Advertisement

Space Science Reviews

, 215:3 | Cite as

Pre-mission InSights on the Interior of Mars

  • Suzanne E. SmrekarEmail author
  • Philippe Lognonné
  • Tilman Spohn
  • W. Bruce Banerdt
  • Doris Breuer
  • Ulrich Christensen
  • Véronique Dehant
  • Mélanie Drilleau
  • William Folkner
  • Nobuaki Fuji
  • Raphael F. Garcia
  • Domenico Giardini
  • Matthew Golombek
  • Matthias Grott
  • Tamara Gudkova
  • Catherine Johnson
  • Amir Khan
  • Benoit Langlais
  • Anna Mittelholz
  • Antoine Mocquet
  • Robert Myhill
  • Mark Panning
  • Clément Perrin
  • Tom Pike
  • Ana-Catalina Plesa
  • Attilio Rivoldini
  • Henri Samuel
  • Simon C. Stähler
  • Martin van Driel
  • Tim Van Hoolst
  • Olivier Verhoeven
  • Renee Weber
  • Mark Wieczorek
Article
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

The Interior exploration using Seismic Investigations, Geodesy, and Heat Transport (InSight) Mission will focus on Mars’ interior structure and evolution. The basic structure of crust, mantle, and core form soon after accretion. Understanding the early differentiation process on Mars and how it relates to bulk composition is key to improving our understanding of this process on rocky bodies in our solar system, as well as in other solar systems. Current knowledge of differentiation derives largely from the layers observed via seismology on the Moon. However, the Moon’s much smaller diameter make it a poor analog with respect to interior pressure and phase changes. In this paper we review the current knowledge of the thickness of the crust, the diameter and state of the core, seismic attenuation, heat flow, and interior composition. InSight will conduct the first seismic and heat flow measurements of Mars, as well as more precise geodesy. These data reduce uncertainty in crustal thickness, core size and state, heat flow, seismic activity and meteorite impact rates by a factor of \(3\mbox{--}10\times\) relative to previous estimates. Based on modeling of seismic wave propagation, we can further constrain interior temperature, composition, and the location of phase changes. By combining heat flow and a well constrained value of crustal thickness, we can estimate the distribution of heat producing elements between the crust and mantle. All of these quantities are key inputs to models of interior convection and thermal evolution that predict the processes that control subsurface temperature, rates of volcanism, plume distribution and stability, and convective state. Collectively these factors offer strong controls on the overall evolution of the geology and habitability of Mars.

Keywords

Mars InSight Interior Seismology Heat flow Geodesy Crust Mantle Core 

Notes

Acknowledgements

This is InSight contribution number 38. The IPGP team (IPGP contribution 3987) acknowledges support from IUF (for PL) a, d support from ANR-SIMARS, ANR-10-LABX-0023, ANR-11-IDEX-0005-02 as well as CNES. A portion of the work was supported by the InSight Project at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. MvD and SCS were supported by grants from the Swiss National Science Foundation (SNF-ANR project 157133 “Seismology on Mars”) and the Swiss National Supercomputing Center (CSCS) under project ID sm682. AK and DG would like to acknowledge support from the Swiss National Science Foundation (SNF-ANR project 172508 “Mapping the internal structure of Mars”). The authors thank Lara Panossian for assistance with preparing the manuscript.

References

  1. M.H. Acuña, J.E.P. Connerney, N.F. Ness, R.P. Lin, D. Mitchell, C.W. Carlson, J. McFadden, K.A. Anderson, H. Reme, C. Mazelle, D. Vignes, P. Wasilewski, P. Cloutier, Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284(5415), 790–793 (1999).  https://doi.org/10.1126/science.284.5415.790 ADSCrossRefGoogle Scholar
  2. M.H. Acuña, J.E.P. Connerney, P. Wasilewski, R.P. Lin, D. Mitchell, K.A. Anderson, C.W. Carlson, J. McFadden, H. Rème, C. Mazelle, D. Vignes, S.J. Bauer, P. Cloutier, N.F. Ness, Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J. Geophys. Res., Planets 106(E10), 23403–23417 (2001).  https://doi.org/10.1029/2000JE001404 ADSCrossRefGoogle Scholar
  3. R.A. Albert, R.J. Phillips, A.J. Dombard, C.D. Brown, A test of the validity of yield strength envelopes with an elastoviscoplastic finite element model. Geophys. J. Int. 140(2), 399–409 (2000).  https://doi.org/10.1046/j.1365-246x.2000.00006.x ADSCrossRefGoogle Scholar
  4. A.A. Allam, Y. Ben-Zion, I. Kurzon, F. Vernon, Seismic velocity structure in the Hot Springs and Trifurcation areas of the San Jacinto fault zone, California, from double-difference tomography. Geophys. J. Int. 198(2), 978–999 (2014) ADSCrossRefGoogle Scholar
  5. H. Amit, U.R. Christensen, B. Langlais, The influence of degree-1 mantle heterogeneity on the past dynamo of Mars. Phys. Earth Planet. Inter. 189(1–2), 63–79 (2011).  https://doi.org/10.1016/j.pepi.2011.07.008 ADSCrossRefGoogle Scholar
  6. D.L. Anderson, Internal constitution of Mars. J. Geophys. Res. 77(5), 789–795 (1972).  https://doi.org/10.1029/JB077i005p00789 ADSCrossRefGoogle Scholar
  7. D.L. Anderson, Temperature and pressure derivatives of elastic constants with application to the mantle. J. Geophys. Res. 93(B5), 4688–4700 (1988).  https://doi.org/10.1029/JB093iB05p04688 ADSCrossRefGoogle Scholar
  8. D.L. Anderson, W.F. Miller, G.V. Latham, Y. Nakamura, M.N. Toksz, A.M. Dainty, F.K. Duennebier, A.R. Lazarewicz, R.L. Kovach, T.C.D. Knight, Seismology on Mars. J. Geophys. Res. 82(28), 4524–4546 (1997).  https://doi.org/10.1029/JS082i028p04524 ADSCrossRefGoogle Scholar
  9. J.C. Andrews-Hanna, M.T. Zuber, W.B. Banerdt, The Borealis basin and the origin of the martian crustal dichotomy. Nature 453(7199), 1212–1215 (2008).  https://doi.org/10.1038/nature07011 ADSCrossRefGoogle Scholar
  10. J. Arkani-Hamed, A 50-degree spherical harmonic model of the magnetic field of Mars. J. Geophys. Res. 106(E10), 23197 (2001).  https://doi.org/10.1029/2000JE001365 ADSCrossRefGoogle Scholar
  11. J. Arkani-Hamed, Magnetization of the Martian crust. J. Geophys. Res., Planets 107(E5), 5032 (2002).  https://doi.org/10.1029/2001JE001496 ADSCrossRefGoogle Scholar
  12. J. Arkani-Hamed, Timing of the Martian core dynamo. J. Geophys. Res. 109(October 2003), 1–12 (2004).  https://doi.org/10.1029/2003JE002195 CrossRefGoogle Scholar
  13. R.E. Arvidson, F.P. Seelos IV, K.S. Deal, W.C. Koeppen, N.O. Snider, J.M. Kieniewicz, B.M. Hynek, M.T. Mellon, J.B. Garvin, Mantled and exhumed terrains in Terra Meridiani, Mars. J. Geophys. Res. 108, 8073 (2003).  https://doi.org/10.1029/2002JE001982 CrossRefGoogle Scholar
  14. A.Y. Babeiko, V. Zharkov, Density and seismic profiles of the Martian crust in the event of an extra-low temperature gradient. Sol. Syst. Res. 32, 14 (1998) ADSGoogle Scholar
  15. J.B. Balta, J.R. Beckett, P.D. Asimow, Thermodynamic properties of alloys of gold-74/palladium-26 with variable amounts of iron and the use of Au-Pd-Fe alloys as containers for experimental petrology. Am. Mineral. 96(10), 1467 (2011).  https://doi.org/10.2138/am.2011.3637 ADSCrossRefGoogle Scholar
  16. J.L. Bandfield, V.E. Hamilton, P.R. Christensen, A global view of Martian surface compositions from MGS-TES. Science 287(5458), 1626–1630 (2000).  https://doi.org/10.1126/science.287.5458.1626 ADSCrossRefGoogle Scholar
  17. W.B. Banerdt, M.P. Golombek, Tectonics of the Tharsis region of Mars: insights from MGS topography and gravity, in 31st Annual Lunar and Planetary Science Conference, March 13–17, 2000, Houston, Texas, vol. 31 (2000), abstract no. 2038 Google Scholar
  18. W.B. Banerdt, R.J. Phillips, N.H. Sleep, R.S. Saunders, Thick shell tectonics on one-plate planets: applications to Mars. J. Geophys. Res. 87(B12), 9723 (1982).  https://doi.org/10.1029/JB087iB12p09723 ADSCrossRefGoogle Scholar
  19. W.B. Banerdt, M.P. Golombek, K.L. Tanaka, Stress and tectonics on Mars, in Mars (A93-27852 09-91) (1992). pp. 249–297 Google Scholar
  20. W.B. Banerdt, L. Boschi, U. Christensen, V. Dehant, D. Giardini, W. Goetz, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, J. Tromp, T.V. Zoest, M. Wieczorek, InSight: a discovery mission to explore the interior of Mars, in 44th Lunar and Planetary Science Conference, vol. 1915 (2013).  https://doi.org/10.1029/2007JE002905 CrossRefGoogle Scholar
  21. D. Banfield, J.-A. Rodriguez Manfredi, C. Russell, et al., The InSight auxiliary payload sensor suite APSS (2018) Google Scholar
  22. D. Baratoux, M.J. Toplis, M. Monnereau, V. Sautter, The petrological expression of early Mars volcanism. J. Geophys. Res., Planets 118(1), 59–64 (2013).  https://doi.org/10.1029/2012JE004234 ADSCrossRefGoogle Scholar
  23. D. Baratoux, H. Samuel, C. michaut, M.J. Toplis, M. Monnereau, M. Wieczorek, R. Garcia, K. Kurita, Petrological constraints on the density of the Martian crust. J. Geophys. Res., Planets, 1–21 (2014) Google Scholar
  24. D.N. Barnett, F. Nimmo, Strength of faults on Mars from MOLA topography. Icarus 157(1), 34–42 (2002).  https://doi.org/10.1006/ICAR.2002.6817 ADSCrossRefGoogle Scholar
  25. P.J. Barton, The relationship between seismic velocity and density in the continental crust—a useful constraint? Geophys. J. Int. 87(1), 195–208 (1986).  https://doi.org/10.1111/j.1365-246X.1986.tb04553.x ADSCrossRefGoogle Scholar
  26. G.K. Batchelor, Heat convection and buoyancy effects in fluids. Q. J. R. Meteorol. Soc. 80(345), 339–358 (1954).  https://doi.org/10.1002/qj.49708034504 ADSCrossRefGoogle Scholar
  27. V. Belleguic, P. Lognonné, M. Wieczorek, Constraints on the Martian lithosphere from gravity and topography data. J. Geophys. Res. 110(E11), 11005 (2005).  https://doi.org/10.1029/2005JE002437 CrossRefGoogle Scholar
  28. C. Bellis, B. Holtzman, Sensitivity of seismic measurements to frequency-dependent attenuation and upper mantle structure: an initial approach. J. Geophys. Res., Solid Earth 119(7), 5497–5517 (2014).  https://doi.org/10.1002/2013JB010831 ADSCrossRefGoogle Scholar
  29. Y. Ben-Zion, Z. Peng, D. Okaya, L. Seeber, J.G. Armbruster, N. Ozer, A.J. Michael, S. Baris, M. Aktar, A shallow fault-zone structure illuminated by trapped waves in the Karadere-Duzce branch of the North Anatolian Fault, western Turkey. Geophys. J. Int. 152(3), 699–717 (2003).  https://doi.org/10.1046/j.1365-246X.2003.01870.x ADSCrossRefGoogle Scholar
  30. C.M. Bertka, Y. Fei, Mineralogy of the Martian interior up to core-mantle boundary pressures. J. Geophys. Res., Solid Earth 102(B3), 5251–5264 (1997).  https://doi.org/10.1029/96JB03270 CrossRefGoogle Scholar
  31. C.M. Bertka, Y. Fei, Density profile of an SNC model Martian interior and the moment-of-inertia factor of Mars. Earth Planet. Sci. Lett. 157(1–2), 79–88 (1998).  https://doi.org/10.1016/S0012-821X(98)00030-2 ADSCrossRefGoogle Scholar
  32. M. Beuthe, S. Le Maistre, P. Rosenblatt, M. Pätzold, V. Dehant, Density and lithospheric thickness of the Tharsis Province from MEX MaRS and MRO gravity data. J. Geophys. Res., Planets 117(E4) E04002 (2012) ADSGoogle Scholar
  33. B.G. Bills, Geodetic constraints on the composition of Mars. J. Geophys. Res., Solid Earth 95(B9), 14131–14136 (1990) CrossRefGoogle Scholar
  34. C.R. Bina, G.R. Helffrich, Calculation of elastic properties from thermodynamic equation of state principles. Annu. Rev. Earth Planet. Sci. 20, 527 (1992).  https://doi.org/10.1146/annurev.ea.20.050192.002523 ADSCrossRefGoogle Scholar
  35. A.B. Binder, Internal structure of Mars. J. Geophys. Res. 74(12), 3110–3118 (1969).  https://doi.org/10.1029/JB074i012p03110 ADSCrossRefGoogle Scholar
