Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

InSight Auxiliary Payload Sensor Suite (APSS)

  • 553 Accesses

  • 8 Citations

Abstract

NASA’s InSight mission to Mars will measure seismic signals to determine the planet’s interior structure. These highly sensitive seismometers are susceptible to corruption of their measurements by environmental changes. Magnetic fields, atmosphere pressure changes, and local winds can all induce apparent changes in the seismic records that are not due to propagating ground motions. Thus, InSight carries a set of sensors called the Auxiliary Payload Sensor Suite (APSS) which includes a magnetometer, an atmospheric pressure sensor, and a pair of wind and air temperature sensors. In the case of the magnetometer, knowledge of the amplitude of the fluctuating magnetic field at the InSight lander will allow the separation of seismic signals from potentially interfering magnetic signals of either natural or spacecraft origin. To acquire such data, a triaxial fluxgate magnetometer was installed on the deck of the lander to obtain magnetic records at the same cadence as the seismometer. Similarly, a highly sensitive pressure sensor is carried by InSight to enable the removal of local ground-surface tilts due to advecting pressure perturbations. Finally, the local winds (speed and direction) and air temperature are estimated using a hot-film wind sensor with heritage from REMS on the Curiosity rover. When winds are too high, seismic signals can be ignored or discounted. Herein we describe the APSS sensor suite, the test programs for its components, and the possible additional science investigations it enables.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. M.H. Acuna, J.E.P. Connerney, N.F. Ness et al., Science 284, 790–793 (1999)

  2. R. Beauduin, P. Lognonné, J.P. Montagner, S. Cacho, J.F. Karczewski, M. Morand, Bull. Seismol. Soc. Am. 86, 1760–1769 (1996)

  3. K.M. Bobba, Robust Flow Stability: Theory, Computations and Experiments in Near Wall Turbulence (California Institute of Technology, Pasadena, 2004)

  4. P. Bradshaw, D.G. Goodman, The Effects of Turbulence on Static Pressure Tubes. (Her Majesty’s Stationery Office, London, 1968)

  5. T. Christiansen, P. Bradshaw, J. Phys. E, Sci. Instrum. 14, 992–997 (1981)

  6. J.E.P. Connerney, J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, D. Sheppard, Space Sci. Rev. 194, 257–291 (2015)

  7. S.S. Dolginov, Geophys. Res. Lett. 5, 89–92 (1978a)

  8. S.S. Dolginov, Kosm. Issled. 16, 257–268 (1978b)

  9. S.S. Dolginov, Y.G. Yeroshenko, L.N. Zhuzgov, J. Geophys. Res. 81, 3353–3362 (1976)

  10. M. Dominguez, V. Jimenez, J. Ricart, L. Kowalski, J. Torres, S. Navarro, J. Romeral, L. Castanet, Planet. Space Sci. 56, 1169–1179 (2008)

  11. T. Forbriger, R. Widmer-Schnidrig, E. Wielandt, M. Hayman, N. Ackerley, Geophys. J. Int. 183(1), 303–312 (2010). https://doi.org/10.1111/j.1365-246X.2010.04719.x

  12. R.F. Garcia, Q. Brissard, L. Rolland, R. Martin, D. Komatitsch, A. Spiga, P. Lognonné, B. Banerdt, Space Sci. Rev. 211, 547–570 (2017)

  13. M. Golombek, M. Grott, G. Kargl, J. Andrade, J. Marshall, N. Warner, N.A. Teanby, V. Ansan, E. Hauber, J. Voigt, R. Lichtenheldt, B. Knapmeyer-Endrun, I.J. Daubar, D. Kipp, N. Muller, P. Lognonné, C. Schmelzbach, D. Banfield, A. Trebi-Ollennu, J. Maki, S. Kedar, D. Mimoun, N. Murdoch, S. Piqueux, P. Delage, W.T. Pike, C. Charalambous, R. Lorenz, L. Fayon, A. Lucas, S. Rodriguez, P. Morgan, A. Spiga, M. Panning, T. Spohn, S. Smrekar, T. Gudkova, R. Garcia, D. Giardini, U. Christense, T. Nicollier, D. Sollberger, J. Robertsson, K. Ali, B. Kenda, W.B. Banerdt, Space Sci. Rev. (2018). https://doi.org/10.1007/s11214-018-051207

  14. J. Gomez-Elvira, C. Armiens, L. Castaner, M. Dominguez, M. Genzer, F. Gomez, R. Haberle, A.-M. Harri, V. Jimenez, H. Kahanpaa, L. Kowalski, A. Lepinette, J. Martina, J. Martin-Frias, I. Mcewan, L. Mora, J. Moreno, S. Navarro, M.A. de Pablo, V. Peinado, A. Pena, J. Polkko, M. Ramos, N.O. Renno, J. Ricart, M. Richardson, J. Rodriguez-Manfredi, J. Romeral, E. Sebastian, J. Serrano, M. de la Torre Juarez, J. Torres, F. Torrero, R. Urqui, L. Vazques, T. Velasco, J. Verdasco, M.-P. Zorzano, J. Martin-Torres, Space Sci. Rev. 170, 583–640 (2012)

