Advertisement

Space Science Reviews

, 215:4 | Cite as

InSight Auxiliary Payload Sensor Suite (APSS)

  • D. BanfieldEmail author
  • J. A. Rodriguez-Manfredi
  • C. T. Russell
  • K. M. Rowe
  • D. Leneman
  • H. R. Lai
  • P. R. Cruce
  • J. D. Means
  • C. L. Johnson
  • A. Mittelholz
  • S. P. Joy
  • P. J. Chi
  • I. G. Mikellides
  • S. Carpenter
  • S. Navarro
  • E. Sebastian
  • J. Gomez-Elvira
  • J. Torres
  • L. Mora
  • V. Peinado
  • A. Lepinette
  • The TWINS Team
  • K. Hurst
  • P. Lognonné
  • S. E. Smrekar
  • W. B. Banerdt
Article
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

NASA’s InSight mission to Mars will measure seismic signals to determine the planet’s interior structure. These highly sensitive seismometers are susceptible to corruption of their measurements by environmental changes. Magnetic fields, atmosphere pressure changes, and local winds can all induce apparent changes in the seismic records that are not due to propagating ground motions. Thus, InSight carries a set of sensors called the Auxiliary Payload Sensor Suite (APSS) which includes a magnetometer, an atmospheric pressure sensor, and a pair of wind and air temperature sensors. In the case of the magnetometer, knowledge of the amplitude of the fluctuating magnetic field at the InSight lander will allow the separation of seismic signals from potentially interfering magnetic signals of either natural or spacecraft origin. To acquire such data, a triaxial fluxgate magnetometer was installed on the deck of the lander to obtain magnetic records at the same cadence as the seismometer. Similarly, a highly sensitive pressure sensor is carried by InSight to enable the removal of local ground-surface tilts due to advecting pressure perturbations. Finally, the local winds (speed and direction) and air temperature are estimated using a hot-film wind sensor with heritage from REMS on the Curiosity rover. When winds are too high, seismic signals can be ignored or discounted. Herein we describe the APSS sensor suite, the test programs for its components, and the possible additional science investigations it enables.

Keywords

Spacecraft Instruments Magnetometer Pressure Wind Temperature 

Notes

Acknowledgements

The work reported here on the IFG was supported by NASA/JPL under contract 1521593. We are grateful to Hannes Leinweber for his assistance with the testing of the magnetometer.

SISMOC center is supported by the French Space Agency CNES. We thank David Mimoun for his work developing and clarifying the APSS sensor requirements as they flow-down from SEIS requirements.

Concerning TWINS, the authors thank the Centro de Desarrollo Tecnológico e Industrial (CDTI), Ministerio de Economía y Competitividad (ESP2013-43503-R, ESP2014-54256-C4-1-R, ESP2015-68281-C4-1-R and ESP2016-79612-C3-1-R) and the Instituto Nacional de Técnica Aeroespacial (INTA) of Spain for funding this project, and to CRISA (an Airbus Defence and Space Company) for the technological involvement in the project.

This is InSight contribution number 50.