  36. F. Birch, Elasticity and constitution of the Earth’s interior. J. Geophys. Res. 57(2), 227–286 (1952).  https://doi.org/10.1029/JZ057i002p00227 ADSCrossRefGoogle Scholar
  37. T. Bodin, H. Yuan, B. Romanowicz, Inversion of receiver functions without deconvolution—application to the Indian craton. Geophys. J. Int. 196(2), 1025–1033 (2014).  https://doi.org/10.1093/gji/ggt431 ADSCrossRefGoogle Scholar
  38. M. Böse, J.F. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, P. Lognonné, W.B. Banerdt, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. 262, 48–65 (2017).  https://doi.org/10.1016/j.pepi.2016.11.003 ADSCrossRefGoogle Scholar
  39. S. Bouley, D. Baratoux, I. Matsuyama, F. Forget, A. Séjourné, M. Turbet, F. Costard, Late Tharsis formation and implications for early Mars. Nature 531(7594), 344–347 (2016).  https://doi.org/10.1038/nature17171 ADSCrossRefGoogle Scholar
  40. W.V. Boynton, G.J. Taylor, L.G. Evans, R.C. Reedy, R. Starr, D.M. Janes, K.E. Kerry, D.M. Drake, K.J. Kim, R.M.S. Williams, M.K. Crombie, J.M. Dohm, V. Baker, A.E. Metzger, S. Karunatillake, J.M. Keller, H.E. Newsom, J.R. Arnold, J. Brückner, P.A.J. Englert, O. Gasnault, A.L. Sprague, H. Wänke, D.K. Hamara, Concentration of H, Si, Cl, K, Fe, and Th in the low and midlatitude regions of Mars. J. Geophys. Res. 112, 12–99 (2007).  https://doi.org/10.1029/2007JE002887 CrossRefGoogle Scholar
  41. D. Breuer, W.B. Moore, 10.08—Dynamics and thermal history of the terrestrial planets, the Moon, and Io, in Treatise on Geophysics, 2nd edn. ed. by G. Schubert (Elsevier, Oxford, 2015), pp. 255–305. 978-0-444-53803-1.  https://doi.org/10.1016/B978-0-444-53802-4.00173-1 CrossRefGoogle Scholar
  42. D. Breuer, T. Spohn, Early plate tectonics versus single-plate tectonics on Mars: evidence from magnetic field history and crust evolution. J. Geophys. Res. 108(E7), 5072 (2003).  https://doi.org/10.1029/2002JE001999 CrossRefGoogle Scholar
  43. D. Breuer, T. Spohn, Viscosity of the Martian mantle and its initial temperature: constraints from crust formation history and the evolution of the magnetic field. Planet. Space Sci. 54(2), 153–169 (2006).  https://doi.org/10.1016/J.PSS.2005.08.008 ADSCrossRefGoogle Scholar
  44. D. Breuer, D.A. Yuen, T. Spohn, Phase transitions in the Martian mantle: implications for partially layered convection. Earth Planet. Sci. Lett. 148(3–4), 457–469 (1997).  https://doi.org/10.1016/S0012-821X(97)00049-6 ADSCrossRefGoogle Scholar
  45. D. Breuer, D.A. Yuen, T. Spohn, S. Zhang, Three dimensional models of Martian mantle convection with phase transitions. Geophys. Res. Lett. 25(3), 229–232 (1998).  https://doi.org/10.1029/97GL03767 ADSCrossRefGoogle Scholar
  46. D. Breuer, S. Labrosse, T. Spohn, Thermal evolution and magnetic field generation in terrestrial planets and satellites. Space Sci. Rev. 152(1–4), 449–500 (2010).  https://doi.org/10.1007/s11214-009-9587-5 ADSCrossRefGoogle Scholar
  47. D. Breuer, A.-C. Plesa, N. Tosi, M. Grott, Water in the Martian interior—the geodynamical perspective. Meteorit. Planet. Sci. 51(11), 1959–1992 (2016).  https://doi.org/10.1111/maps.12727 ADSCrossRefGoogle Scholar
  48. C.D. Brown, R.J. Phillips, Crust-mantle decoupling by flexure of continental lithosphere. J. Geophys. Res., Solid Earth 105(B6), 13221–13237 (2000).  https://doi.org/10.1029/2000JB900069 CrossRefGoogle Scholar
  49. H.-P. Bunge, M.A. Richards, J.R. Baumgardner, Effect of depth-dependent viscosity on the planform of mantle convection. Nature 379(6564), 436–438 (1996).  https://doi.org/10.1038/379436a0 ADSCrossRefGoogle Scholar
  50. T.H. Burbine, K.M. O’Brien, Determining the possible building blocks of the Earth and Mars. Meteorit. Planet. Sci. 39(5), 667–681 (2004).  https://doi.org/10.1111/j.1945-5100.2004.tb00110.x ADSCrossRefGoogle Scholar
  51. E.B. Burov, M. Diament, The effective elastic thickness (\(T_{e}\)) of continental lithosphere: what does it really mean? J. Geophys. Res., Solid Earth 100(B3), 3905–3927 (1995).  https://doi.org/10.1029/94JB02770 CrossRefGoogle Scholar
  52. D.M. Burr, J.A. Grier, A.S. McEwen, L.P. Keszthelyi, Repeated aqueous flooding from the Cerberus Fossae: evidence for very recently extant, deep groundwater on Mars. Icarus 159(1), 53–73 (2002).  https://doi.org/10.1006/icar.2002.6921 ADSCrossRefGoogle Scholar
  53. J.C. Cain, An \(n = 90\) internal potential function of the Martian crustal magnetic field. J. Geophys. Res. 108, 1–19 (2003).  https://doi.org/10.1029/2000JE001487 CrossRefGoogle Scholar
  54. E. Chassefière, B. Langlais, Y. Quesnel, F. Leblanc, The fate of early Mars’ lost water: the role of serpentinization. J. Geophys. Res., Planets 118(5), 1123–1134 (2013).  https://doi.org/10.1002/jgre.20089 ADSCrossRefGoogle Scholar
  55. N.A. Chujkova, L.P. Nasonova, T.G. Maximova, Density, stress, and gravity anomalies in the interiors of the Earth and Mars and the probable geodynamical implications: comparative analysis. Izv. Phys. Solid Earth 50, 427 (2014).  https://doi.org/10.1134/S106935131403001X ADSCrossRefGoogle Scholar
  56. F. Civet, P. Tarits, Electrical conductivity of the mantle of Mars from MGS magnetic observations. Earth Planets Space 66, 85 (2014).  https://doi.org/10.1186/1880-5981-66-85 ADSCrossRefGoogle Scholar
  57. J.F. Clinton, D. Giardini, P. Lognonné, B. Banerdt, M. van Driel, M. Drilleau, N. Murdoch, M. Panning, R. Garcia, D. Mimoun, M. Golombek, J. Tromp, R. Weber, M. Böse, S. Ceylan, I. Daubar, B. Kenda, A. Khan, L. Perrin, A. Spiga, Preparing for InSight: an invitation to participate in a blind test for Martian seismicity. Seismol. Res. Lett. 88(5), 1290–1302 (2017).  https://doi.org/10.1785/0220170094 CrossRefGoogle Scholar
  58. E.S. Cochran, Y.-G. Li, P.M. Shearer, S. Barbot, Y. Fialko, J.E. Vidale, Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology 37(4), 315–318 (2009).  https://doi.org/10.1130/G25306A.1 ADSCrossRefGoogle Scholar
  59. R.P. Comer, S.C. Solomon, J.W. Head, Mars: thickness of the lithosphere from the tectonic response to volcanic loads. Rev. Geophys. 23(1), 61 (1985).  https://doi.org/10.1029/RG023i001p00061 ADSCrossRefGoogle Scholar
  60. J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, N.F. Ness, H. Reme, C. Mazelle, D. Vignes, R.P. Lin, D.L. Mitchell, P.A. Cloutier, Magnetic lineations in the ancient crust of Mars. Science 284(5415), 794–798 (1999) ADSCrossRefGoogle Scholar
  61. J.E.P. Connerney, M.H. Acuña, P.J. Wasilewski, G. Kletetschka, N.F. Ness, H. Rème, R.P. Lin, D.L. Mitchell, The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28(21), 4015–4018 (2001).  https://doi.org/10.1029/2001GL013619 ADSCrossRefGoogle Scholar
  62. J.E.P. Connerney, M.H. Acuña, N.F. Ness, G. Kletetschka, D.L. Mitchell, R.P. Lin, H. Reme, Tectonic implications of Mars crustal magnetism. Proc. Natl. Acad. Sci. USA 102, 14970–14975 (2005).  https://doi.org/10.1073/pnas.0507469102 ADSCrossRefGoogle Scholar
  63. J.A.D. Connolly, Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).  https://doi.org/10.1016/j.epsl.2005.04.033 ADSCrossRefGoogle Scholar
  64. J.A.D. Connolly, The geodynamic equation of state: what and how. Geochem. Geophys. Geosyst. 10(10), Q10014 (2009).  https://doi.org/10.1029/2009GC002540 ADSCrossRefGoogle Scholar
  65. J. Connolly, D. Kerrick, Metamorphic controls on seismic velocity of subducted oceanic crust at 100–250 km depth. Earth Planet. Sci. Lett. 204(1–2), 61–74 (2002) ADSCrossRefGoogle Scholar
  66. J.A.D. Connolly, A. Khan, Uncertainty of mantle geophysical properties computed from phase equilibrium models. Geophys. Res. Lett. 43(10), 5026–5034 (2016).  https://doi.org/10.1002/2016GL068239 ADSCrossRefGoogle Scholar
  67. S. Crampin, J.H. Lovell, A decade of shear-wave splitting in the Earth’s crust: what does it mean? What use can we make of it? And what should we do next? Geophys. J. Int. 107(3), 387–407 (1991).  https://doi.org/10.1111/j.1365-246X.1991.tb01401.x ADSCrossRefGoogle Scholar
  68. A. Davaille, A. Limare, F. Touitou, I. Kumagai, J. Vatteville, Anatomy of a laminar starting thermal plume at high Prandtl number. Exp. Fluids 50(2), 285–300 (2011).  https://doi.org/10.1007/s00348-010-0924-y CrossRefGoogle Scholar
  69. A.M. Davis, H.Y. McSween, S.M. McLennan, Meteorites, Comets, and Planets (Elsevier, Boston, 2005), p. 737. 0080525350 Google Scholar
  70. V. Debaille, A.D. Brandon, Q.Z. Yin, B. Jacobsen, Coupled 142Nd–143Nd evidence for a protracted magma ocean in Mars. Nature 450(7169), 525–528 (2007).  https://doi.org/10.1038/nature06317 ADSCrossRefGoogle Scholar
  71. W. Dietrich, J. Wicht, A hemispherical dynamo model: implications for the Martian crustal magnetization. Phys. Earth Planet. Inter. 217(C), 10–21 (2013).  https://doi.org/10.1016/j.pepi.2013.01.001 ADSCrossRefGoogle Scholar
  72. G. Dreibus, H. Wänke, Accretion of the Earth and the inner planets, in Proceedings of the 27th International Geological Congress, vol. 11, (VNU Science Press, Utrecht, 1984), pp. 1–20 Google Scholar
  73. G. Dreibus, H. Wänke, Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985) ADSGoogle Scholar
  74. G. Dreibus, J. Brückner, R. Gellert, E. Jagoutz, G. Klingelhöfer, M.E. Schmidt, A.S. Team, Algonquin class rocks of Columbia hills in the Gusev crater, Mars, and their relationship to SNC meteorites, in 38th Lunar and Planetary Science Conference, Lunar and Planetary Science XXXVIII, March 12–16, 2007, League City, Texas. LPI, vol. 1338 (2007), p. 1649 Google Scholar
  75. T.S. Duffy, D.L. Anderson, Seismic velocities in mantle minerals and the mineralogy of the upper mantle. J. Geophys. Res. 94(B2), 1895–1912 (1989).  https://doi.org/10.1029/JB094iB02p01895 ADSCrossRefGoogle Scholar
  76. D.J. Dunlop, J. Arkani-Hamed, Magnetic minerals in the Martian crust. J. Geophys. Res., Planets 110(12), 1–11 (2005).  https://doi.org/10.1029/2005JE002404 CrossRefGoogle Scholar
  77. A.M. Dziewoński, D.L. Anderson, Preliminary reference Earth model. Phys. Earth Planet. Inter. 25(4), 297–356 (1981).  https://doi.org/10.1016/0031-9201(81)90046-7 ADSCrossRefGoogle Scholar
  78. I. Egea-Gonzalez, A. Jiménez-Díaz, L.M. Parro, V. López, J.-P. Williams, J. Ruiz, Thrust fault modeling and Late-Noachian lithospheric structure of the circum-Hellas region, Mars. Icarus 288, 53–68 (2017).  https://doi.org/10.1016/J.ICARUS.2017.01.028 ADSCrossRefGoogle Scholar
  79. B.L. Ehlmann, C.S. Edwards, Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014) ADSCrossRefGoogle Scholar
  80. B.L. Ehlmann, J.F. Mustard, R.N. Clark, G.A. Swayze, S.L. Murchie, Evidence for low-grade metamorphism, hydrothermal alteration, and diagenesis on Mars from phyllosilicate mineral assemblages. Clays Clay Miner. 59(4), 359–377 (2011) ADSCrossRefGoogle Scholar
  81. L.T. Elkins-Tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271(1–4), 181–191 (2008).  https://doi.org/10.1016/J.EPSL.2008.03.062 ADSCrossRefGoogle Scholar
  82. L.T. Elkins-Tanton, E.M. Parmentier, P.C. Hess, Magma ocean fractional crystallization and cumulate overturn in terrestrial planets: implications for Mars. Meteorit. Planet. Sci. 38(12), 1753–1771 (2003).  https://doi.org/10.1111/j.1945-5100.2003.tb00013.x ADSCrossRefGoogle Scholar
  83. L.T. Elkins-Tanton, S.E. Zaranek, E.M. Parmentier, P.C. Hess, Early magnetic field and magmatic activity on Mars from magma ocean cumulate overturn. Earth Planet. Sci. Lett. 236, 1–12 (2005) ADSCrossRefGoogle Scholar
  84. L.T. Elkins-Tanton, S.E. Zaranek, E.M. Parmentier, P.C. Hess, Formation of early water oceans on rocky planets. Astrophys. Space Sci. 332, 359–364 (2011) ADSCrossRefGoogle Scholar