  15. R.A. Gurnett, D.D. Morgan, L.J. Granroth, B.A. Cantor, W.M. Farrell, J.R. Espley, Geophys. Res. Lett. 37, L17802 (2010)

  16. R.M. Haberle, M.A. Kahre, Mars 5, 68–75 (2010). https://doi.org/10.1555/mars.2010.0003

  17. R.M. Haberle, M. de la Torre Juarez, M. Kahre, D.M. Kass, J.R. Barnes, J.L. Hollingsworth, A.-M. Harri, H. Kahanpaa, Icarus 307, 150–160 (2018)

  18. S.L. Hess, R.M. Henry, C.B. Leovy, J.A. Ryan, J.E. Tillman, Trans. Am. Geophys. Union 58, 827 (1977)

  19. J.P. Holman, W.J. Gajda, Experimental Methods for Engineers, 3rd edn. (McGraw-Hill, New York, 1978)

  20. B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R. Lorenz, D. Banfield, M. Golombek, Space Sci. Rev. 211, 501–524 (2017)

  21. F. Kuhnke, M. Menvielle, G. Musmann, J.F. Karczewski, H. Kügler, C. Cavot, P. Schibler, Planet. Space Sci. 46(6–7), 749–767 (1998). https://doi.org/10.1016/S0032-0633(98)00010-5

  22. B. Langlais, M.E. Purucker, M. Mandea, J. Geophys. Res., Planets 109(E2), E02008 (2004)

  23. B. Langlais, F. Civet, E. Thébault, J. Geophys. Res., Planets 122(1), 110–123 (2017)

  24. J.A. LeHew, Spatio-Temporal Analysis of the Turbulent Boundary Layer and an Investigation of the Effects of Periodic Disturbances (California Institute of Technology, Pasadena, 2012)

  25. P. Lognonné et al., Space Sci. Rev. (2018, submitted)

  26. P. Lognonné, B. Mosser, Surv. Geophys. 14(3), 239–302 (1993)

  27. P. Lognonné, V.N. Zharkov, J.F. Karczewski, B. Romanowicz, M. Menvielle, G. Poupinet, B. Brient, C. Cavoit, A. Desautez, B. Dole, D. Franqueville, J. Gagnepain-Beyneix, H. Richard, P. Schibler, N. Striebig, Planet. Space Sci. 46(6–7), 739–747 (1998). https://doi.org/10.1016/S0032-0633(98)00009-9

  28. R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W.B. Banerdt, Bull. Seismol. Soc. Am. 105, 3015–3023 (2015)

  29. W.J. Massman, R.A. Sommerfeld, A.R. Mosier, K.F. Zeller, T.J. Hehn, S.G. Rochelle, J. Geophys. Res. 102(D15), 18851–18863 (1997)

  30. G.B. McCullough, The effect of Reynolds number on the stalling characteristics and pressure distributions of four moderately thin airfoil sections, NACA Technical Note 3524. Ames Aeronautical Laboratory, Moffett Field, CA (1955)

  31. D. Mimoun, N. Murdoch, P. Lognonne, K. Hurst, W.T. Pike, J. Hurley, T. Nebut, W.B. Banerdt (SEIS Team), Space Sci. Rev. 211, 383–428 (2017)

  32. A. Mittelholz, C.L. Johnson, R.J. Lillis, J. Geophys. Res., Planets 122(6), 1243–1257 (2017)

  33. A. Mittelholz, C.L. Johnson, A. Morschhauser, Geophys. Res. Lett. 45, 5899–5907 (2018)

  34. A. Morschhauser, V. Lesur, M. Grott, J. Geophys. Res., Planets 119(6), 1162–1188 (2014)

  35. D.W. Mueller Jr., H.I. Abu-Mulaweh, Appl. Therm. Eng. 26, 1662–1668 (2006)

  36. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Space Sci. Rev. 211, 501–524 (2017)

  37. J.R. Murphy, C.B. Leovy, J.E. Tillman, J. Geophys. Res. 95, 14555–14576 (1990)

  38. K. Nishida, Y. Fufao, S. Watada, N. Kobayashi, M. Tahira, N. Suda, K. Nawa, T. Oi, T. Kitajima, Geophys. J. Int. 162(3), 824–840 (2005)

  39. R.T. Nishiyama, A.J. Bedard, Rev. Sci. Instrum. 62, 2193–2204 (1991)

  40. C.T. Russell, Geophys. Res. Lett. 5, 85–88 (1978)

  41. C.T. Russell, Phys. Earth Planet. Inter. 20, 237–246 (1979)

  42. C.T. Russell, R.C. Elphic, J.A. Slavin, J. Geophys. Res. 85, 8319–8332 (1980)

  43. C.T. Russell, B.J. Anderson, W. Baumjohann, K.R. Bromund, D. Dearborn, D. Fischer, G. Le, H. Leinweber, D. Leneman, W. Magnes, J.D. Means, M.B. Moldwin, R. Nakamura, D. Pierce, F. Plaschke, K.M. Rowe, J.A. Slavin, R.J. Strangeway, R. Torbert, C. Hagen, I. Jernej, A. Valavanoglou, I. Richter, Space Sci. Rev. 199(1), 189–256 (2016)

