil cluster bubbles. Mon. Not. R. Astron. Soc. 383, 1359–1365 (2008). https://doi.org/10.1111/j.1365-2966.2007.12659.x ADSCrossRefGoogle Scholar
- M. Ruszkowski, H.-Y.K. Yang, C.S. Reynolds, Cosmic-ray feedback heating of the intracluster medium. Astrophys. J. 844, 13 (2017). https://doi.org/10.3847/1538-4357/aa79f8 ADSCrossRefGoogle Scholar
- E.M. Sadler, O.E. Gerhard, How common are ‘dust-lanes’ in early-type galaxies? Mon. Not. R. Astron. Soc. 214, 177–187 (1985). https://doi.org/10.1093/mnras/214.2.177 ADSCrossRefGoogle Scholar
- P. Salomé, F. Combes, Y. Revaz, D. Downes, A.C. Edge, A.C. Fabian, A very extended molecular web around NGC 1275. Astron. Astrophys. 531, 85 (2011). https://doi.org/10.1051/0004-6361/200811333 ADSCrossRefGoogle Scholar
- J.S. Sanders, A.C. Fabian, A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays. Mon. Not. R. Astron. Soc. 381, 1381–1399 (2007). https://doi.org/10.1111/j.1365-2966.2007.12347.x ADSCrossRefGoogle Scholar
- J.S. Sanders, A.C. Fabian, Velocity width measurements of the coolest X-ray emitting material in the cores of clusters, groups and elliptical galaxies. Mon. Not. R. Astron. Soc. 429, 2727–2738 (2013). https://doi.org/10.1093/mnras/sts543 ADSCrossRefGoogle Scholar
- J.S. Sanders, A.C. Fabian, K.A. Frank, J.R. Peterson, H.R. Russell, Deep high-resolution X-ray spectra from cool-core clusters. Mon. Not. R. Astron. Soc. 402, 127–144 (2010). https://doi.org/10.1111/j.1365-2966.2009.15902.x ADSCrossRefGoogle Scholar
- J.S. Sanders, A.C. Fabian, R.K. Smith, Constraints on turbulent velocity broadening for a sample of clusters, groups and elliptical galaxies using XMM-Newton. Mon. Not. R. Astron. Soc. 410, 1797–1812 (2011). https://doi.org/10.1111/j.1365-2966.2010.17561.x ADSCrossRefGoogle Scholar
- C.L. Sarazin, J.O. Burns, K. Roettiger, B.R. McNamara, Comparison of the radio, optical, and X-ray structures of the cD galaxy in Abell 2597. Astrophys. J. 447, 559 (1995). https://doi.org/10.1086/175899 ADSCrossRefGoogle Scholar
- M. Sarzi, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Bureau, M. Cappellari, A. Crocker, R.L. Davies, T.A. Davis, P.T. de Zeeuw, P.-A. Duc, E. Emsellem, S. Khochfar, D. Krajnović, H. Kuntschner, P.-Y. Lablanche, R.M. McDermid, R. Morganti, T. Naab, T. Oosterloo, N. Scott, P. Serra, L.M. Young, A.-M. Weijmans, The ATLAS\(^{3D}\) project —XIX. The hot gas content of early-type galaxies: fast versus slow rotators. Mon. Not. R. Astron. Soc. 432, 1845–1861 (2013). https://doi.org/10.1093/mnras/stt062 ADSCrossRefGoogle Scholar
- S.Y. Sazonov, J.P. Ostriker, R.A. Sunyaev, Quasars: the characteristic spectrum and the induced radiative heating. Mon. Not. R. Astron. Soc. 347, 144–156 (2004). https://doi.org/10.1111/j.1365-2966.2004.07184.x ADSCrossRefGoogle Scholar
- S.Y. Sazonov, J.P. Ostriker, L. Ciotti, R.A. Sunyaev, Radiative feedback from quasars and the growth of massive black holes in stellar spheroids. Mon. Not. R. Astron. Soc. 358, 168–180 (2005). https://doi.org/10.1111/j.1365-2966.2005.08763.x ADSCrossRefGoogle Scholar
- E. Scannapieco, S.P. Oh, Quasar feedback: the missing link in structure formation. Astrophys. J. 608, 62–79 (2004). https://doi.org/10.1086/386542 ADSCrossRefGoogle Scholar