  85. B. Fegley, Practical Chemical Thermodynamics for Geoscientists (2013). 9780122511004.  https://doi.org/10.1016/C2009-0-22615-8 CrossRefGoogle Scholar
  86. Y. Fei, C. Bertka, The interior of Mars. Science 308(5725), 1120–1121 (2005).  https://doi.org/10.1126/science.1110531 CrossRefGoogle Scholar
  87. W.C. Feldman, A. Pathare, S. Maurice, T.H. Prettyman, D.J. Lawrence, R.E. Milliken, B.J. Travis, Mars Odyssey neutron data: 2. Search for buried excess water ice deposits at nonpolar latitudes on Mars. J. Geophys. Res. 116(E11), 11009 (2011).  https://doi.org/10.1029/2011JE003806 CrossRefGoogle Scholar
  88. J. Filiberto, R. Dasgupta, Constraints on the depth and thermal vigor of melting in the Martian mantle. J. Geophys. Res., Planets 120(1), 109–122 (2015).  https://doi.org/10.1002/2014JE004745 ADSCrossRefGoogle Scholar
  89. J. Filiberto, H. Nekvasil, D.H. Lindsley, The Mars/Earth dichotomy in Mg/Si and Al/Si ratios: is it real? Am. Mineral. 91(2–3), 471 (2006).  https://doi.org/10.2138/am.2006.2110 ADSCrossRefGoogle Scholar
  90. Y. Finzi, E.H. Hearn, Y. Ben-Zion, V. Lyakhovsky, Structural properties and deformation patterns of evolving strike-slip faults: numerical simulations incorporating damage rheology. Pure Appl. Geophys. 166(10–11), 1537–1573 (2009) ADSCrossRefGoogle Scholar
  91. W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R.A. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars pathfinder. Science 278(5344), 1749–1752 (1997).  https://doi.org/10.1126/science.278.5344.1749 ADSCrossRefGoogle Scholar
  92. W.M. Folkner, V. Dehant, S. Le Maistre, M. Yseboodt, A. Rivoldini, T. Van Hoolst, S.W. Asmar, M.P. Golombek, The rotation and interior structure experiment on the InSight mission to Mars. Space Sci. Rev. 214(5), 100 (2018).  https://doi.org/10.1007/s11214-018-0530-5 ADSCrossRefGoogle Scholar
  93. F.R. Fontaine, B. Ildefonse, N.S. Bagdassarov, Seismology temperature dependence of shear wave attenuation in partially molten gabbronorite at seismic frequencies. Geophys. J. Int. 163, 1025–1038 (2005).  https://doi.org/10.1111/j.1365-246X.2005.02767 ADSCrossRefGoogle Scholar
  94. A.A. Fraeman, J. Korenaga, The influence of mantle melting on the evolution of Mars. Icarus 210(1), 43–57 (2010).  https://doi.org/10.1016/j.icarus.2010.06.030 ADSCrossRefGoogle Scholar
  95. S.W. French, B.A. Romanowicz, Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography. Geophys. J. Int. 199(3), 1303–1327 (2014).  https://doi.org/10.1093/gji/ggu334 ADSCrossRefGoogle Scholar
  96. H.V. Frey, Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res., Planets 111(8), E08S91 (2006).  https://doi.org/10.1029/2005JE002449 ADSMathSciNetCrossRefGoogle Scholar
  97. H. Frey, Ages of very large impact basins on Mars: implications for the late heavy bombardment in the inner solar system. Geophys. Res. Lett. 35(13), 13203 (2008).  https://doi.org/10.1029/2008GL033515 ADSCrossRefGoogle Scholar
  98. H. Frey, R.A. Schultz, Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophys. Res. Lett. 15(3), 229–232 (1988).  https://doi.org/10.1029/GL015i003p00229 ADSCrossRefGoogle Scholar
  99. D.J. Frost, C. Liebske, F. Langenhorst, C.A. McCammon, R.G. Trønnes, D.C. Rubie, Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428(6981), 409 (2004) ADSCrossRefGoogle Scholar
  100. M. Funaki, V. Hoffmann, N. Imae, Estimate of the magnetic field of Mars based on the magnetic characteristics of the Yamato 000593 nakhlite. Meteorit. Planet. Sci. 44(8), 1179–1191 (2009).  https://doi.org/10.1111/j.1945-5100.2009.tb01216.x ADSCrossRefGoogle Scholar
  101. R.F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné, Very preliminary reference Moon model. Phys. Earth Planet. Inter. 188(1–2), 96–113 (2011).  https://doi.org/10.1016/j.pepi.2011.06.015 ADSCrossRefGoogle Scholar
  102. J. Gattacceca, P. Rochette, Toward a robust normalized magnetic paleointensity method applied to meteorites. Earth Planet. Sci. Lett. 227(3–4), 377–393 (2004).  https://doi.org/10.1016/j.epsl.2004.09.013 ADSCrossRefGoogle Scholar
  103. J. Gattacceca, P. Rochette, R.B. Scorzelli, P. Munayco, C. Agee, Y. Quesnel, C. Cournède, J. Geissman, Martian meteorites and Martian magnetic anomalies: a new perspective from NWA 7034. Geophys. Res. Lett. 41, 4859–4864 (2014).  https://doi.org/10.1002/2014GL060464 ADSCrossRefGoogle Scholar
  104. A. Genova, S. Goossens, F.G. Lemoine, E. Mazarico, G.A. Neumann, D.E. Smith, M.T. Zuber, Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272, 228–245 (2016).  https://doi.org/10.1016/J.ICARUS.2016.02.050 ADSCrossRefGoogle Scholar
  105. G.J. Golabek, T. Keller, T.V. Gerya, G. Zhu, P.J. Tackley, J.A. Connolly, Origin of the Martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus 215(1), 346–357 (2011) ADSCrossRefGoogle Scholar
  106. G.J. Golabek, A. Emsenhuber, M. Jutzi, E.I. Asphaug, T.V. Gerya, Coupling SPH and thermochemical models of planets: methodology and example of a Mars-sized body. Icarus 301, 235–246 (2018) ADSCrossRefGoogle Scholar
  107. M.P. Golombek, R.J. Phillips, Planetary Tectonics (Cambridge University Press, Cambridge, 2009), pp. 183–232 CrossRefGoogle Scholar
  108. M. Golombek, D. Rapp, Size-frequency distributions of rocks on Mars and Earth analog sites: implications for future landed missions. J. Geophys. Res., Planets 102(E2), 4117–4129 (1997).  https://doi.org/10.1029/96JE03319 ADSCrossRefGoogle Scholar
  109. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R.L. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211(1), 5–95 (2017).  https://doi.org/10.1007/s11214-016-0321-9 ADSCrossRefGoogle Scholar
  110. M. Golombek, M. Grott, G. Kargl, J. Andrade, J. Marshall, N. Warner, N.A. Teanby, V. Ansan, E. Hauber, J. Voigt, R. Lichtenheldt, B. Knapmeyer-Endrun, I.J. Daubar, D. Kipp, N. Muller, P. Lognonné, C. Schmelzbach, D. Banfield, A. Trebi-Ollennu, J. Maki, S. Kedar, D. Mimoun, N. Murdoch, S. Piqueux, P. Delage, W.T. Pike, C. Charalambous, R. Lorenz, L. Fayon, A. Lucas, S. Rodriguez, P. Morgan, A. Spiga, M. Panning, T. Spohn, S. Smrekar, T. Gudkova, R. Garcia, D. Giardini, U. Christensen, T. Nicollier, D. Sollberger, J. Robertsson, K. Ali, B. Kenda, W.B. Banerdt, Geology and physical properties investigations by the InSight lander. Space Sci. Rev. 214(5), 84 (2018).  https://doi.org/10.1007/s11214-018-0512-7 ADSCrossRefGoogle Scholar
  111. S. Goossens, T.J. Sabaka, A. Genova, E. Mazarico, J.B. Nicholas, G.A. Neumann, Evidence for a low bulk crustal density for Mars from gravity and topography. Geophys. Res. Lett. 44(15), 7686–7694 (2017) ADSCrossRefGoogle Scholar
  112. R. Greeley, B.D. Schneid, Magma generation on Mars: amounts, rates, and comparisons with Earth, Moon, and Venus. Science 254(5034), 996–998 (1991).  https://doi.org/10.1126/science.254.5034.996 ADSCrossRefGoogle Scholar
  113. R. Greeley, P.D. Spudis, Volcanism on Mars. Rev. Geophys. 19(1), 13–41 (1981).  https://doi.org/10.1029/RG019i001p00013 ADSCrossRefGoogle Scholar
  114. R. Greeley, B.H. Foing, H.Y. McSween Jr., G. Neukum, P. Pinet, M. van Kan, S.C. Werner, D.A. Williams, T.E. Zegers, Fluid lava flows in Gusev crater, Mars. J. Geophys. Res., Planets 110(E5), E05008 (2005).  https://doi.org/10.1029/2005JE002401 ADSCrossRefGoogle Scholar
  115. M. Grott, D. Breuer, The evolution of the Martian elastic lithosphere and implications for crustal and mantle rheology. Icarus 193(2), 503–515 (2008).  https://doi.org/10.1016/J.ICARUS.2007.08.015 ADSCrossRefGoogle Scholar
  116. M. Grott, D. Breuer, Implications of large elastic thicknesses for the composition and current thermal state of Mars. Icarus 201(2), 540–548 (2009).  https://doi.org/10.1016/J.ICARUS.2009.01.020 ADSCrossRefGoogle Scholar
  117. M. Grott, D. Breuer, On the spatial variability of the Martian elastic lithosphere thickness: evidence for mantle plumes? J. Geophys. Res. 115(E3), 03005 (2010).  https://doi.org/10.1029/2009JE003456 CrossRefGoogle Scholar
  118. M. Grott, M.A. Wieczorek, Density and lithospheric structure at Tyrrhena Patera, Mars, from gravity and topography data. Icarus 221(1), 43–52 (2012).  https://doi.org/10.1016/J.ICARUS.2012.07.008 ADSCrossRefGoogle Scholar
  119. M. Grott, E. Hauber, S.C. Werner, P. Kronberg, G. Neukum, High heat flux on ancient Mars: evidence from rift flank uplift at Coracis Fossae. Geophys. Res. Lett. 32(21), 21201 (2005).  https://doi.org/10.1029/2005GL023894 ADSCrossRefGoogle Scholar
  120. M. Grott, E. Hauber, S.C. Werner, P. Kronberg, G. Neukum, Mechanical modeling of thrust faults in the Thaumasia region, Mars, and implications for the Noachian heat flux. Icarus 186(2), 517–526 (2007).  https://doi.org/10.1016/J.ICARUS.2006.10.001 ADSCrossRefGoogle Scholar
  121. M. Grott, A. Morschhauser, D. Breuer, E. Hauber, Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308(3–4), 391–400 (2011).  https://doi.org/10.1016/J.EPSL.2011.06.014 ADSCrossRefGoogle Scholar
  122. M. Grott, T. Spohn, S.E. Smrekar, W.B. Banerdt, T.L. Hudson, InSight: constraining the Martian heat flow from a single measurement, in 43rd LPSC, The Woodlands, Texas (2012), abstract #1382 Google Scholar
  123. M. Grott, D. Baratoux, E. Hauber, V. Sautter, J. Mustard, O. Gasnault, S.W. Ruff, S.-I. Karato, V. Debaille, M. Knapmeyer, F. Sohl, T. Van Hoolst, D. Breuer, A. Morschhauser, M.J. Toplis, Long-term evolution of the Martian crust-mantle system. Space Sci. Rev. 174(1–4), 49–111 (2013).  https://doi.org/10.1007/s11214-012-9948-3 ADSCrossRefGoogle Scholar
  124. J.P. Grotzinger, D.Y. Sumner, L. Kah, K. Stack, S. Gupta, L. Edgar, D. Rubin, K. Lewis, J. Schieber, N. Mangold, et al., A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343(6169), 1242777 (2014) CrossRefGoogle Scholar
  125. T.V. Gudkova, A.V. Batov, V.N. Zharkov, Model estimates of non-hydrostatic stresses in the martian crust and mantle: 1—two-level model. Sol. Syst. Res. 51(6), 457–478 (2017).  https://doi.org/10.1134/S003809461706003X ADSCrossRefGoogle Scholar
  126. B.C. Hahn, S.M. Mclennan, E.C. Klein, Martian surface heat production and crustal heat flow from Mars Odyssey Gamma-Ray spectrometry. Geophys. Res. Lett., 38, L14203 (2011).  https://doi.org/10.1029/2011GL047435 ADSCrossRefGoogle Scholar
  127. A.N. Halliday, D. Porcelli, In search of lost planets the paleocosmochemistry of the inner solar system. Earth Planet. Sci. Lett. 192(4), 545–559 (2001).  https://doi.org/10.1016/S0012-821X(01)00479-4 ADSCrossRefGoogle Scholar
  128. V.E. Hamilton, P.R. Christensen, H.Y. McSween, J.L. Bandfield, Searching for the source regions of Martian meteorites using MGS TES: integrating Martian meteorites into the global distribution of igneous materials on Mars. Meteorit. Planet. Sci. 38(6), 871–885 (2003).  https://doi.org/10.1111/j.1945-5100.2003.tb00284.x ADSCrossRefGoogle Scholar
  129. D. Han, A. Nur, D. Morgan, Effects of porosity and clay content on wave velocities in sandstones. Geophysics 51(11), 2093–2107 (1986).  https://doi.org/10.1190/1.1442062 ADSCrossRefGoogle Scholar
  130. H. Harder, Phase transitions and the three-dimensional planform of thermal convection in the Martian mantle. J. Geophys. Res., Planets 103(E7), 16775–16797 (1998).  https://doi.org/10.1029/98JE01543 ADSCrossRefGoogle Scholar
  131. H. Harder, Mantle convection and the dynamic geoid of Mars. Geophys. Res. Lett. 27(3), 301–304 (2000).  https://doi.org/10.1029/1999GL008418 ADSCrossRefGoogle Scholar
  132. H. Harder, U.R. Christensen, A one-plume model of Martian mantle convection. Nature 380(6574), 507–509 (1996).  https://doi.org/10.1038/380507a0 ADSCrossRefGoogle Scholar