References

  1. M.H. Acuna, J.E.P. Connerney, N.F. Ness et al., Science 284, 790–793 (1999) ADSCrossRefGoogle Scholar
  2. R. Beauduin, P. Lognonné, J.P. Montagner, S. Cacho, J.F. Karczewski, M. Morand, Bull. Seismol. Soc. Am. 86, 1760–1769 (1996) Google Scholar
  3. K.M. Bobba, Robust Flow Stability: Theory, Computations and Experiments in Near Wall Turbulence (California Institute of Technology, Pasadena, 2004) Google Scholar
  4. P. Bradshaw, D.G. Goodman, The Effects of Turbulence on Static Pressure Tubes. (Her Majesty’s Stationery Office, London, 1968) Google Scholar
  5. T. Christiansen, P. Bradshaw, J. Phys. E, Sci. Instrum. 14, 992–997 (1981) ADSCrossRefGoogle Scholar
  6. J.E.P. Connerney, J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, D. Sheppard, Space Sci. Rev. 194, 257–291 (2015) ADSCrossRefGoogle Scholar
  7. S.S. Dolginov, Geophys. Res. Lett. 5, 89–92 (1978a) ADSCrossRefGoogle Scholar
  8. S.S. Dolginov, Kosm. Issled. 16, 257–268 (1978b) ADSGoogle Scholar
  9. S.S. Dolginov, Y.G. Yeroshenko, L.N. Zhuzgov, J. Geophys. Res. 81, 3353–3362 (1976) ADSCrossRefGoogle Scholar
  10. M. Dominguez, V. Jimenez, J. Ricart, L. Kowalski, J. Torres, S. Navarro, J. Romeral, L. Castanet, Planet. Space Sci. 56, 1169–1179 (2008) ADSCrossRefGoogle Scholar
  11. T. Forbriger, R. Widmer-Schnidrig, E. Wielandt, M. Hayman, N. Ackerley, Geophys. J. Int. 183(1), 303–312 (2010).  https://doi.org/10.1111/j.1365-246X.2010.04719.x ADSCrossRefGoogle Scholar
  12. R.F. Garcia, Q. Brissard, L. Rolland, R. Martin, D. Komatitsch, A. Spiga, P. Lognonné, B. Banerdt, Space Sci. Rev. 211, 547–570 (2017) ADSCrossRefGoogle Scholar
  13. M. Golombek, M. Grott, G. Kargl, J. Andrade, J. Marshall, N. Warner, N.A. Teanby, V. Ansan, E. Hauber, J. Voigt, R. Lichtenheldt, B. Knapmeyer-Endrun, I.J. Daubar, D. Kipp, N. Muller, P. Lognonné, C. Schmelzbach, D. Banfield, A. Trebi-Ollennu, J. Maki, S. Kedar, D. Mimoun, N. Murdoch, S. Piqueux, P. Delage, W.T. Pike, C. Charalambous, R. Lorenz, L. Fayon, A. Lucas, S. Rodriguez, P. Morgan, A. Spiga, M. Panning, T. Spohn, S. Smrekar, T. Gudkova, R. Garcia, D. Giardini, U. Christense, T. Nicollier, D. Sollberger, J. Robertsson, K. Ali, B. Kenda, W.B. Banerdt, Space Sci. Rev. (2018).  https://doi.org/10.1007/s11214-018-051207 CrossRefGoogle Scholar
  14. J. Gomez-Elvira, C. Armiens, L. Castaner, M. Dominguez, M. Genzer, F. Gomez, R. Haberle, A.-M. Harri, V. Jimenez, H. Kahanpaa, L. Kowalski, A. Lepinette, J. Martina, J. Martin-Frias, I. Mcewan, L. Mora, J. Moreno, S. Navarro, M.A. de Pablo, V. Peinado, A. Pena, J. Polkko, M. Ramos, N.O. Renno, J. Ricart, M. Richardson, J. Rodriguez-Manfredi, J. Romeral, E. Sebastian, J. Serrano, M. de la Torre Juarez, J. Torres, F. Torrero, R. Urqui, L. Vazques, T. Velasco, J. Verdasco, M.-P. Zorzano, J. Martin-Torres, Space Sci. Rev. 170, 583–640 (2012) ADSCrossRefGoogle Scholar
  15. R.A. Gurnett, D.D. Morgan, L.J. Granroth, B.A. Cantor, W.M. Farrell, J.R. Espley, Geophys. Res. Lett. 37, L17802 (2010) ADSGoogle Scholar
  16. R.M. Haberle, M.A. Kahre, Mars 5, 68–75 (2010).  https://doi.org/10.1555/mars.2010.0003 ADSCrossRefGoogle Scholar
  17. R.M. Haberle, M. de la Torre Juarez, M. Kahre, D.M. Kass, J.R. Barnes, J.L. Hollingsworth, A.-M. Harri, H. Kahanpaa, Icarus 307, 150–160 (2018) ADSCrossRefGoogle Scholar
  18. S.L. Hess, R.M. Henry, C.B. Leovy, J.A. Ryan, J.E. Tillman, Trans. Am. Geophys. Union 58, 827 (1977) Google Scholar
  19. J.P. Holman, W.J. Gajda, Experimental Methods for Engineers, 3rd edn. (McGraw-Hill, New York, 1978) Google Scholar