- E. Scannapieco, J. Silk, R. Bouwens, AGN feedback causes downsizing. Astrophys. J. Lett. 635, 13–16 (2005). https://doi.org/10.1086/499271 ADSCrossRefGoogle Scholar
- P. Sharma, M. McCourt, E. Quataert, I.J. Parrish, Thermal instability and the feedback regulation of hot haloes in clusters, groups and galaxies. Mon. Not. R. Astron. Soc. 420, 3174–3194 (2012). https://doi.org/10.1111/j.1365-2966.2011.20246.x ADSCrossRefGoogle Scholar
- A. Siemiginowska, C.C. Cheung, S. LaMassa, D.J. Burke, T.L. Aldcroft, J. Bechtold, M. Elvis, D.M. Worrall, X-ray cluster associated with the \(z = 1.063\) CSS quasar 3C 186: the jet is not frustrated. Astrophys. J. 632, 110–121 (2005). https://doi.org/10.1086/432871 ADSCrossRefGoogle Scholar
- A. Siemiginowska, D.J. Burke, T.L. Aldcroft, D.M. Worrall, S. Allen, J. Bechtold, T. Clarke, C.C. Cheung, High-redshift X-ray cooling-core cluster associated with the luminous radio-loud quasar 3C 186. Astrophys. J. 722, 102–111 (2010). https://doi.org/10.1088/0004-637X/722/1/102 ADSCrossRefGoogle Scholar
- J. Silk, On the fragmentation of cosmic gas clouds. I—The formation of galaxies and the first generation of stars. Astrophys. J. 211, 638–648 (1977). https://doi.org/10.1086/154972 ADSCrossRefGoogle Scholar
- J. Silk, M.J. Rees, Quasars and galaxy formation. Astron. Astrophys. 331, 1–4 (1998) ADSGoogle Scholar
- A. Simionescu, G. Tremblay, N. Werner, R.E.A. Canning, S.W. Allen, J.B.R. Oonk, ALMA observation of the disruption of molecular gas in M87. Mon. Not. R. Astron. Soc. 475, 3004–3009 (2018). https://doi.org/10.1093/mnras/sty047 ADSCrossRefGoogle Scholar
- S.L. Snowden, R. Egger, M.J. Freyberg, D. McCammon, P.P. Plucinsky, W.T. Sanders, J.H.M.M. Schmitt, J. Trümper, W. Voges, ROSAT survey diffuse X-ray background maps. II. Astrophys. J. 485, 125–135 (1997). https://doi.org/10.1086/304399 ADSCrossRefGoogle Scholar
- N. Soker, The jet feedback mechanism (JFM) in stars, galaxies and clusters. New Astron. Rev. 75, 1–23 (2016). https://doi.org/10.1016/j.newar.2016.08.002 ADSCrossRefGoogle Scholar
- N. Soker, F. Pizzolato, Feedback heating with slow jets in cooling flow clusters. Astrophys. J. 622, 847–852 (2005). https://doi.org/10.1086/428112 ADSCrossRefGoogle Scholar
- A. Soltan, Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115–122 (1982). https://doi.org/10.1093/mnras/200.1.115 ADSCrossRefGoogle Scholar
- R.S. Somerville, P.F. Hopkins, T.J. Cox, B.E. Robertson, L. Hernquist, A semi-analytic model for the co-evolution of galaxies, black holes and active galactic nuclei. Mon. Not. R. Astron. Soc. 391, 481–506 (2008). https://doi.org/10.1111/j.1365-2966.2008.13805.x ADSCrossRefGoogle Scholar
- A. Spacek, E. Scannapieco, S. Cohen, B. Joshi, P. Mauskopf, Constraining AGN feedback in massive ellipticals with South Pole Telescope measurements of the thermal Sunyaev–Zel’dovich effect. Astrophys. J. 819, 128 (2016). https://doi.org/10.3847/0004-637X/819/2/128 ADSCrossRefGoogle Scholar
- A. Spacek, E. Scannapieco, S. Cohen, B. Joshi, P. Mauskopf, Searching for fossil evidence of AGN feedback in WISE-selected stripe-82 galaxies by measuring the thermal Sunyaev-Zeldovich effect with the Atacama Cosmology Telescope. Astrophys. J. 834, 102 (2017). https://doi.org/10.3847/1538-4357/834/2/102 ADSCrossRefGoogle Scholar