  133. K.H. Harrison, R.E. Grimm, Controls on Martian hydrothermal systems: application to valley network and magnetic anomaly formation. J. Geophys. Res. 107(E5), 5025 (2002).  https://doi.org/10.1029/2001JE001616 CrossRefGoogle Scholar
  134. Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963).  https://doi.org/10.1016/0022-5096(63)90060-7 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  135. S.A. Hauck, R.P. Phillips, Thermal and crustal evolution of Mars. J. Geophys. Res. 107(E7), 5052 (2002).  https://doi.org/10.1029/2001JE001801 CrossRefGoogle Scholar
  136. R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65, 349–354 (1952).  https://doi.org/10.1088/0370-1298/65/5/307 ADSCrossRefGoogle Scholar
  137. G. Hirth, D. Kohlstedt, Rheology of the upper mantle and the mantle wedge: a view from the experimentalists, in Inside the Subduction Factory, vol. 138 (2003), pp. 83–105 CrossRefGoogle Scholar
  138. T.J.B. Holland, R. Powell, An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29(3), 333–383 (2011).  https://doi.org/10.1111/j.1525-1314.2010.00923.x ADSCrossRefGoogle Scholar
  139. L.L. Hood, Distribution of crustal magnetic fields on Mars: shock effects of basin-forming impacts. Geophys. Res. Lett. 30(6), 1–4 (2003).  https://doi.org/10.1029/2002GL016657 CrossRefGoogle Scholar
  140. L.L. Hood, K.P. Harrison, B. Langlais, R.J. Lillis, F. Poulet, D.A. Williams, Magnetic anomalies near Apollinaris Patera and the Medusae Fossae formation in Lucus Planum, Mars. Icarus 208(1), 118–131 (2010).  https://doi.org/10.1016/j.icarus.2010.01.009 ADSCrossRefGoogle Scholar
  141. T. Hoogenboom, S.E. Smrekar, Elastic thickness estimates for the northern lowlands of Mars. Earth Planet. Sci. Lett. 248(3–4), 830–839 (2006).  https://doi.org/10.1016/J.EPSL.2006.06.035 ADSCrossRefGoogle Scholar
  142. T.V. Hoolst, V. Dehant, P. Defraigne, Sensitivity of the free core nutation and the Chandler wobble to changes in the interior structure of Mars. Phys. Earth Planet. Inter. 117(1), 397–405 (2000).  https://doi.org/10.1016/S0031-9201(99)00109-0 ADSCrossRefGoogle Scholar
  143. H.-H. Hsieh, H.-Y. Yen, Three-dimensional density structures of Taiwan and tectonic implications based on the analysis of gravity data. J. Asian Earth Sci. 124, 247–259 (2016).  https://doi.org/10.1134/S106935131403001X ADSCrossRefGoogle Scholar
  144. I. Jackson, U.H. Faul, Grainsize-sensitive viscoelastic relaxation in olivine: towards a robust laboratory-based model for seismological application. Phys. Earth Planet. Inter. 183(1), 151–163 (2010). Special Issue on Deep Slab and Mantle Dynamics.  https://doi.org/10.1016/j.pepi.2010.09.005 ADSCrossRefGoogle Scholar
  145. I. Jackson, J.D. Fitz Gerald, U.H. Faul, B.H. Tan, Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. J. Geophys. Res., Solid Earth 107(B12), 2360 (2002).  https://doi.org/10.1029/2001JB001225 ADSCrossRefGoogle Scholar
  146. M.H. Jacobs, R. Schmid-Fetzer, A.P. van den Berg, Phase diagrams, thermodynamic properties and sound velocities derived from a multiple Einstein method using vibrational densities of states: an application to MgO–SiO2. Phys. Chem. Miner. 44(1), 43–62 (2017).  https://doi.org/10.1007/s00269-016-0835-4 ADSCrossRefGoogle Scholar
  147. E. Jagoutz, Chronology of SNC meteorites. Space Sci. Rev. 56(1–2), 13–22 (1991).  https://doi.org/10.1007/BF00178386 ADSCrossRefGoogle Scholar
  148. H. Jeffreys, The density distributions in the inner planets. Geophys. J. Int. 4(s1), 62–71 (1937).  https://doi.org/10.1111/j.1365-246X.1937.tb00410.x ADSCrossRefGoogle Scholar
  149. E.S. Jennings, T.J.B. Holland, A simple thermodynamic model for melting of peridotite in the system NCFMASOCr. J. Petrol. 56(5), 869–892 (2015).  https://doi.org/10.1093/petrology/egv020 ADSCrossRefGoogle Scholar
  150. D.H. Johnston, T.R. McGetchin, M.N. Toksz, The thermal state and internal structure of Mars. J. Geophys. Res. 79(26), 3959–3971 (1974).  https://doi.org/10.1029/JB079i026p03959 ADSCrossRefGoogle Scholar
  151. N. Kamaya, E. Ohtani, T. Kato, K. Onuma, High Pressure Phase Transitions in a Homogeneous Model Martian Mantle. Washington DC American Geophysical Union Geophysical Monograph Series, vol. 74 (1993), pp. 19–25.  https://doi.org/10.1029/GM074p0019 CrossRefGoogle Scholar
  152. S.-I. Karato, Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet. Sci. Lett. 301, 413–423 (2011).  https://doi.org/10.1016/j.epsl.2010.11.038 ADSCrossRefGoogle Scholar
  153. S. Karato, P. Wu, Rheology of the upper mantle: a synthesis. Science 260(5109), 771–778 (1993).  https://doi.org/10.1126/science.260.5109.771 ADSCrossRefGoogle Scholar
  154. T. Katsura, E. Ito, The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures: precise determination of stabilities of olivine, modified spinel, and spinel. J. Geophys. Res., Solid Earth 94, 15 (1989).  https://doi.org/10.1029/JB094iB11p15663 CrossRefGoogle Scholar
  155. T. Keller, P.J. Tackley, Towards self-consistent modeling of the martian dichotomy: the influence of one-ridge convection on crustal thickness distribution. Icarus 202(2), 429–443 (2009).  https://doi.org/10.1016/J.ICARUS.2009.03.029 ADSCrossRefGoogle Scholar
  156. A. Khan, J.A.D. Connolly, Constraining the composition and thermal state of Mars from inversion of geophysical data. J. Geophys. Res. 113(E7), 07003 (2008).  https://doi.org/10.1029/2007JE002996 CrossRefGoogle Scholar
  157. A. Khan, J.A.D. Connolly, N. Olsen, Constraining the composition and thermal state of the mantle beneath Europe from inversion of long-period electromagnetic sounding data. J. Geophys. Res., Solid Earth 111(B10), 10102 (2006a).  https://doi.org/10.1029/2006JB004270 ADSCrossRefGoogle Scholar
  158. A. Khan, J.A.D. Connolly, N. Olsen, K. Mosegaard, Constraining the composition and thermal state of the Moon from an inversion of electromagnetic lunar day-side transfer functions. Earth Planet. Sci. Lett. 248, 579–598 (2006b).  https://doi.org/10.1016/j.epsl.2006.04.008 ADSCrossRefGoogle Scholar
  159. A. Khan, A. Pommier, G.A. Neumann, K. Mosegaard, The lunar Moho and the internal structure of the Moon: a geophysical perspective. Tectonophysics 609, 331–352 (2013). Moho: 100 years after Andrija Mohorovicic.  https://doi.org/10.1016/j.tecto.2013.02.024 ADSCrossRefGoogle Scholar
  160. K. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M. Panning, M. Knapmeyer, W.B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016).  https://doi.org/10.1016/j.pepi.2016.05.017 ADSCrossRefGoogle Scholar
  161. A. Khan, C. Liebske, A. Rozel, A. Rivoldini, F. Nimmo, J.A.D. Connolly, A.-C. Plesa, D. Giardini, A geophysical perspective on the bulk composition of Mars. J. Geophys. Res., Planets 123(2), 575–611 (2018).  https://doi.org/10.1002/2017JE005371 ADSCrossRefGoogle Scholar
  162. W.S. Kiefer, Melt in the Martian mantle: shergottite formation and implications for present-day mantle convection on Mars. Meteorit. Planet. Sci. 38, 1815–1832 (2003).  https://doi.org/10.1111/j.1945-5100.2003.tb00017.x ADSCrossRefGoogle Scholar
  163. W.S. Kiefer, Gravity evidence for an extinct magma chamber beneath Syrtis Major, Mars: a look at the magmatic plumbing system. Earth Planet. Sci. Lett. 222(2), 349–361 (2004).  https://doi.org/10.1016/J.EPSL.2004.03.009 ADSCrossRefGoogle Scholar
  164. W.S. Kiefer, Q. Li, Mantle convection controls the observed lateral variations in lithospheric thickness on present-day Mars. Geophys. Res. Lett. 36(18), 18203 (2009).  https://doi.org/10.1029/2009GL039827 ADSCrossRefGoogle Scholar
  165. S.D. King, Reconciling laboratory and observational models of mantle rheology in geodynamic modelling. J. Geodyn. 100, 33–50 (2016) CrossRefGoogle Scholar
  166. A.S. Konopliv, C.F. Yoder, E.M. Standish, D.-N. Yuan, W.L. Sjogren, A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182(1), 23–50 (2006).  https://doi.org/10.1016/j.icarus.2005.12.025 ADSCrossRefGoogle Scholar
  167. A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211(1), 401–428 (2011).  https://doi.org/10.1016/J.ICARUS.2010.10.004 ADSCrossRefGoogle Scholar
  168. A.S. Konopliv, R.S. Park, W.M. Folkner, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260 (2016) ADSCrossRefGoogle Scholar
  169. P. Kronberg, E. Hauber, M. Grott, S.C. Werner, T. Schäfer, K. Gwinner, B. Giese, P. Masson, G. Neukum, Acheron Fossae, Mars: tectonic rifting, volcanism, and implications for lithospheric thickness. J. Geophys. Res. 112(E4), 04005 (2007).  https://doi.org/10.1029/2006JE002780 CrossRefGoogle Scholar
  170. W. Kuang, W. Jiang, T. Wang, Sudden termination of Martian dynamo?: implications from subcritical dynamo simulations. Geophys. Res. Lett. 35(14), L14204 (2008).  https://doi.org/10.1029/2008GL034183 ADSCrossRefGoogle Scholar
  171. P. Kuchynka, W.M. Folkner, A.S. Konopliv, T.J. Parker, R.S. Park, S.L. Maistre, V. Dehant, New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 229, 340–347 (2014).  https://doi.org/10.1016/J.ICARUS.2013.11.015 ADSCrossRefGoogle Scholar
  172. P. Kumar, R. Kind, X. Yuan, Receiver function summation without deconvolution. Geophys. J. Int. 180(3), 1223–1230 (2010).  https://doi.org/10.1111/j.1365-246X.2009.04469.x ADSCrossRefGoogle Scholar
  173. O. Kuskov, A. Panferov, Thermodynamic models for the structure of the Martian upper mantle. Geochem. Int. 30, 132 (1993) Google Scholar
  174. O.L. Kuskov, V.A. Kronrod, E.V. Kronrod, Thermo-chemical constraints on the interior structure and composition of the lunar mantle. Phys. Earth Planet. Inter. 235, 84–95 (2014).  https://doi.org/10.1016/j.pepi.2014.07.011 ADSCrossRefGoogle Scholar
  175. N.P. Lang, L.L. Tornabene, H.Y. McSween, P.R. Christensen, Tharsis-sourced relatively dust-free lavas and their possible relationship to Martian meteorites. J. Volcanol. Geotherm. Res. 185(1–2), 103–115 (2009).  https://doi.org/10.1016/J.JVOLGEORES.2008.12.014 ADSCrossRefGoogle Scholar
  176. B. Langlais, M. Purucker, A polar magnetic paleopole associated with Apollinaris Patera, Mars. Planet. Space Sci. 55(3), 270–279 (2007).  https://doi.org/10.1016/j.pss.2006.03.008 ADSCrossRefGoogle Scholar
  177. B. Langlais, E. Thebault, The Martian crustal magnetic field as seen from MGS and MAVEN, in AGU Fall Meeting Abstracts (2017) Google Scholar
  178. B. Langlais, M.E. Purucker, M. Mandea, Crustal magnetic field of Mars. J. Geophys. Res., Planets 109(E2), E02008 (2004).  https://doi.org/10.1029/2003JE002048 ADSCrossRefGoogle Scholar
  179. B. Langlais, V. Lesur, M.E. Purucker, J.E.P. Connerney, M. Mandea, Crustal magnetic fields of terrestrial planets. Space Sci. Rev. 152(1–4), 223–249 (2010a).  https://doi.org/10.1007/s11214-009-9557-y ADSCrossRefGoogle Scholar
  180. B. Langlais, R. Lillis, M. Purucker, An improved model of the magnetic lithospheric field of Mars using both MGS-MAG and MGS-ER measurements, in European Planetary Science Congress 2010, 20–24 September, Rome, Italy (2010b), p. 393 Google Scholar
  181. B. Langlais, F. Civet, E. Thébault, In situ and remote characterization of the external field temporal variations at Mars. J. Geophys. Res., Planets 122, 110–123 (2017).  https://doi.org/10.1002/2016JE005060 ADSCrossRefGoogle Scholar
  182. M. Le Bars, A. Davaille, Whole layer convection in a heterogeneous planetary mantle. J. Geophys. Res. 109(B3), 03403 (2004).  https://doi.org/10.1029/2003JB002617 CrossRefGoogle Scholar
  183. S. Le Maistre, The rotation of Mars and Phobos from Earth-based radio-tracking observations of a lander (2013) Google Scholar
  184. V. Lekić, J. Matas, M. Panning, B. Romanowicz, Measurement and implications of frequency dependence of attenuation. Earth Planet. Sci. Lett. 282(1–4), 285–293 (2009).  https://doi.org/10.1016/j.epsl.2009.03.030 ADSCrossRefGoogle Scholar