  20. B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R. Lorenz, D. Banfield, M. Golombek, Space Sci. Rev. 211, 501–524 (2017) ADSCrossRefGoogle Scholar
  21. F. Kuhnke, M. Menvielle, G. Musmann, J.F. Karczewski, H. Kügler, C. Cavot, P. Schibler, Planet. Space Sci. 46(6–7), 749–767 (1998).  https://doi.org/10.1016/S0032-0633(98)00010-5 ADSCrossRefGoogle Scholar
  22. B. Langlais, M.E. Purucker, M. Mandea, J. Geophys. Res., Planets 109(E2), E02008 (2004) ADSCrossRefGoogle Scholar
  23. B. Langlais, F. Civet, E. Thébault, J. Geophys. Res., Planets 122(1), 110–123 (2017) ADSCrossRefGoogle Scholar
  24. J.A. LeHew, Spatio-Temporal Analysis of the Turbulent Boundary Layer and an Investigation of the Effects of Periodic Disturbances (California Institute of Technology, Pasadena, 2012) Google Scholar
  25. P. Lognonné et al., Space Sci. Rev. (2018, submitted) Google Scholar
  26. P. Lognonné, B. Mosser, Surv. Geophys. 14(3), 239–302 (1993) ADSCrossRefGoogle Scholar
  27. P. Lognonné, V.N. Zharkov, J.F. Karczewski, B. Romanowicz, M. Menvielle, G. Poupinet, B. Brient, C. Cavoit, A. Desautez, B. Dole, D. Franqueville, J. Gagnepain-Beyneix, H. Richard, P. Schibler, N. Striebig, Planet. Space Sci. 46(6–7), 739–747 (1998).  https://doi.org/10.1016/S0032-0633(98)00009-9 ADSCrossRefGoogle Scholar
  28. R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W.B. Banerdt, Bull. Seismol. Soc. Am. 105, 3015–3023 (2015) CrossRefGoogle Scholar
  29. W.J. Massman, R.A. Sommerfeld, A.R. Mosier, K.F. Zeller, T.J. Hehn, S.G. Rochelle, J. Geophys. Res. 102(D15), 18851–18863 (1997) ADSCrossRefGoogle Scholar
  30. G.B. McCullough, The effect of Reynolds number on the stalling characteristics and pressure distributions of four moderately thin airfoil sections, NACA Technical Note 3524. Ames Aeronautical Laboratory, Moffett Field, CA (1955) Google Scholar
  31. D. Mimoun, N. Murdoch, P. Lognonne, K. Hurst, W.T. Pike, J. Hurley, T. Nebut, W.B. Banerdt (SEIS Team), Space Sci. Rev. 211, 383–428 (2017) ADSCrossRefGoogle Scholar
  32. A. Mittelholz, C.L. Johnson, R.J. Lillis, J. Geophys. Res., Planets 122(6), 1243–1257 (2017) ADSCrossRefGoogle Scholar
  33. A. Mittelholz, C.L. Johnson, A. Morschhauser, Geophys. Res. Lett. 45, 5899–5907 (2018) ADSGoogle Scholar
  34. A. Morschhauser, V. Lesur, M. Grott, J. Geophys. Res., Planets 119(6), 1162–1188 (2014) ADSCrossRefGoogle Scholar
  35. D.W. Mueller Jr., H.I. Abu-Mulaweh, Appl. Therm. Eng. 26, 1662–1668 (2006) CrossRefGoogle Scholar
  36. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Space Sci. Rev. 211, 501–524 (2017) ADSCrossRefGoogle Scholar
  37. J.R. Murphy, C.B. Leovy, J.E. Tillman, J. Geophys. Res. 95, 14555–14576 (1990) ADSCrossRefGoogle Scholar
  38. K. Nishida, Y. Fufao, S. Watada, N. Kobayashi, M. Tahira, N. Suda, K. Nawa, T. Oi, T. Kitajima, Geophys. J. Int. 162(3), 824–840 (2005) ADSCrossRefGoogle Scholar
  39. R.T. Nishiyama, A.J. Bedard, Rev. Sci. Instrum. 62, 2193–2204 (1991) ADSCrossRefGoogle Scholar
  40. C.T. Russell, Geophys. Res. Lett. 5, 85–88 (1978) ADSCrossRefGoogle Scholar
  41. C.T. Russell, Phys. Earth Planet. Inter. 20, 237–246 (1979) ADSCrossRefGoogle Scholar
  42. C.T. Russell, R.C. Elphic, J.A. Slavin, J. Geophys. Res. 85, 8319–8332 (1980) ADSCrossRefGoogle Scholar
  43. C.T. Russell, B.J. Anderson, W. Baumjohann, K.R. Bromund, D. Dearborn, D. Fischer, G. Le, H. Leinweber, D. Leneman, W. Magnes, J.D. Means, M.B. Moldwin, R. Nakamura, D. Pierce, F. Plaschke, K.M. Rowe, J.A. Slavin, R.J. Strangeway, R. Torbert, C. Hagen, I. Jernej, A. Valavanoglou, I. Richter, Space Sci. Rev. 199(1), 189–256 (2016) ADSCrossRefGoogle Scholar