- A. Spacek, M.L.A. Richardson, E. Scannapieco, J. Devriendt, Y. Dubois, S. Peirani, C. Pichon, Using real and simulated measurements of the thermal Sunyaev Zeldovich effect to constrain models of AGN feedback. Astrophys. J. 865, 109 (2018). https://doi.org/10.3847/1538-4357/aada01 ADSCrossRefGoogle Scholar
- W.B. Sparks, H.C. Ford, A.L. Kinney, The dusty emission filaments of M87. Astrophys. J. 413, 531–541 (1993). https://doi.org/10.1086/173022 ADSCrossRefGoogle Scholar
- W.B. Sparks, J.E. Pringle, M. Donahue, R. Carswell, M. Voit, M. Cracraft, R.G. Martin, Discovery of C IV emission filaments in M87. Astrophys. J. Lett. 704, 20–24 (2009). https://doi.org/10.1088/0004-637X/704/1/L20 ADSCrossRefGoogle Scholar
- W.B. Sparks, J.E. Pringle, R.F. Carswell, M. Donahue, R. Martin, M. Voit, M. Cracraft, N. Manset, J.H. Hough, Hundred thousand degree gas in the Virgo cluster of galaxies. Astrophys. J. Lett. 750, 5 (2012). https://doi.org/10.1088/2041-8205/750/1/L5 ADSCrossRefGoogle Scholar
- D.K. Strickland, T.M. Heckman, Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M82. Astrophys. J. 697, 2030–2056 (2009). https://doi.org/10.1088/0004-637X/697/2/2030 ADSCrossRefGoogle Scholar
- Y. Su, J.A. Irwin, R.E. White III, M.C. Cooper, The scatter in the hot gas content of early-type galaxies. Astrophys. J. 806, 156 (2015). https://doi.org/10.1088/0004-637X/806/2/156 ADSCrossRefGoogle Scholar
- T. Suginohara, J.P. Ostriker, The effect of cooling on the density profile of hot gas in clusters of galaxies: is additional physics needed? Astrophys. J. 507, 16–23 (1998). https://doi.org/10.1086/306326 ADSCrossRefGoogle Scholar
- M. Sun, Hot gas in galaxy groups: recent observations. New J. Phys. 14(4), 045004 (2012). https://doi.org/10.1088/1367-2630/14/4/045004 ADSCrossRefGoogle Scholar
- M. Sun, C. Jones, W. Forman, A. Vikhlinin, M. Donahue, M. Voit, X-ray thermal coronae of galaxies in hot clusters: ubiquity of embedded mini-cooling cores. Astrophys. J. 657, 197–231 (2007). https://doi.org/10.1086/510895 ADSCrossRefGoogle Scholar
- X. Tang, E. Churazov, Sound wave generation by a spherically symmetric outburst and AGN feedback in galaxy clusters. Mon. Not. R. Astron. Soc. 468, 3516–3532 (2017). https://doi.org/10.1093/mnras/stx590 ADSCrossRefGoogle Scholar
- G.B. Taylor, F. Govoni, S.W. Allen, A.C. Fabian, Magnetic fields in the 3C 129 cluster. Mon. Not. R. Astron. Soc. 326, 2–10 (2001). https://doi.org/10.1046/j.1365-8711.2001.04587.x ADSCrossRefGoogle Scholar
- G.B. Taylor, A.C. Fabian, G. Gentile, S.W. Allen, C. Crawford, J.S. Sanders, Fields and filaments in the core of the Centaurus cluster. Mon. Not. R. Astron. Soc. 382, 67–72 (2007). https://doi.org/10.1111/j.1365-2966.2007.12368.x ADSCrossRefGoogle Scholar
- P. Temi, F. Brighenti, W.G. Mathews, Far-infrared spitzer observations of elliptical galaxies: evidence for extended diffuse dust. Astrophys. J. 660, 1215–1231 (2007a). https://doi.org/10.1086/513690 ADSCrossRefGoogle Scholar
- P. Temi, F. Brighenti, W.G. Mathews, Spitzer observations of transient, extended dust in two elliptical galaxies: new evidence of recent feedback energy release in galactic cores. Astrophys. J. 666, 222–230 (2007b). https://doi.org/10.1086/520123 ADSCrossRefGoogle Scholar