  185. W. Leng, S.J. Zhong, Controls on plume heat flux and plume excess temperature. J. Geophys. Res. 113, 10–10292007005155 (2008) CrossRefGoogle Scholar
  186. R.J. Lillis, H.V. Frey, M. Manga, Rapid decrease in Martian crustal magnetization in the Noachian era: implications for the dynamo and climate of early Mars. Geophys. Res. Lett. 35(14), 14203 (2008).  https://doi.org/10.1029/2008GL034338 ADSCrossRefGoogle Scholar
  187. C. Lithgow-Bertelloni, M.A. Richards, C.P. Conrad, R.W. Griffiths, Plume generation in natural thermal convection at high Rayleigh and Prandtl numbers. J. Fluid Mech. 434, 1–21 (2001) ADSCrossRefGoogle Scholar
  188. K. Lodders, An oxygen isotope mixing model for the accretion and composition of rocky planets. Space Sci. Rev. 92, 341–354 (2000).  https://doi.org/10.1023/A:10052200 ADSCrossRefGoogle Scholar
  189. K. Lodders, B. Fegley, An oxygen isotope model for the composition of Mars. Icarus 126(2), 373–394 (1997).  https://doi.org/10.1006/ICAR.1996.5653 ADSCrossRefGoogle Scholar
  190. P. Lognonné, C. Johnson, Planetary seismology, in Treatise on Geophysics, vol. 10 (2015), pp. 65–120 CrossRefGoogle Scholar
  191. P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14(3), 239–302 (1993).  https://doi.org/10.1007/BF00690946 ADSCrossRefGoogle Scholar
  192. P. Lognonné, W.B. Banerdt, D. Giardini, et al., SEIS: the seismic experiment for internal structure of InSight. Space Sci. Rev. 214(6) (2018) Google Scholar
  193. J. Longhi, E. Knittle, J.R. Holloway, H. Waenke, The bulk composition, mineralogy and internal structure of Mars, in Mars (A93-27852 09-91) (1992), pp. 184–208 Google Scholar
  194. A.R. Lowry, S. Zhong, Surface versus internal loading of the Tharsis rise, Mars. J. Geophys. Res. 108(E9), 5099 (2003).  https://doi.org/10.1029/2003JE002111 CrossRefGoogle Scholar
  195. J.N. Maki, M. Golombek, R. Deen, H. Abarca, C. Sorice, T. Goodsall, M. Schwochert, M. Lemmon, A. Trebi-Ollennu, W.B. Banerdt, The color cameras on the InSight lander. Space Sci. Rev. 214(6), 105 (2018).  https://doi.org/10.1007/s11214-018-0536-z ADSCrossRefGoogle Scholar
  196. N. Mangold, D. Baratoux, O. Witasse, T. Encrenaz, C. Sotin, Mars: a small terrestrial planet. Astron. Astrophys. Rev. 24(1), 1–107 (2016).  https://doi.org/10.1007/s00159-016-0099-5 CrossRefGoogle Scholar
  197. Z. Mao, S.D. Jacobsen, F. Jiang, J.R. Smyth, C.M. Holl, D.J. Frost, T.S. Duffy, Velocity crossover between hydrous and anhydrous forsterite at high pressures. Earth Planet. Sci. Lett. 293, 250–258 (2010).  https://doi.org/10.1016/j.epsl.2010.02.025 ADSCrossRefGoogle Scholar
  198. Z. Mao, S.D. Jacobsen, D.J. Frost, C.A. McCammon, E.H. Hauri, T.S. Duffy, Effect of hydration on the single-crystal elasticity of Fe-bearing wadsleyite to 12 GPa. Am. Mineral. 96, 1606–1612 (2011).  https://doi.org/10.2138/am.2011.3807 ADSCrossRefGoogle Scholar
  199. Z. Mao, J.-F. Lin, S.D. Jacobsen, T.S. Duffy, Y.-Y. Chang, J.R. Smyth, D.J. Frost, E.H. Hauri, V.B. Prakapenka, Sound velocities of hydrous ringwoodite to 16 GPa and 673 K. Earth Planet. Sci. Lett. 331, 112–119 (2012).  https://doi.org/10.1016/j.epsl.2012.03.001 ADSCrossRefGoogle Scholar
  200. Z. Mao, D. Fan, J.-F. Lin, J. Yang, S.N. Tkachev, K. Zhuravlev, V.B. Prakapenka, Elasticity of single-crystal olivine at high pressures and temperatures. Earth Planet. Sci. Lett. 426, 204–215 (2015).  https://doi.org/10.1016/j.epsl.2015.06.045 ADSCrossRefGoogle Scholar
  201. M.M. Marinova, O. Aharonson, E. Asphaug, Mega-impact formation of the Mars hemispheric dichotomy. Nature 453(7199), 1216–1219 (2008).  https://doi.org/10.1038/nature07070 ADSCrossRefGoogle Scholar
  202. J.J. Marlow, Z. Martins, M.A. Sephton, Mars on Earth: soil analogues for future Mars missions. Astron. Geophys. 49(2), 220–223 (2008).  https://doi.org/10.1111/j.1468-4004.2008.49220.x CrossRefGoogle Scholar
  203. J. Matas, J. Bass, Y. Ricard, E. Mattern, M.S.T. Bukowinski, On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophys. J. Int. 170(2), 764–780 (2007).  https://doi.org/10.1111/j.1365-246X.2007.03454.x ADSCrossRefGoogle Scholar
  204. M. Maurice, N. Tosi, H. Samuel, A.-C. Plesa, C. Hüttig, D. Breuer, Onset of solid-state mantle convection and mixing during magma ocean solidification. J. Geophys. Res., Planets 122(3), 577–598 (2017).  https://doi.org/10.1002/2016JE005250 ADSCrossRefGoogle Scholar
  205. G. Mavko, T. Mukerji, J. Dvorkin, The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media (Cambridge University Press, Cambridge, 2009), p. 511. 9780521861366 CrossRefGoogle Scholar
  206. F.M. McCubbin, E.H. Hauri, S.M. Elardo, K.E. Vander Kaaden, J. Wang, C.K. Shearer, Hydrous melting of the Martian mantle produced both depleted and enriched shergottites. Geology 40, 683–686 (2012).  https://doi.org/10.1130/G33242.1 ADSCrossRefGoogle Scholar
  207. W.F. McDonough, S.-s. Sun, The composition of the Earth. Chem. Geol. 120(3–4), 223–253 (1995).  https://doi.org/10.1016/0009-2541(94)00140-4 ADSCrossRefGoogle Scholar
  208. P.J. McGovern, S.C. Solomon, D.E. Smith, M.T. Zuber, M. Simons, M.A. Wieczorek, R.J. Phillips, G.A. Neumann, O. Aharonson, J.W. Head, P.J. Mcgovern, S.C. Solomon, D.E. Smith, M.T. Zuber, M. Simons, M.A. Wieczorek, R.J. Phillips, G.A. Neumann, O. Aharonson, J.W. Head, Correction to “localized gravity/topography admittance and correlation spectra on Mars: implications for regional and global evolution”. J. Geophys. Res. 109, E07007 (2004).  https://doi.org/10.1029/2004JE002286 ADSCrossRefGoogle Scholar
  209. S.M. McLennan, Crustal heat production and the thermal evolution of Mars. Geophys. Res. Lett. 28(21), 4019–4022 (2001).  https://doi.org/10.1029/2001GL013743 ADSCrossRefGoogle Scholar
  210. M.K. McNutt, Lithospheric flexure and thermal anomalies. J. Geophys. Res., Solid Earth 89(B13), 11180–11194 (1984).  https://doi.org/10.1029/JB089iB13p11180 CrossRefGoogle Scholar
  211. H.Y. McSween Jr., What we have learned about Mars from SNC meteorites. Meteoritics 29, 757–779 (1994) ADSCrossRefGoogle Scholar
  212. H.Y. McSween, S.M. McLennan, Mars, in Treatise on Geochemistry: Second Edition, vol. 2 (Elsevier, Amsterdam, 2013), pp. 251–300. 9780080983004.  https://doi.org/10.1016/B978-0-08-095975-7.00125-X CrossRefGoogle Scholar
  213. H.Y. McSween, T.L. Grove, M.B. Wyatt, Constraints on the composition and petrogenesis of the Martian crust. J. Geophys. Res., Planets 108(E12), 5135 (2003).  https://doi.org/10.1029/2003JE002175 ADSCrossRefGoogle Scholar
  214. H.Y. McSween, M.B. Wyatt, R. Gellert, I.F. Bell, R.V. Morris, K.E. Herkenhoff, L.S. Crumpler, K.A. Milam, K.R. Stockstill, L.L. Tornabene, R.E. Arvidson, P. Bartlett, D. Blaney, N.A. Cabrol, P.R. Christensen, B.C. Clark, J.A. Crisp, D.J. Des Marais, T. Economou, J.D. Farmer, W. Farrand, A. Ghosh, M. Golombek, S. Gorevan, R. Greeley, V.E. Hamilton, J.R. Johnson, B.L. Joliff, G. Klingelhöfer, A.T. Knudson, S. McLennan, D. Ming, J.E. Moersch, R. Rieder, S.W. Ruff, C. Schrörder, J.A. de Souza, S.W. Squyres, H. Wänke, A. Wang, A. Yen, J. Zipfel, Characterization and petrologic interpretation of olivine-rich basalts at Gusev Crater, Mars. J. Geophys. Res., Planets (2006).  https://doi.org/10.1029/2005JE002477 CrossRefGoogle Scholar
  215. H.Y. McSween, G.J. Taylor, M.B. Wyatt, Elemental composition of the Martian crust. Science 324(5928), 736–739 (2009).  https://doi.org/10.1126/science.1165871 ADSCrossRefGoogle Scholar
  216. C.J. Meyer, Mars meteorite compendium. Revision B, NASA Johnson Space Cent., Houston, TX (2003) Google Scholar
  217. K. Mezger, V. Debaille, T. Kleine, Core formation and mantle differentiation on Mars. Space Sci. Rev. 174(1–4), 27–48 (2013).  https://doi.org/10.1007/s11214-012-9935-8 ADSCrossRefGoogle Scholar
  218. C. Milbury, G. Schubert, C.A. Raymond, S.E. Smrekar, B. Langlais, The history of Mars’ dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major. J. Geophys. Res. 117(E10), E10007 (2012).  https://doi.org/10.1029/2012JE004099 ADSCrossRefGoogle Scholar
  219. K. Miljković, M.A. Wieczorek, G.S. Collins, S.C. Solomon, D.E. Smith, M.T. Zuber, Excavation of the lunar mantle by basin-forming impact events on the Moon. Earth Planet. Sci. Lett. 409, 243–251 (2015) ADSCrossRefGoogle Scholar
  220. D.W. Ming, R. Gellert, R.V. Morris, R.E. Arvidson, J. Brückner, B.C. Clark, B.A. Cohen, C. D’Uston, T. Economou, I. Fleischer, G. Klingelhöfer, T.J. McCoy, D.W. Mittlefehldt, M.E. Schmidt, C. Schröder, S.W. Squyres, E. Tréguier, A.S. Yen, J. Zipfel, Geochemical properties of rocks and soils in Gusev Crater, Mars: results of the Alpha Particle X-Ray Spectrometer from Cumberland Ridge to Home Plate. J. Geophys. Res. 113(E12), 12–39 (2008).  https://doi.org/10.1029/2008JE003195 CrossRefGoogle Scholar
  221. A. Mittelholz, C. Johnson, Crustal magnetic fields on Mars from MAVEN data, in AGU Fall Meeting Abstracts (2016) Google Scholar
  222. A. Mittelholz, C.L. Johnson, R.J. Lillis, Global-scale external magnetic fields at Mars measured at satellite altitude. J. Geophys. Res., Planets 122(6), 1243–1257 (2017).  https://doi.org/10.1002/2017JE005308 ADSCrossRefGoogle Scholar
  223. A. Mocquet, M. Menvielle, Complementarity of seismological and electromagnetic sounding methods for constraining the structure of the Martian mantle. Planet. Space Sci. 48, 1249–1260 (2000).  https://doi.org/10.1016/S0032-0633(00)00107-0 ADSCrossRefGoogle Scholar
  224. A. Mocquet, P. Vacher, O. Grasset, C. Sotin, Theoretical seismic models of Mars: the importance of the iron content of the mantle. Planet. Space Sci. 44(11), 1251–1268 (1996).  https://doi.org/10.1016/S0032-0633(96)00086-4 ADSCrossRefGoogle Scholar
  225. A. Mocquet, P. Rosenblatt, V. Dehant, O. Verhoeven, The deep interior of Venus, Mars,and the Earth: a brief review and the need for planetary surface-based measurements. Planet. Space Sci. 59, 1048–1061 (2011) ADSCrossRefGoogle Scholar
  226. R.K. Mohapatra, S.V.S. Murty, Precursors of Mars—constraints from nitrogen and oxygen isotopic compositions of Martian meteorites. Meteorit. Planet. Sci. 38, 225–242 (2003).  https://doi.org/10.1111/j.1945-5100.2003.tb00261.x ADSCrossRefGoogle Scholar
  227. R. Montelli, G. Nolet, F. Dahlen, G. Masters, E. Engdahl, S. Hung, Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004) ADSCrossRefGoogle Scholar
  228. J. Monteux, H. Amit, G. Choblet, B. Langlais, G. Tobie, Giant impacts, heterogeneous mantle heating and a past hemispheric dynamo on Mars. Phys. Earth Planet. Inter. 240, 114–124 (2015).  https://doi.org/10.1016/j.pepi.2014.12.005 ADSCrossRefGoogle Scholar
  229. J.W. Morgan, E. Anders, Chemical composition of Mars. Geochim. Cosmochim. Acta 43(10), 1601–1610 (1979).  https://doi.org/10.1016/0016-7037(79)90180-7 ADSCrossRefGoogle Scholar
  230. A. Morschhauser, M. Grott, D. Breuer, Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus 212(2), 541–558 (2011).  https://doi.org/10.1016/J.ICARUS.2010.12.028 ADSCrossRefGoogle Scholar
  231. A. Morschhauser, V. Lesur, M. Grott, A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res., Planets 119(6), 1162–1188 (2014).  https://doi.org/10.1002/2013JE004555 ADSCrossRefGoogle Scholar
  232. K. Mueller, A. Vidal, S. Robbins, M. Golombek, C. West, Fault and fold growth of the Amenthes uplift: implications for Late Noachian crustal rheology and heat flow on Mars. Earth Planet. Sci. Lett. 408, 100–109 (2014).  https://doi.org/10.1016/j.epsl.2014.09.047 ADSCrossRefGoogle Scholar