  44. J.A. Ryan, R.M. Henry, S.L. Hess, C.B. Leovy, J.E. Tillman, C. Walcek, Geophys. Res. Lett. 5, 715–718 (1978) ADSCrossRefGoogle Scholar
  45. E.J. Smith, Planetary magnetic field experiments, in Advanced Space Experiments, ed. by O.L. Tiffany, E.M. Zaitzeff (American Astronautical Society, Tarzana, 1969), pp. 103–129 Google Scholar
  46. S. Smrekar, P. Lognonné, T. Spohn, B. Banerdt, D. Breuer, U. Christensen, V. Dehant, M. Drilleau, B. Folkner, N. Fuji, R.F. Garcia, D. Giardini, M. Golombek, M. Grott, T. Gudkova, C. Johnson, A. Khan, B. Langlais, A. Mittelholz, A. Mocquet, B. Myhill, M. Panning, C. Perrin, T. Pike, A. Plesa, A. Rivoldini, H. Samuel, T. van Hoolst, O. Verhoeven, R. Weber, M. Wieczorek, Space Sci. Rev. (2018).  https://doi.org/10.1007/s11214-018-0563-9 CrossRefGoogle Scholar
  47. A. Spiga, D. Banfield, N.A. Teanby, F. Forget, A. Lucas, B. Kenda, J.A. Rodriguez Manfredi, R. Widmer-Schnidrig, N. Murdoch, M.T. Lemmon, R.F. Garcia, L. Martire, O. Karatekin, S. Le Maistre, B. Vam Hove, V. Dehant, P. Lognonné, N. Muller, R. Lorenz, D. Mimoun, S. Rodriguez, E. Beucler, I. Daubar, M.P. Golombek, T. Bertrand, Y. Nishikawa, S. Navarro, L. Mora-Sotomayor, E. Sebastian-Martinez, E. Millour, L. Rolland, Q. Brissaud, T. Kawamura, A. Mocquet, R. Martin, J. Clinton, E. Stutzmann, W.M. Folkner, J. Maki, T. Spohn, S. Smrekar, W.B. Banerdt, Space Sci. Rev. 214(7), 1–64 (2018) CrossRefGoogle Scholar
  48. J.M. Wilczak, A.J. Bedard, J. Atmos. Ocean. Technol. 21, 1170–1181 (2004) ADSCrossRefGoogle Scholar
  49. J.-P. Williams, J. Geophys. Res. 106(E3), 5033–5041 (2001).  https://doi.org/10.1029/1999JE001174 ADSCrossRefGoogle Scholar
  50. Y. Yeroshenko, W. Riedler, K. Schwingenschuh, J.G. Luhmann, M. Ong, C.T. Russell, Geophys. Res. Lett. 17, 885–888 (1990) ADSCrossRefGoogle Scholar
  51. T.L. Zhang, W. Baumjohann, C.T. Russell, J.G. Luhmann, S.D. Xiao, Sci. Rep. 6, 23537 (2016) ADSCrossRefGoogle Scholar
  52. M.-P. Zorzano, L. Vazquez, S. Jimenez, Inverse Probl. 25, 115023–115032 (2009) ADSCrossRefGoogle Scholar
  53. W. Zürn, R. Widmer, Geophys. Res. Lett. 22(24), 3537–3540 (1995) ADSCrossRefGoogle Scholar
  54. W. Zürn, J.H.S. Exß, C. Kroner, T. Jahr, M. Westerhaus, Geophys. J. Int. 171, 780–796 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • D. Banfield
    • 1
    Email author
  • J. A. Rodriguez-Manfredi
    • 2
  • C. T. Russell
    • 3
  • K. M. Rowe
    • 3
  • D. Leneman
    • 3
  • H. R. Lai
    • 3
  • P. R. Cruce
    • 3
  • J. D. Means
    • 3
  • C. L. Johnson
    • 4
    • 5
  • A. Mittelholz
    • 4
  • S. P. Joy
    • 3
  • P. J. Chi
    • 3
  • I. G. Mikellides
    • 6
  • S. Carpenter
    • 7
  • S. Navarro
    • 2
  • E. Sebastian
    • 2
  • J. Gomez-Elvira
    • 2
  • J. Torres
    • 2
  • L. Mora
    • 2
  • V. Peinado
    • 2
  • A. Lepinette
    • 2
  • The TWINS Team
    • 2
  • K. Hurst
    • 6
  • P. Lognonné
    • 8
  • S. E. Smrekar
    • 6
  • W. B. Banerdt
    • 6
  1. 1.Cornell Center for Astrophysics and Planetary ScienceCornell UniversityIthacaUSA
  2. 2.Centro de AstrobiologiaMadridSpain
  3. 3.Earth, Planetary, and Space SciencesUniversity of CaliforniaLos AngelesUSA
  4. 4.Department of Earth, Ocean and Atmospheric SciencesUniversity of British ColumbiaVancouverCanada
  5. 5.Planetary Science InstituteTucsonUSA
  6. 6.Jet Propulsion LaboratoryPasadenaUSA
  7. 7.Tavis CorporationMariposaUSA
  8. 8.Institut de Physique du Globe de Paris-Sorbonne Paris CitéUniversité Paris DiderotParisFrance

Personalised recommendations