- P. Temi, A. Amblard, M. Gitti, F. Brighenti, M. Gaspari, W.G. Mathews, L. David, ALMA observations of molecular clouds in three group-centered elliptical galaxies: NGC 5846, NGC 4636, and NGC 5044. Astrophys. J. 858, 17 (2018). https://doi.org/10.3847/1538-4357/aab9b0 ADSCrossRefGoogle Scholar
- T. Tepper-García, J. Bland-Hawthorn, R.S. Sutherland, The Magellanic stream: break-up and accretion onto the hot galactic corona. Astrophys. J. 813, 94 (2015). https://doi.org/10.1088/0004-637X/813/2/94 ADSCrossRefGoogle Scholar
- R.J. Thacker, E. Scannapieco, H.M.P. Couchman, Quasars: what turns them off? Astrophys. J. 653, 86–100 (2006). https://doi.org/10.1086/508650 ADSCrossRefGoogle Scholar
- C. Thom, J. Tumlinson, J.K. Werk, J.X. Prochaska, B.D. Oppenheimer, M.S. Peeples, T.M. Tripp, N.S. Katz, J.M. O’Meara, A.B. Ford, R. Davé, K.R. Sembach, D.H. Weinberg, Not dead yet: cool circumgalactic gas in the halos of early-type galaxies. Astrophys. J. Lett. 758, 41 (2012). https://doi.org/10.1088/2041-8205/758/2/L41 ADSCrossRefGoogle Scholar
- D. Thomas, C. Maraston, R. Bender, C. Mendes de Oliveira, The epochs of early-type galaxy formation as a function of environment. Astrophys. J. 621, 673–694 (2005). https://doi.org/10.1086/426932 ADSCrossRefGoogle Scholar
- R. Tojeiro, W.J. Percival, A.F. Heavens, R. Jimenez, The stellar evolution of luminous red galaxies, and its dependence on colour, redshift, luminosity and modelling. Mon. Not. R. Astron. Soc. 413, 434–460 (2011). https://doi.org/10.1111/j.1365-2966.2010.18148.x ADSCrossRefGoogle Scholar
- P. Tozzi, C. Norman, The evolution of X-ray clusters and the entropy of the intracluster medium. Astrophys. J. 546, 63–84 (2001). https://doi.org/10.1086/318237 ADSCrossRefGoogle Scholar
- G.R. Tremblay, J.B.R. Oonk, F. Combes, P. Salomé, C.P. O’Dea, S.A. Baum, G.M. Voit, M. Donahue, B.R. McNamara, T.A. Davis, M.A. McDonald, A.C. Edge, T.E. Clarke, R. Galván-Madrid, M.N. Bremer, L.O.V. Edwards, A.C. Fabian, S. Hamer, Y. Li, A. Maury, H.R. Russell, A.C. Quillen, C.M. Urry, J.S. Sanders, M.W. Wise, Cold, clumpy accretion onto an active supermassive black hole. Nature 534, 218–221 (2016). https://doi.org/10.1038/nature17969 ADSCrossRefGoogle Scholar
- T. Treu, R.S. Ellis, T.X. Liao, P.G. van Dokkum, Keck spectroscopy of distant GOODS spheroidal galaxies: downsizing in a hierarchical universe. Astrophys. J. Lett. 622, 5–8 (2005). https://doi.org/10.1086/429374 ADSCrossRefGoogle Scholar
- I. Trujillo, N.M. Förster Schreiber, G. Rudnick, M. Barden, M. Franx, H.-W. Rix, J.A.R. Caldwell, D.H. McIntosh, S. Toft, B. Häussler, A. Zirm, P.G. van Dokkum, I. Labbé, A. Moorwood, H. Röttgering, A. van der Wel, P. van der Werf, L. van Starkenburg, The size evolution of galaxies since \(z \sim 3\): combining SDSS, GEMS, and FIRES. Astrophys. J. 650, 18–41 (2006). https://doi.org/10.1086/506464 ADSCrossRefGoogle Scholar
- I. Trujillo, C.J. Conselice, K. Bundy, M.C. Cooper, P. Eisenhardt, R.S. Ellis, Strong size evolution of the most massive galaxies since \(z\sim2\). Mon. Not. R. Astron. Soc. 382, 109–120 (2007). https://doi.org/10.1111/j.1365-2966.2007.12388.x ADSCrossRefGoogle Scholar