  233. F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. USA 30, 244–247 (1944).  https://doi.org/10.1073/pnas.30.9.244 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  234. V.R. Murthy, Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature 423, 163–165 (2003).  https://doi.org/10.1038/nature01560 ADSCrossRefGoogle Scholar
  235. G.A. Neumann, M.T. Zuber, M.A. Wieczorek, P.J. McGovern, F.G. Lemoine, D.E. Smith, Crustal structure of Mars from gravity and topography. J. Geophys. Res. 109(E8), 08002 (2004).  https://doi.org/10.1029/2004JE002262 CrossRefGoogle Scholar
  236. H.E. Newsom, L.S. Crumpler, R.C. Reedy, M.T. Petersen, G.C. Newsom, L.G. Evans, G.J. Taylor, J.M. Keller, D.M. Janes, W.V. Boynton, K.E. Kerry, S. Karunatillake, Geochemistry of Martian soil and bedrock in mantled and less mantled terrains with gamma ray data from Mars Odyssey. J. Geophys. Res., Planets 112(E3), E03S12 (2007).  https://doi.org/10.1029/2006JE002680 ADSCrossRefGoogle Scholar
  237. F. Nimmo, D.J. Stevenson, Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res., Planets 105(E5), 11969–11979 (2000) ADSCrossRefGoogle Scholar
  238. F. Nimmo, K. Tanaka, Early crustal evolution of Mars. Annu. Rev. Earth Planet. Sci. 33(1), 133–161 (2005).  https://doi.org/10.1146/annurev.earth.33.092203.122637 ADSCrossRefGoogle Scholar
  239. T. Nishizawa, Thermodynamic study of the Fe-Mo-C system at 1000 C. Scand. J. Metal. 1(1), 41–48 (1972) Google Scholar
  240. T. Nissen-Meyer, M. Van Driel, S.C. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, A. Fournier, AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 5(1), 425–445 (2014).  https://doi.org/10.5194/se-5-425-2014 ADSCrossRefGoogle Scholar
  241. M. Ogawa, T. Yanagisawa, Numerical models of Martian mantle evolution induced by magmatism and solid-state convection beneath stagnant lithosphere. J. Geophys. Res. 116(E8), 08008 (2011).  https://doi.org/10.1029/2010JE003777 CrossRefGoogle Scholar
  242. E.A. Okal, D.L. Anderson, Theoretical models for Mars and their seismic properties. Icarus 33(3), 514–528 (1978).  https://doi.org/10.1016/0019-1035(78)90187-2 ADSCrossRefGoogle Scholar
  243. L. Pan, B.L. Ehlmann, J. Carter, C.M. Ernst, The stratigraphy and history of Mars’ northern lowlands through mineralogy of impact craters: a comprehensive survey. J. Geophys. Res., Planets 122(9), 1824–1854 (2017).  https://doi.org/10.1002/2017JE005276 ADSCrossRefGoogle Scholar
  244. M.P. Panning, É. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W.B. Banerdt, Verifying single-station seismic approaches using Earth-based data: preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015).  https://doi.org/10.1016/j.icarus.2014.10.035 ADSCrossRefGoogle Scholar
  245. M.P. Panning, P. Lognonne, W.B. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.-F. Blanchette-Guertin, E. Bozdağ, M. Drilleau, T. Gudkova, S. Hempel, A. Khan, V. Lekić, N. Murdoch, A.-C. Plesa, A. Rivoldini, N. Schmerr, Y. Ruan, O. Verhoeven, C. Gao, U. Christensen, J. Clinton, V. Dehant, D. Giardini, D. Mimoun, W.T. Pike, S. Smrekar, M. Wieczorek, M. Knapmeyer, J. Wookey, Planned products of the Mars structure service for the insight mission to Mars. Space Sci. Rev. 211(1–4), 611–650 (2016).  https://doi.org/10.1007/s11214-016-0317-5 ADSCrossRefGoogle Scholar
  246. M.P. Panning, P. Lognonné, W. Bruce Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.-F. Blanchette-Guertin, E. Bozdağ, M. Drilleau, T. Gudkova, S. Hempel, A. Khan, V. Lekić, N. Murdoch, A.-C. Plesa, A. Rivoldini, N. Schmerr, Y. Ruan, O. Verhoeven, C. Gao, U. Christensen, J. Clinton, V. Dehant, D. Giardini, D. Mimoun, W.T. Pike, S. Smrekar, M. Wieczorek, M. Knapmeyer, J. Wookey, Planned products of the Mars structure service for the insight mission to Mars. Space Sci. Rev. 211(1), 611–650 (2017).  https://doi.org/10.1007/s11214-016-0317-5 ADSCrossRefGoogle Scholar
  247. M. Pauer, D. Breuer, Constraints on the maximum crustal density from gravity–topography modeling: applications to the southern highlands of Mars. Earth Planet. Sci. Lett. 276, 253–261 (2008).  https://doi.org/10.1016/j.epsl.2008.09.014 ADSCrossRefGoogle Scholar
  248. C. Perrin, I. Manighetti, J.-P. Ampuero, F. Cappa, Y. Gaudemer, Location of largest earthquake slip and fast rupture controlled by along-strike change in fault structural maturity due to fault growth. J. Geophys. Res., Solid Earth 121(5), 3666–3685 (2016).  https://doi.org/10.1002/2015JB012671 ADSCrossRefGoogle Scholar
  249. R.J. Phillips, N.H. Sleep, W.B. Banerdt, Permanent uplift in magmatic systems with application to the Tharsis Region of Mars. J. Geophys. Res. 95(B4), 5089 (1990).  https://doi.org/10.1029/JB095iB04p05089 ADSCrossRefGoogle Scholar
  250. R.J. Phillips, M.T. Zuber, S.C. Solomon, M.P. Golombek, B.M. Jakosky, W.B. Banerdt, D.E. Smith, R.M.E. Williams, B.M. Hynek, O. Aharonson, S.A. Hauck, Ancient geodynamics and global-scale hydrology on Mars. Science (2001).  https://doi.org/10.1126/science.1058701 CrossRefGoogle Scholar
  251. R.J. Phillips, M.T. Zuber, S.E. Smrekar, M.T. Mellon, J.W. Head, K.L. Tanaka, N.E. Putzig, S.M. Milkovich, B.A. Campbell, J.J. Plaut, A. Safaeinili, R. Seu, D. Biccari, L.M. Carter, G. Picardi, R. Orosei, P.S. Mohit, E. Heggy, R.W. Zurek, A.F. Egan, E. Giacomoni, F. Russo, M. Cutigni, E. Pettinelli, J.W. Holt, C.J. Leuschen, L. Marinangeli, Mars north polar deposits: stratigraphy, age, and geodynamical response. Science 320(5880), 1182–1185 (2008).  https://doi.org/10.1126/science.1157546 ADSCrossRefGoogle Scholar
  252. A. Plattner, F.J. Simons, High-resolution local magnetic field models for the Martian South Pole from Mars Global Surveyor data. J. Geophys. Res., Planets 120, 1543–1566 (2015).  https://doi.org/10.1002/2015JE004869 ADSCrossRefGoogle Scholar
  253. A.-C. Plesa, D. Breuer, Partial melting in one-plate planets: implications for thermo-chemical and atmospheric evolution. Planet. Space Sci. 98, 50–65 (2014).  https://doi.org/10.1016/j.pss.2013.10.007 ADSCrossRefGoogle Scholar
  254. A.-C. Plesa, N. Tosi, D. Breuer, Can a fractionally crystallized magma ocean explain the thermo-chemical evolution of Mars? Earth Planet. Sci. Lett. 403, 225–235 (2014).  https://doi.org/10.1016/j.epsl.2014.06.034 ADSCrossRefGoogle Scholar
  255. A.-C. Plesa, N. Tosi, M. Grott, D. Breuer, Thermal evolution and Urey ratio of Mars. J. Geophys. Res., Planets 120, 995–1010 (2015).  https://doi.org/10.1002/2014JE004748 ADSCrossRefGoogle Scholar
  256. A.-C. Plesa, M. Grott, N. Tosi, D. Breuer, T. Spohn, M.A. Wieczorek, How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res., Planets 121(12), 2386–2403 (2016).  https://doi.org/10.1002/2016JE005126 ADSCrossRefGoogle Scholar
  257. F. Poulet, N. Mangold, B. Platevoet, J.-M. Bardintzeff, V. Sautter, J.F. Mustard, J.-P. Bibring, P. Pinet, Y. Langevin, B. Gondet, A. Aléon-Toppani, Quantitative compositional analysis of Martian mafic regions using the MEx/OMEGA reflectance data: 2. Petrological implications. Icarus 201(1), 84–101 (2009).  https://doi.org/10.1016/J.ICARUS.2008.12.042 ADSCrossRefGoogle Scholar
  258. M. Purucker, D. Ravat, H. Frey, C. Voorhies, T. Sabaka, M. Acuña, An altitude-normalized magnetic map of Mars and its interpretation. Geophys. Res. Lett. 27(16), 2449–2452 (2000).  https://doi.org/10.1029/2000GL000072 ADSCrossRefGoogle Scholar
  259. Y. Quesnel, C. Sotin, B. Langlais, S. Costin, M. Mandea, M. Gottschalk, J. Dyment, Serpentinization of the Martian crust during Noachian. Earth Planet. Sci. Lett. 277(1–2), 184–193 (2009).  https://doi.org/10.1016/j.epsl.2008.10.012 ADSCrossRefGoogle Scholar
  260. P. Raterron, C. Holyoke, L. Tokle, N. Hilairet, S. Merkel, G. Hirth, D. Weidner, Effect of iron content on olivine viscosity and implications for the Martian mantle, in 48th LPSC, The Woodlands, Texas (2017), abstract #1553 Google Scholar
  261. D. Ravat, Interpretation of Mars southern highlands high amplitude magnetic field with total gradient and fractal source modeling: new insights into the magnetic mystery of Mars. Icarus 214(2), 400–412 (2011).  https://doi.org/10.1016/j.icarus.2011.05.004 ADSCrossRefGoogle Scholar
  262. R.D. Reasenberg, The moment of inertia and isostasy of Mars. J. Geophys. Res. 82(2), 369–375 (1977).  https://doi.org/10.1029/JB082i002p00369 ADSCrossRefGoogle Scholar
  263. H.L. Redmond, S.D. King, A numerical study of a mantle plume beneath the Tharsis rise: reconciling dynamic uplift and lithospheric support models. J. Geophys. Res. 109(E9), 09008 (2004).  https://doi.org/10.1029/2003JE002228 CrossRefGoogle Scholar
  264. J.A. Richardson, J.A. Wilson, C.B. Connor, J.E. Bleacher, K. Kiyosugi, Recurrence rate and magma effusion rate for the latest volcanism on Arsia Mons, Mars. Earth Planet. Sci. Lett. 458, 170–178 (2017).  https://doi.org/10.1016/J.EPSL.2016.10.040 ADSCrossRefGoogle Scholar
  265. A.E. Ringwood, Origin of the Earth and Moon (McGraw-Hill, New York, 1975), 618 pp. Google Scholar
  266. J.A. Ritzer, S.A. Hauck, Lithospheric structure and tectonics at Isidis Planitia, Mars. Icarus 201(2), 528–539 (2009).  https://doi.org/10.1016/J.ICARUS.2009.01.025 ADSCrossRefGoogle Scholar
  267. A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213(2), 451–472 (2011).  https://doi.org/10.1016/J.ICARUS.2011.03.024 ADSCrossRefGoogle Scholar
  268. S.J. Robbins, B.M. Hynek, R.J. Lillis, W.F. Bottke, Large impact crater histories of Mars: the effect of different model crater age techniques. Icarus 225(1), 173–184 (2013).  https://doi.org/10.1016/j.icarus.2013.03.019 ADSCrossRefGoogle Scholar
  269. J.H. Roberts, Plume-induced topography and geoid anomalies and their implications for the Tharsis rise on Mars. J. Geophys. Res. 109(E3), 03009 (2004).  https://doi.org/10.1029/2003JE002226 MathSciNetCrossRefGoogle Scholar
  270. J.H. Roberts, S. Zhong, Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. 111(E6), 06013 (2006).  https://doi.org/10.1029/2005JE002668 CrossRefGoogle Scholar
  271. H.J. Roberts, R.J. Lillis, M. Manga, Giant impacts on early Mars and the cessation of the Martian dynamo. J. Geophys. Res., Planets 114(E4), E04009 (2009).  https://doi.org/10.1029/2008JE003287 ADSCrossRefGoogle Scholar
  272. A. Rohrbach, C. Ballhaus, U. Golla-Schindler, P. Ulmer, V.S. Kamenetsky, D.V. Kuzmin, Metal saturation in the upper mantle. Nature 449(7161), 456 (2007) ADSCrossRefGoogle Scholar
  273. B. Romanowicz, B. Mitchell, 1.25—Deep Earth structure: \(Q\) of the Earth from crust to core, in Treatise on Geophysics, vol. 1 (2015), pp. 789–827 CrossRefGoogle Scholar
  274. T. Ruedas, D. Breuer, On the relative importance of thermal and chemical buoyancy in regular and impact-induced melting in a Mars-like planet. J. Geophys. Res., Planets 122(7), 1554–1579 (2017).  https://doi.org/10.1002/2016JE005221 ADSCrossRefGoogle Scholar
  275. T. Ruedas, P.J. Tackley, S.C. Solomon, Thermal and compositional evolution of the Martian mantle: effects of phase transitions and melting. Phys. Earth Planet. Inter. 216, 32–58 (2013).  https://doi.org/10.1016/J.PEPI.2012.12.002 ADSCrossRefGoogle Scholar
  276. J. Ruiz, The early heat loss evolution of mars and their implications for internal and environmental history. Sci. Rep. 4, 4338 (2014).  https://doi.org/10.1038/srep04338 ADSCrossRefGoogle Scholar
  277. J. Ruiz, J.-P. Williams, J.M. Dohm, C. Fernández, V. López, Ancient heat flow and crustal thickness at Warrego rise, Thaumasia highlands, Mars: implications for a stratified crust. Icarus 203(1), 47–57 (2009).  https://doi.org/10.1016/J.ICARUS.2009.05.008 ADSCrossRefGoogle Scholar
  278. H. Samuel, Time domain parallelization for computational geodynamics. Geochem. Geophys. Geosyst. 13(1), Q01003 (2012).  https://doi.org/10.1029/2011GC003905 ADSCrossRefGoogle Scholar