  44. J.A. Ryan, R.M. Henry, S.L. Hess, C.B. Leovy, J.E. Tillman, C. Walcek, Geophys. Res. Lett. 5, 715–718 (1978)

  45. E.J. Smith, Planetary magnetic field experiments, in Advanced Space Experiments, ed. by O.L. Tiffany, E.M. Zaitzeff (American Astronautical Society, Tarzana, 1969), pp. 103–129

  46. S. Smrekar, P. Lognonné, T. Spohn, B. Banerdt, D. Breuer, U. Christensen, V. Dehant, M. Drilleau, B. Folkner, N. Fuji, R.F. Garcia, D. Giardini, M. Golombek, M. Grott, T. Gudkova, C. Johnson, A. Khan, B. Langlais, A. Mittelholz, A. Mocquet, B. Myhill, M. Panning, C. Perrin, T. Pike, A. Plesa, A. Rivoldini, H. Samuel, T. van Hoolst, O. Verhoeven, R. Weber, M. Wieczorek, Space Sci. Rev. (2018). https://doi.org/10.1007/s11214-018-0563-9

  47. A. Spiga, D. Banfield, N.A. Teanby, F. Forget, A. Lucas, B. Kenda, J.A. Rodriguez Manfredi, R. Widmer-Schnidrig, N. Murdoch, M.T. Lemmon, R.F. Garcia, L. Martire, O. Karatekin, S. Le Maistre, B. Vam Hove, V. Dehant, P. Lognonné, N. Muller, R. Lorenz, D. Mimoun, S. Rodriguez, E. Beucler, I. Daubar, M.P. Golombek, T. Bertrand, Y. Nishikawa, S. Navarro, L. Mora-Sotomayor, E. Sebastian-Martinez, E. Millour, L. Rolland, Q. Brissaud, T. Kawamura, A. Mocquet, R. Martin, J. Clinton, E. Stutzmann, W.M. Folkner, J. Maki, T. Spohn, S. Smrekar, W.B. Banerdt, Space Sci. Rev. 214(7), 1–64 (2018)

  48. J.M. Wilczak, A.J. Bedard, J. Atmos. Ocean. Technol. 21, 1170–1181 (2004)

  49. J.-P. Williams, J. Geophys. Res. 106(E3), 5033–5041 (2001). https://doi.org/10.1029/1999JE001174

  50. Y. Yeroshenko, W. Riedler, K. Schwingenschuh, J.G. Luhmann, M. Ong, C.T. Russell, Geophys. Res. Lett. 17, 885–888 (1990)

  51. T.L. Zhang, W. Baumjohann, C.T. Russell, J.G. Luhmann, S.D. Xiao, Sci. Rep. 6, 23537 (2016)

  52. M.-P. Zorzano, L. Vazquez, S. Jimenez, Inverse Probl. 25, 115023–115032 (2009)

  53. W. Zürn, R. Widmer, Geophys. Res. Lett. 22(24), 3537–3540 (1995)

  54. W. Zürn, J.H.S. Exß, C. Kroner, T. Jahr, M. Westerhaus, Geophys. J. Int. 171, 780–796 (2007)

Download references

Acknowledgements

The work reported here on the IFG was supported by NASA/JPL under contract 1521593. We are grateful to Hannes Leinweber for his assistance with the testing of the magnetometer.

SISMOC center is supported by the French Space Agency CNES. We thank David Mimoun for his work developing and clarifying the APSS sensor requirements as they flow-down from SEIS requirements.

Concerning TWINS, the authors thank the Centro de Desarrollo Tecnológico e Industrial (CDTI), Ministerio de Economía y Competitividad (ESP2013-43503-R, ESP2014-54256-C4-1-R, ESP2015-68281-C4-1-R and ESP2016-79612-C3-1-R) and the Instituto Nacional de Técnica Aeroespacial (INTA) of Spain for funding this project, and to CRISA (an Airbus Defence and Space Company) for the technological involvement in the project.

This is InSight contribution number 50.

Author information

Correspondence to D. Banfield.

Additional information

The InSight Mission to Mars II

Edited by William B. Banerdt and Christopher T. Russell

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banfield, D., Rodriguez-Manfredi, J.A., Russell, C.T. et al. InSight Auxiliary Payload Sensor Suite (APSS). Space Sci Rev 215, 4 (2019). https://doi.org/10.1007/s11214-018-0570-x

Download citation

Keywords

  • Spacecraft
  • Instruments
  • Magnetometer
  • Pressure
  • Wind
  • Temperature