- I. Trujillo, A. Ferré-Mateu, M. Balcells, A. Vazdekis, P. Sánchez-Blázquez, NGC 1277: a massive compact relic galaxy in the nearby Universe. Astrophys. J. Lett. 780, 20 (2014). https://doi.org/10.1088/2041-8205/780/2/L20 ADSCrossRefGoogle Scholar
- J. Tumlinson, C. Thom, J.K. Werk, J.X. Prochaska, T.M. Tripp, N. Katz, R. Davé, B.D. Oppenheimer, J.D. Meiring, A.B. Ford, J.M. O’Meara, M.S. Peeples, K.R. Sembach, D.H. Weinberg, The COS-halos survey: rationale, design, and a census of circumgalactic neutral hydrogen. Astrophys. J. 777, 59 (2013). https://doi.org/10.1088/0004-637X/777/1/59 ADSCrossRefGoogle Scholar
- P.G. van Dokkum, M. Franx, N.M. Förster Schreiber, G.D. Illingworth, E. Daddi, K.K. Knudsen, I. Labbé, A. Moorwood, H.-W. Rix, H. Röttgering, G. Rudnick, I. Trujillo, P. van der Werf, A. van der Wel, L. van Starkenburg, S. Wuyts, Stellar populations and kinematics of red galaxies at z > 2: implications for the formation of massive galaxies. Astrophys. J. 611, 703–724 (2004). https://doi.org/10.1086/422308 ADSCrossRefGoogle Scholar
- S. Veilleux, G. Cecil, J. Bland-Hawthorn, Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005). https://doi.org/10.1146/annurev.astro.43.072103.150610 ADSCrossRefGoogle Scholar
- S. Veilleux, D.-C. Kim, C.Y. Peng, L.C. Ho, L.J. Tacconi, K.M. Dasyra, R. Genzel, D. Lutz, D.B. Sanders, A deep Hubble Space Telescope H-band imaging survey of massive gas-rich mergers. Astrophys. J. 643, 707–723 (2006). https://doi.org/10.1086/503188 ADSCrossRefGoogle Scholar
- A.A. Vikhlinin, A.V. Kravtsov, M.L. Markevich, R.A. Sunyaev, E.M. Churazov, Clusters of galaxies. Phys. Usp. 57, 317–341 (2014). https://doi.org/10.3367/UFNe.0184.201404a.0339 ADSCrossRefGoogle Scholar
- G.M. Voit, A role for turbulence in circumgalactic precipitation. ArXiv e-prints (2018) Google Scholar
- G.M. Voit, M. Donahue, Cooling time, freefall time, and precipitation in the cores of ACCEPT galaxy clusters. Astrophys. J. Lett. 799, 1 (2015). https://doi.org/10.1088/2041-8205/799/1/L1 ADSCrossRefGoogle Scholar
- G.M. Voit, S.T. Kay, G.L. Bryan, The baseline intracluster entropy profile from gravitational structure formation. Mon. Not. R. Astron. Soc. 364, 909–916 (2005). https://doi.org/10.1111/j.1365-2966.2005.09621.x ADSCrossRefGoogle Scholar
- G.M. Voit, G.L. Bryan, B.W. O’Shea, M. Donahue, Precipitation-regulated star formation in galaxies. Astrophys. J. Lett. 808, 30 (2015a). https://doi.org/10.1088/2041-8205/808/1/L30 ADSCrossRefGoogle Scholar
- G.M. Voit, M. Donahue, G.L. Bryan, M. McDonald, Regulation of star formation in giant galaxies by precipitation, feedback and conduction. Nature 519, 203–206 (2015b). https://doi.org/10.1038/nature14167 ADSCrossRefGoogle Scholar
- G.M. Voit, M. Donahue, B.W. O’Shea, G.L. Bryan, M. Sun, N. Werner, Supernova sweeping and black hole feedback in elliptical galaxies. Astrophys. J. Lett. 803, 21 (2015c). https://doi.org/10.1088/2041-8205/803/2/L21 ADSCrossRefGoogle Scholar
- H.J. Völk, F.A. Aharonian, D. Breitschwerdt, The nonthermal energy content and gamma-ray emission of starburst galaxies and clusters of galaxies. Space Sci. Rev. 75, 279–297 (1996). https://doi.org/10.1007/BF00195040 ADSCrossRefGoogle Scholar