  279. H. Samuel, C.G. Farnetani, Thermochemical convection and helium concentrations in mantle plumes. Earth Planet. Sci. Lett. 207(1–4), 39–56 (2003).  https://doi.org/10.1016/S0012-821X(02)01125-1 ADSCrossRefGoogle Scholar
  280. C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112(1–2), 43–54 (1999).  https://doi.org/10.1016/S0031-9201(98)00175-7 ADSCrossRefGoogle Scholar
  281. S.K. Saxena, G. Shen, Assessed data on heat capacity, thermal expansion, and compressibility for some oxides and silicates. J. Geophys. Res. 97(B13), 19813–19825 (1992).  https://doi.org/10.1029/92jb01555 ADSCrossRefGoogle Scholar
  282. B. Schott, A.P. van den Berg, D.A. Yuen, Focussed time-dependent Martian volcanism from chemical differentiation coupled with variable thermal conductivity. Geophys. Res. Lett. 28(22), 4271–4274 (2001).  https://doi.org/10.1029/2001GL013638 ADSCrossRefGoogle Scholar
  283. G. Schubert, R.E. Lingenfelter, Martian centre of mass centre of figure offset. Nature 242(5395), 251–252 (1973).  https://doi.org/10.1038/242251a0 ADSCrossRefGoogle Scholar
  284. G. Schubert, C.T. Russell, W.B. Moore, Geophysics: timing of the Martian dynamo. Nature 408(6813), 666–667 (2000).  https://doi.org/10.1038/35047163 ADSCrossRefGoogle Scholar
  285. G. Schubert, D.L. Turcotte, P. Olson, Mantle Convection in the Earth and Planets (Cambridge University Press, Cambridge, 2001), p. 940 CrossRefGoogle Scholar
  286. R.A. Schultz, T.R. Watters, Forward mechanical modeling of the Amenthes Rupes Thrust Fault on Mars. Geophys. Res. Lett. 28(24), 4659–4662 (2001).  https://doi.org/10.1029/2001GL013468 ADSCrossRefGoogle Scholar
  287. S. Schumacher, D. Breuer, Influence of a variable thermal conductivity on the thermochemical evolution of Mars. J. Geophys. Res., Planets 111(E2), E02006 (2006).  https://doi.org/10.1029/2005JE002429 ADSCrossRefGoogle Scholar
  288. M.L. Searls, W.B. Banerdt, R.J. Phillips, Utopia and Hellas basins, Mars: twins separated at birth. J. Geophys. Res., Planets 111(E8), E08005 (2006).  https://doi.org/10.1029/2005JE002666 ADSCrossRefGoogle Scholar
  289. P. Sekhar, S.D. King, 3D spherical models of Martian mantle convection constrained by melting history. Earth Planet. Sci. Lett. 388, 27–37 (2014).  https://doi.org/10.1016/J.EPSL.2013.11.047 ADSCrossRefGoogle Scholar
  290. N.H. Sleep, Martian plate tectonics. J. Geophys. Res. 99(E3), 5639 (1994).  https://doi.org/10.1029/94JE00216 ADSCrossRefGoogle Scholar
  291. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, et al., Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res., Planets 106(E10), 23689–23722 (2001) ADSCrossRefGoogle Scholar
  292. F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res., Planets 102(E1), 1613–1635 (1997).  https://doi.org/10.1029/96JE03419 ADSCrossRefGoogle Scholar
  293. F. Sohl, G. Schubert, T. Spohn, Geophysical constraints on the composition and structure of the Martian interior. J. Geophys. Res. 110(E12), 12008 (2005).  https://doi.org/10.1029/2005JE002520 CrossRefGoogle Scholar
  294. S.C. Solomon, J.W. Head, Evolution of the Tharsis province of Mars—the importance of heterogeneous lithospheric thickness and volcanic construction. J. Geophys. Res. (1982a).  https://doi.org/10.1029/JB087iB12p09755 CrossRefGoogle Scholar
  295. S.C. Solomon, J.W. Head, Evolution of the Tharsis province of Mars: the importance of heterogeneous lithospheric thickness and volcanic construction. J. Geophys. Res. 87(B12), 9755 (1982b).  https://doi.org/10.1029/JB087iB12p09755 ADSCrossRefGoogle Scholar
  296. T. Spohn, M. Grott, S.E. Smrekar, J. Knollenberg, T.L. Hudson, C. Krause, N. Müller, J. Jänchen, A. Börner, T. Wippermann, O. Krömer, R. Lichtenheldt, L. Wisniewski, J. Grygorczuk, M. Fittock, S. Rheershemius, T. Spröwitz, E. Kopp, I. Walter, A.C. Plesa, D. Breuer, P. Morgan, W.B. Banerdt, The heat flow and physical properties package (HP3) for the InSight mission. Space Sci. Rev. 214(5), 96 (2018).  https://doi.org/10.1007/s11214-018-0531-4 ADSCrossRefGoogle Scholar
  297. S.W. Squyres, R.E. Arvidson, J.F. Bell, J. Brückner, N.A. Cabrol, W. Calvin, M.H. Carr, P.R. Christensen, B.C. Clark, L. Crumpler, D.J. Des Marais, C. D’Uston, T. Economou, J. Farmer, W. Farrand, W. Folkner, M. Golombek, S. Gorevan, J.A. Grant, R. Greeley, J. Grotzinger, L. Haskin, K.E. Herkenhoff, S. Hviid, J. Johnson, G. Klingelhöfer, A. Knoll, G. Landis, M. Lemmon, R. Li, M.B. Madsen, M.C. Malin, S.M. McLennan, H.Y. McSween, D.W. Ming, J. Moersch, R.V. Morris, T. Parker, J.W. Rice, L. Richter, R. Rieder, M. Sims, M. Smith, P. Smith, L.A. Soderblom, R. Sullivan, H. Wänke, T. Wdowiak, M. Wolff, A. Yen, The Spirit Rover’s Athena science investigation at Gusev Crater, Mars. Science 305(5685), 794–799 (2004).  https://doi.org/10.1126/science.1100194 ADSCrossRefGoogle Scholar
  298. S.W. Squyres, R.E. Arvidson, S. Ruff, R. Gellert, R.V. Morris, D.W. Ming, L. Crumpler, J.D. Farmer, D.J.D. Marais, A. Yen, S.M. McLennan, W. Calvin, J.F. Bell, B.C. Clark, A. Wang, T.J. McCoy, M.E. Schmidt, P.A. de Souza, Detection of silica-rich deposits on Mars. Science 320(5879), 1063–1067 (2008).  https://doi.org/10.1126/science.1155429 ADSCrossRefGoogle Scholar
  299. O. Šrámek, S. Zhong, Long-wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: link between Martian crustal dichotomy and Tharsis? J. Geophys. Res. 115(E9), 09010 (2010).  https://doi.org/10.1029/2010JE003597 CrossRefGoogle Scholar
  300. O. Šramek, S. Zhong, Martian crustal dichotomy and Tharsis formation by partial melting coupled to early plume migration. J. Geophys. Res. 117, E01005 (2012) ADSCrossRefGoogle Scholar
  301. F.D. Stacey, P.M. Davis, High pressure equations of state with applications to the lower mantle and core. Phys. Earth Planet. Inter. 142(3–4), 137–184 (2004).  https://doi.org/10.1016/j.pepi.2004.02.003 ADSCrossRefGoogle Scholar
  302. S. Stanley, L. Elkins-Tanton, M.T. Zuber, E.M. Parmentier, Mars’ paleomagnetic field as the result of a single-hemisphere dynamo. Science 321(5897), 1822–1825 (2008).  https://doi.org/10.1126/science.1161119 ADSCrossRefGoogle Scholar
  303. D.J. Stevenson, Mars’ core and magnetism. Nature 412(6843), 214–219 (2001).  https://doi.org/10.1038/35084155 ADSCrossRefGoogle Scholar
  304. A.J. Stewart, M.W. Schmidt, W. van Westrenen, C. Liebske, Mars: a new core-crystallization regime. Science 316, 1323 (2007).  https://doi.org/10.1126/science.1140549 ADSCrossRefGoogle Scholar
  305. L. Stixrude, C. Lithgow-Bertelloni, Thermodynamics of mantle minerals—I. Physical properties. Geophys. J. Int. 162(2), 610–632 (2005).  https://doi.org/10.1111/j.1365-246X.2005.02642.x ADSCrossRefGoogle Scholar
  306. L. Stixrude, C. Lithgow-Bertelloni, Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle. Earth Planet. Sci. Lett. 263(1–2), 45–55 (2007).  https://doi.org/10.1016/J.EPSL.2007.08.027 ADSCrossRefGoogle Scholar
  307. L. Stixrude, C. Lithgow-Bertelloni, Thermodynamics of mantle minerals—II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).  https://doi.org/10.1111/j.1365-246X.2010.04890.x ADSCrossRefGoogle Scholar
  308. K.L. Tanaka, M.P. Golombek, W.B. Banerdt, Reconciliation of stress and structural histories of the Tharsis region of Mars. J. Geophys. Res., Planets 96(E1), 15617–15633 (1991).  https://doi.org/10.1029/91JE01194 ADSCrossRefGoogle Scholar
  309. G.J. Taylor, The bulk composition of Mars. Chem. Erde 73(4), 401–420 (2013).  https://doi.org/10.1016/J.CHEMER.2013.09.006 CrossRefGoogle Scholar
  310. S.R. Taylor, S. McLennan, Planetary Crusts: Their Composition, Origin and Evolution. Cambridge Planetary Science (Cambridge University Press, Cambridge, 2008).  https://doi.org/10.1017/CBO9780511575358 CrossRefGoogle Scholar
  311. G.J. Taylor, W. Boynton, J. Brückner, H. Wänke, G. Dreibus, K. Kerry, J. Keller, R. Reedy, L. Evans, R. Starr, S. Squyres, S. Karunatillake, O. Gasnault, S. Maurice, C. D’Uston, P. Englert, J. Dohm, V. Baker, D. Hamara, D. Janes, A. Sprague, K. Kim, D. Drake, Bulk composition and early differentiation of Mars. J. Geophys. Res. 112(E3), 3–10 (2006).  https://doi.org/10.1029/2005JE002645 CrossRefGoogle Scholar
  312. J. Taylor, N.A. Teanby, J. Wookey, Estimates of seismic activity in the Cerberus Fossae region of Mars. J. Geophys. Res., Planets 118(12), 2570–2581 (2013).  https://doi.org/10.1002/2013JE004469 ADSCrossRefGoogle Scholar
  313. M. Thiriet, C. Michaut, D. Breuer, A.-C. Plesa, Hemispheric dichotomy in lithosphere thickness on Mars caused by differences in crustal structure and composition. J. Geophys. Res., Planets (2018).  https://doi.org/10.1002/2017JE005431 CrossRefGoogle Scholar
  314. P.A. Thompson, M.O. Robbins, Shear flow near solids: epitaxial order and flow boundary conditions. Phys. Rev. A 41(12), 6830 (1990) ADSCrossRefGoogle Scholar
  315. N. Tosi, A.-C. Plesa, D. Breuer, Overturn and evolution of a crystallized magma ocean: a numerical parameter study for Mars. J. Geophys. Res., Planets 118(7), 1512–1528 (2013).  https://doi.org/10.1002/jgre.20109 ADSCrossRefGoogle Scholar
  316. A. Trebi-Ollennu, W. Kim, K. Ali, O. Khan, C. Sorice, P. Bailey, J. Umland, R. Bonitz, C. Ciarleglio, J. Knight, N. Haddad, K. Klein, S. Nowak, D. Klein, N. Onufer, K. Glazebrook, B. Kobeissi, E. Baez, F. Sarkissian, M. Badalian, H. Abarca, R.G. Deen, J. Yen, S. Myint, J. Maki, A. Pourangi, J. Grinblat, B. Bone, N. Warner, J. Singer, J. Ervin, J. Lin, InSight Mars lander robotics instrument deployment system. Space Sci. Rev. 214(5), 93 (2018).  https://doi.org/10.1007/s11214-018-0520-7 ADSCrossRefGoogle Scholar
  317. A.H. Treiman, M.J. Drake, M.-J. Janssens, R. Wolf, M. Ebihara, Core formation in the Earth and Shergottite Parent Body (SPB): chemical evidence from basalts. Geochim. Cosmochim. Acta 50(6), 1071–1091 (1986).  https://doi.org/10.1016/0016-7037(86)90389-3 ADSCrossRefGoogle Scholar
  318. J. Tuff, J. Wade, B. Wood, Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 498(7454), 342 (2013).  https://doi.org/10.1038/nature12225 ADSCrossRefGoogle Scholar
  319. H.C. Urey, On the early chemical history of the Earth and the origin of life. Proc. Natl. Acad. Sci. USA 38(4), 351–363 (1952).  https://doi.org/10.1073/pnas.38.4.351 ADSCrossRefGoogle Scholar
  320. P. Vacher, O. Verhoeven, Modelling the electrical conductivity of iron-rich minerals for planetary applications. Planet. Space Sci. 55, 455–466 (2007).  https://doi.org/10.1016/j.pss.2006.10.003 ADSCrossRefGoogle Scholar
  321. P. Vacher, A. Mocquet, C. Sotin, Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity. Phys. Earth Planet. Inter. 106, 277–300 (1998) ADSCrossRefGoogle Scholar
  322. R.D. van der Hilst, M.V. de Hoop, Reply to comment by R. Montelli, G. Nolet and F.A. Dahlen on ‘banana—doughnut kernels and mantle tomography’. Geophys. J. Int. 167(3), 1211–1214 (2006).  https://doi.org/10.1111/j.1365-246X.2006.03211.x ADSCrossRefGoogle Scholar
  323. M. Van Driel, L. Krischer, S.C. Stähler, K. Hosseini, T. Nissen-Meyer, Instaseis: instant global seismograms based on a broadband waveform database. Solid Earth 6(2), 701–717 (2015).  https://doi.org/10.5194/se-6-701-2015 ADSCrossRefGoogle Scholar
  324. T. Van Hoolst, A. Rivoldini, Interior structure and evolution of Mars, in Encyclopedia of the Solar System, 3rd edn. (Elsevier, Boston, 2014), pp. 379–396 CrossRefGoogle Scholar
  325. T. Van Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161(2), 281–296 (2003).  https://doi.org/10.1016/S0019-1035(02)00045-3 ADSCrossRefGoogle Scholar
  326. P.E. van Keken, A. Davaille, J. Vatteville, Dynamics of a laminar plume in a cavity: the influence of boundaries on the steady state stem structure. Geochem. Geophys. Geosyst. 14(1), 158–178 (2013).  https://doi.org/10.1029/2012GC004383 ADSCrossRefGoogle Scholar
  327. J. Vaucher, D. Baratoux, N. Mangold, P. Pinet, K. Kurita, M. Grégoire, The volcanic history of central Elysium Planitia: implications for Martian magmatism. Icarus 204(2), 418–442 (2009).  https://doi.org/10.1016/J.ICARUS.2009.06.032 ADSCrossRefGoogle Scholar
  328. O. Verhoeven, P. Vacher, Laboratory-based electrical conductivity at Martian mantle conditions. Planet. Space Sci. 134, 29–35 (2016).  https://doi.org/10.1016/j.pss.2016.10.005 ADSCrossRefGoogle Scholar
  329. O. Verhoeven, A. Rivoldini, P. Vacher, A. Mocquet, G. Choblet, M. Menvielle, V. Dehant, T.V. Hoolst, J. Sleewaegen, J.. Barriot, P. Lognonné, Interior structure of terrestrial planets: modeling Mars’ mantle and its electromagnetic, geodetic, and seismic properties. J. Geophys. Res. 110(E4), 04009 (2005).  https://doi.org/10.1029/2004JE002271 CrossRefGoogle Scholar
  330. L.P. Vinnik, Detection of waves converted from P to SV in the mantle. Phys. Earth Planet. Inter. 15(1), 39–45 (1977).  https://doi.org/10.1016/0031-9201(77)90008-5 ADSCrossRefGoogle Scholar
  331. Y. Wang, L. Wen, D.J. Weidner, Composition of Mars constrained using geophysical observations and mineral physics modeling. Phys. Earth Planet. Inter. 224, 68–76 (2013).  https://doi.org/10.1016/J.PEPI.2013.08.005 ADSCrossRefGoogle Scholar
  332. H. Wänke, G. Dreibus, Chemistry and accretion of Mars. Philos. Trans. R. Soc. Lond. A 349, 2134–2137 (1994).  https://doi.org/10.1098/rsta.1994.0132 CrossRefGoogle Scholar
  333. H. Wänke, G. Dreibus, I.P. Wright, Chemistry and accretion history of Mars [and discussion]. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 349(1690), 285–293 (1994).  https://doi.org/10.1098/rsta.1994.0132 ADSCrossRefGoogle Scholar
  334. R.C. Weber, P.-Y. Lin, E.J. Garnero, Q. Williams, P. Lognonné, Seismic detection of the lunar core. Science 331(6015), 309–312 (2011).  https://doi.org/10.1126/science.1199375 ADSCrossRefGoogle Scholar
  335. T. Weiss, S. Siegesmund, W. Rabbel, T. Bohlen, M. Pohl, Seismic velocities and anisotropy of the lower continental crust: a review, in Seismic Exploration of the Deep Continental Crust (Birkhäuser Basel, Basel, 1999), pp. 97–122.  https://doi.org/10.1007/978-3-0348-8670-3_6 CrossRefGoogle Scholar
  336. B.P. Weiss, H. Vali, F.J. Baudenbacher, J.L. Kirschvink, S.T. Stewart, D.L. Shuster, Records of an ancient Martian magnetic field in ALH84001. Earth Planet. Sci. Lett. 201, 449–463 (2002).  https://doi.org/10.1016/S0012-821X(02)00728-8 ADSCrossRefGoogle Scholar
  337. B.P. Weiss, S.S. Kim, J.L. Kirschvink, R.E. Kopp, M. Sankaran, A. Kobayashi, A. Komeili, Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proc. Natl. Acad. Sci. USA 101(22), 8281–8284 (2004).  https://doi.org/10.1073/pnas.0402292101 ADSCrossRefGoogle Scholar
  338. B.P. Weiss, L.E. Fong, H. Vali, E.A. Lima, F.J. Baudenbacher, Paleointensity of the ancient Martian magnetic field. Geophys. Res. Lett. 35(23), 1–5 (2008).  https://doi.org/10.1029/2008GL035585 CrossRefGoogle Scholar
  339. M.J. Wenzel, M. Manga, A.M. Jellinek, Tharsis as a consequence of Mars’ dichotomy and layered mantle. Geophys. Res. Lett. 31(4), 04702 (2004).  https://doi.org/10.1029/2003GL019306 ADSCrossRefGoogle Scholar
  340. S.C. Werner, The global Martian volcanic evolutionary history. Icarus 201, 44–68 (2009).  https://doi.org/10.1016/j.icarus.2008.12.019 ADSCrossRefGoogle Scholar
  341. S.C. Werner, K.L. Tanaka, Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus (2011).  https://doi.org/10.1016/j.icarus.2011.07.024 CrossRefGoogle Scholar
  342. R.J. Whittaker, J.R. Lister, Steady axisymmetric creeping plumes above a planar boundary. Part 2. A distributed source. J. Fluid Mech. 567, 379 (2006).  https://doi.org/10.1017/S0022112006002382 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  343. M.A. Wieczorek, Constraints on the composition of the Martian south polar cap from gravity and topography. Icarus 196(2), 506–517 (2008).  https://doi.org/10.1016/J.ICARUS.2007.10.026 ADSCrossRefGoogle Scholar
  344. M.A. Wieczorek, R.J. Phillips, The structure and compensation of the lunar highland crust. J. Geophys. Res., Planets 102(E5), 10933–10943 (1997) ADSCrossRefGoogle Scholar
  345. M.A. Wieczorek, M.T. Zuber, Thickness of the Martian crust: improved constraints from geoid-to-topography ratios. J. Geophys. Res. 109(E1), 01009 (2004).  https://doi.org/10.1029/2003JE002153 CrossRefGoogle Scholar
  346. M.A. Wieczorek, G.A. Neumann, F. Nimmo, W.S. Kiefer, G.J. Taylor, H.J. Melosh, R.J. Phillips, S.C. Solomon, J.C. Andrews-Hanna, S.W. Asmar, et al., The crust of the Moon as seen by GRAIL. Science 339(6120), 671–675 (2013) ADSCrossRefGoogle Scholar
  347. D.E. Wilhelms, S.W. Squyres, The Martian hemispheric dichotomy may be due to a giant impact. Nature 309(5964), 138–140 (1984).  https://doi.org/10.1038/309138a0 ADSCrossRefGoogle Scholar
  348. J.-P. Williams, F. Nimmo, Thermal evolution of the Martian core: implications for an early dynamo. Geology 32(2), 97 (2004).  https://doi.org/10.1130/G19975.1 ADSCrossRefGoogle Scholar
  349. D.U. Wise, M.P. Golombek, G.E. McGill, Tectonic evolution of Mars. J. Geophys. Res. 84(B14), 7934 (1979a).  https://doi.org/10.1029/JB084iB14p07934 ADSCrossRefGoogle Scholar
  350. D.U. Wise, M.P. Golombek, G.E. McGill, Tharsis province of Mars: geologic sequence, geometry, and a deformation mechanism. Icarus 38(3), 456–472 (1979b).  https://doi.org/10.1016/0019-1035(79)90200-8 ADSCrossRefGoogle Scholar
  351. C.F. Yoder, A.S. Konopliv, D.N. Yuan, E.M. Standish, W.M. Folkner, Fluid core size of Mars from detection of the solar tide. Science 300(5617), 299–303 (2003).  https://doi.org/10.1126/science.1079645 ADSCrossRefGoogle Scholar
  352. M. Yoshida, A. Kageyama, Low-degree mantle convection with strongly temperature- and depth-dependent viscosity in a three-dimensional spherical shell. J. Geophys. Res., Solid Earth 111(B3), B03412 (2006).  https://doi.org/10.1029/2005JB003905 ADSCrossRefGoogle Scholar
  353. T. Yoshino, Laboratory electrical conductivity measurement of mantle minerals. Surv. Geophys. 31, 163–206 (2010).  https://doi.org/10.1007/s10712-009-9084-0 ADSCrossRefGoogle Scholar
  354. C.-s. Zha, T.S. Duffy, R.T. Downs, H.-k. Mao, R.J. Hemley, Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth Planet. Sci. Lett. 159(1–2), 25–33 (1998).  https://doi.org/10.1016/S0012-821X(98)00063-6 ADSCrossRefGoogle Scholar
  355. V.N. Zharkov, T.V. Gudkova, On the dissipative factor of Martian interiors. Astron. Vestn. 27, 3–15 (1993) ADSGoogle Scholar
  356. V.N. Zharkov, T.V. Gudkova, On the dissipative factor of the Martian interiors. Planet. Space Sci. 45(4), 401–407 (1997).  https://doi.org/10.1016/S0032-0633(96)00144-4 ADSCrossRefGoogle Scholar
  357. V.N. Zharkov, T.V. Gudkova, Construction of Martian interior model. Sol. Syst. Res. 39(5), 343–373 (2005).  https://doi.org/10.1007/s11208-005-0049-7 ADSCrossRefGoogle Scholar
  358. V.N. Zharkov, T.V. Gudkova, Seismic model of Mars: effects of hydration. Planet. Space Sci. 104, 270–278 (2014).  https://doi.org/10.1016/j.pss.2014.10.009 ADSCrossRefGoogle Scholar
  359. V.N. Zharkov, S.M. Molodensky, On the Chandler wobble of Mars. Planet. Space Sci. 44(11), 1457–1462 (1996). Intermarsnet.  https://doi.org/10.1016/S0032-0633(96)00052-9 ADSCrossRefGoogle Scholar
  360. V.N. Zharkov, T.V. Gudkova, S.M. Molodensky, On models of Mars interior and amplitudes of forced nutations: 1. The effects of deviation of Mars from its equilibrium state on the flattening of the coremantle boundary. Phys. Earth Planet. Inter. 172(3), 324–334 (2009).  https://doi.org/10.1016/j.pepi.2008.10.009 ADSCrossRefGoogle Scholar
  361. V.N. Zharkov, T.V. Gudkova, A.V. Batov, On estimating the dissipative factor of the Martian interior. Sol. Syst. Res. 51(6), 479–490 (2017).  https://doi.org/10.1134/S0038094617060089 ADSCrossRefGoogle Scholar
  362. Y. Zheng, F. Nimmo, T. Lay, Seismological implications of a lithospheric low seismic velocity zone in Mars. Phys. Earth Planet. Inter. 240, 132–141 (2015).  https://doi.org/10.1016/j.pepi.2014.10.004 ADSCrossRefGoogle Scholar
  363. S. Zhong, Effects of lithosphere on the long-wavelength gravity anomalies and their implications for the formation of the Tharsis rise on Mars. J. Geophys. Res., Planets 107, 5054 (2002).  https://doi.org/10.1029/2001JE001589 ADSCrossRefGoogle Scholar
  364. S. Zhong, Migration of Tharsis volcanism on Mars caused by differential rotation of the lithosphere. Nat. Geosci. 2, 19–23 (2009).  https://doi.org/10.1038/NGEO392 ADSCrossRefGoogle Scholar
  365. S. Zhong, J.H. Roberts, On the support of the Tharsis rise on Mars. Earth Planet. Sci. Lett. 214(1–2), 1–9 (2003).  https://doi.org/10.1016/S0012-821X(03)00384-4 ADSCrossRefGoogle Scholar
  366. S. Zhong, M.T. Zuber, Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. 189(1–2), 75–84 (2001).  https://doi.org/10.1016/S0012-821X(01)00345-4 ADSCrossRefGoogle Scholar
  367. L. Ziberna, S. Klemme, P. Nimis, Garnet and spinel in fertile and depleted mantle: insights from thermodynamic modelling. Contrib. Mineral. Petrol. 166(2), 411–421 (2013).  https://doi.org/10.1007/s00410-013-0882-5 ADSCrossRefGoogle Scholar
  368. M.T. Zuber, S.C. Solomon, R.J. Phillips, D.E. Smith, G.L. Tyler, O. Aharonson, G. Balmino, W.B. Banerdt, J.W. Head, C.L. Johnson, F.G. Lemoine, P.J. McGovern, G.A. Neumann, D.D. Rowlands, S. Zhong, Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. Science 287(5459), 1788–1793 (2000) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Suzanne E. Smrekar
    • 1
    Email author
  • Philippe Lognonné
    • 2
  • Tilman Spohn
    • 3
  • W. Bruce Banerdt
    • 1
  • Doris Breuer
    • 3
  • Ulrich Christensen
    • 4
  • Véronique Dehant
    • 5
  • Mélanie Drilleau
    • 2
  • William Folkner
    • 1
  • Nobuaki Fuji
    • 2
  • Raphael F. Garcia
    • 6
  • Domenico Giardini
    • 7
  • Matthew Golombek
    • 1
  • Matthias Grott
    • 3
  • Tamara Gudkova
    • 8
  • Catherine Johnson
    • 10
    • 9
  • Amir Khan
    • 7
  • Benoit Langlais
    • 11
  • Anna Mittelholz
    • 9
  • Antoine Mocquet
    • 11
  • Robert Myhill
    • 12
  • Mark Panning
    • 1
  • Clément Perrin
    • 2
  • Tom Pike
    • 13
  • Ana-Catalina Plesa
    • 3
  • Attilio Rivoldini
    • 5
  • Henri Samuel
    • 2
  • Simon C. Stähler
    • 7
  • Martin van Driel
    • 7
  • Tim Van Hoolst
    • 5
  • Olivier Verhoeven
    • 11
  • Renee Weber
    • 14
  • Mark Wieczorek
    • 15
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Institut de Physique du Globe de ParisUniv Paris Diderot-Sorbonne Paris CitéParis Cedex 13France
  3. 3.German Aerospace Center (DLR)BerlinGermany
  4. 4.Max Planck Institute for Solar System ResearchGöttingenGermany
  5. 5.Royal Observatory BelgiumBrusselsBelgium
  6. 6.Institut Superieur de l’Aeronautique et de l’EspaceToulouseFrance
  7. 7.Institut für GeophysikETH ZürichZürichSwitzerland
  8. 8.Schmidt Institute of Physics of the Earth RASMoscowRussia
  9. 9.University of British ColumbiaVancouverCanada
  10. 10.Planetary Science InstituteTucsonUSA
  11. 11.Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112, Faculté des Sciences et TechniquesUniversité de NantesNantesFrance
  12. 12.School of Earth SciencesUniversity of BristolBristolUK
  13. 13.Department of Electrical and Electronic EngineeringImperial CollegeLondonUK
  14. 14.NASA Marshall Space Flight CenterHuntsvilleUSA
  15. 15.Observatoire de la Côte d’AzurNiceFrance

Personalised recommendations