- J.L. Walsh, A.J. Barth, L.C. Ho, M. Sarzi, The M87 black hole mass from gas-dynamical models of space telescope imaging spectrograph observations. Astrophys. J. 770, 86 (2013). https://doi.org/10.1088/0004-637X/770/2/86 ADSCrossRefGoogle Scholar
- B.J. Weiner, A.L. Coil, J.X. Prochaska, J.A. Newman, M.C. Cooper, K. Bundy, C.J. Conselice, A.A. Dutton, S.M. Faber, D.C. Koo, J.M. Lotz, G.H. Rieke, K.H.R. Rubin, Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at \(z = 1.4\). Astrophys. J. 692, 187–211 (2009). https://doi.org/10.1088/0004-637X/692/1/187 ADSCrossRefGoogle Scholar
- N. Werner, I. Zhuravleva, E. Churazov, A. Simionescu, S.W. Allen, W. Forman, C. Jones, J.S. Kaastra, Constraints on turbulent pressure in the X-ray haloes of giant elliptical galaxies from resonant scattering. Mon. Not. R. Astron. Soc. 398, 23–32 (2009). https://doi.org/10.1111/j.1365-2966.2009.14860.x ADSCrossRefGoogle Scholar
- N. Werner, A. Simionescu, E.T. Million, S.W. Allen, P.E.J. Nulsen, A. von der Linden, S.M. Hansen, H. Böhringer, E. Churazov, A.C. Fabian, W.R. Forman, C. Jones, J.S. Sanders, G.B. Taylor, Feedback under the microscope-II. Heating, gas uplift and mixing in the nearest cluster core. Mon. Not. R. Astron. Soc. 407, 2063–2074 (2010). https://doi.org/10.1111/j.1365-2966.2010.16755.x ADSCrossRefGoogle Scholar
- N. Werner, S.W. Allen, A. Simionescu, On the thermodynamic self-similarity of the nearest, most relaxed, giant ellipticals. Mon. Not. R. Astron. Soc. 425, 2731–2740 (2012). https://doi.org/10.1111/j.1365-2966.2012.21245.x ADSCrossRefGoogle Scholar
- N. Werner, J.B.R. Oonk, R.E.A. Canning, S.W. Allen, A. Simionescu, J. Kos, R.J. van Weeren, A.C. Edge, A.C. Fabian, A. von der Linden, P.E.J. Nulsen, C.S. Reynolds, M. Ruszkowski, The nature of filamentary cold gas in the core of the Virgo cluster. Astrophys. J. 767, 153 (2013). https://doi.org/10.1088/0004-637X/767/2/153 ADSCrossRefGoogle Scholar
- N. Werner, J.B.R. Oonk, M. Sun, P.E.J. Nulsen, S.W. Allen, R.E.A. Canning, A. Simionescu, A. Hoffer, T. Connor, M. Donahue, A.C. Edge, A.C. Fabian, A. von der Linden, C.S. Reynolds, M. Ruszkowski, The origin of cold gas in giant elliptical galaxies and its role in fuelling radio-mode AGN feedback. Mon. Not. R. Astron. Soc. 439, 2291–2306 (2014). https://doi.org/10.1093/mnras/stu006 ADSCrossRefGoogle Scholar
- N. Werner, K. Lakhchaura, R.E.A. Canning, M. Gaspari, A. Simionescu, Digging for red nuggets: discovery of hot halos surrounding massive, compact, relic galaxies. Mon. Not. R. Astron. Soc. (2018). https://doi.org/10.1093/mnras/sty862 CrossRefGoogle Scholar
- S.D.M. White, C.S. Frenk, Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52–79 (1991). https://doi.org/10.1086/170483 ADSCrossRefGoogle Scholar
- S.D.M. White, M.J. Rees, Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978). https://doi.org/10.1093/mnras/183.3.341 ADSCrossRefGoogle Scholar
- J. Wiener, S.P. Oh, F. Guo, Cosmic ray streaming in clusters of galaxies. Mon. Not. R. Astron. Soc. 434, 2209–2228 (2013). https://doi.org/10.1093/mnras/stt1163 ADSCrossRefGoogle Scholar
- K.-W. Wong, J.A. Irwin, M. Yukita, E.T. Million, W.G. Mathews, J.N. Bregman, Resolving the Bondi accretion flow toward the supermassive black hole of NGC 3115 with Chandra. Astrophys. J. Lett. 736, 23 (2011). https://doi.org/10.1088/2041-8205/736/1/L23 ADSCrossRefGoogle Scholar
- K.-W. Wong, J.A. Irwin, R.V. Shcherbakov, M. Yukita, E.T. Million, J.N. Bregman, The megasecond Chandra X-ray visionary project observation of NGC 3115: witnessing the flow of hot gas within the Bondi radius. Astrophys. J. 780, 9 (2014). https://doi.org/10.1088/0004-637X/780/1/9 ADSCrossRefGoogle Scholar
- H.-Y.K. Yang, C.S. Reynolds, How AGN jets heat the intracluster medium—insights from hydrodynamic simulations. Astrophys. J. 829, 90 (2016). https://doi.org/10.3847/0004-637X/829/2/90 ADSCrossRefGoogle Scholar
- R.M. Yates, P.A. Thomas, B.M.B. Henriques, Iron in galaxy groups and clusters: confronting galaxy evolution models with a newly homogenized data set. Mon. Not. R. Astron. Soc. 464, 3169–3193 (2017). https://doi.org/10.1093/mnras/stw2361 ADSCrossRefGoogle Scholar
- A. Yıldırım, R.C.E. van den Bosch, G. van de Ven, I. Martín-Navarro, J.L. Walsh, B. Husemann, K. Gültekin, K. Gebhardt, The structural and dynamical properties of compact elliptical galaxies. Mon. Not. R. Astron. Soc. 468, 4216–4245 (2017). https://doi.org/10.1093/mnras/stx732 ADSCrossRefGoogle Scholar
- L.M. Young, M. Bureau, T.A. Davis, F. Combes, R.M. McDermid, K. Alatalo, L. Blitz, M. Bois, F. Bournaud, M. Cappellari, R.L. Davies, P.T. de Zeeuw, E. Emsellem, S. Khochfar, D. Krajnović, H. Kuntschner, P.-Y. Lablanche, R. Morganti, T. Naab, T. Oosterloo, M. Sarzi, N. Scott, P. Serra, A.-M. Weijmans, The ATLAS\(^{3D}\) project—IV. The molecular gas content of early-type galaxies. Mon. Not. R. Astron. Soc. 414, 940–967 (2011). https://doi.org/10.1111/j.1365-2966.2011.18561.x ADSCrossRefGoogle Scholar
- F. Yuan, R. Narayan, Hot accretion flows around black holes. Annu. Rev. Astron. Astrophys. 52, 529–588 (2014). https://doi.org/10.1146/annurev-astro-082812-141003 ADSCrossRefGoogle Scholar
- F.S. Zahedy, H.-W. Chen, M. Rauch, A. Zabludoff, HST detection of extended neutral hydrogen in a massive elliptical at \(z = 0.4\). Astrophys. J. Lett. 846, 29 (2017). https://doi.org/10.3847/2041-8213/aa88a2 ADSCrossRefGoogle Scholar
- C. Zhang, E. Churazov, A.A. Schekochihin, Generation of internal waves by buoyant bubbles in galaxy clusters and heating of intracluster medium. Mon. Not. R. Astron. Soc. (2018). https://doi.org/10.1093/mnras/sty1269 CrossRefGoogle Scholar
- Z. Zheng, A.L. Coil, I. Zehavi, Galaxy evolution from halo occupation distribution modeling of DEEP2 and SDSS galaxy clustering. Astrophys. J. 667, 760–779 (2007). https://doi.org/10.1086/521074 ADSCrossRefGoogle Scholar
- I. Zhuravleva, E. Churazov, A.A. Schekochihin, S.W. Allen, P. Arévalo, A.C. Fabian, W.R. Forman, J.S. Sanders, A. Simionescu, R. Sunyaev, A. Vikhlinin, N. Werner, Turbulent heating in galaxy clusters brightest in X-rays. Nature 515, 85–87 (2014). https://doi.org/10.1038/nature13830 ADSCrossRefGoogle Scholar
- E.G. Zweibel, V.V. Mirnov, M. Ruszkowski, C.S. Reynolds, H.-Y.K. Yang, A.C. Fabian, Acoustic disturbances in galaxy clusters. Astrophys. J. 858, 5 (2018). https://doi.org/10.3847/1538-4357/aab9ae ADSCrossRefGoogle Scholar