Advertisement

Space Science Reviews

, 214:132 | Cite as

Impact-Seismic Investigations of the InSight Mission

  • Ingrid Daubar
  • Philippe Lognonné
  • Nicholas A. Teanby
  • Katarina Miljkovic
  • Jennifer Stevanović
  • Jeremie Vaubaillon
  • Balthasar Kenda
  • Taichi Kawamura
  • John Clinton
  • Antoine Lucas
  • Melanie Drilleau
  • Charles Yana
  • Gareth S. Collins
  • Don Banfield
  • Matthew Golombek
  • Sharon Kedar
  • Nicholas Schmerr
  • Raphael Garcia
  • Sebastien Rodriguez
  • Tamara Gudkova
  • Stephane May
  • Maria Banks
  • Justin Maki
  • Eleanor Sansom
  • Foivos Karakostas
  • Mark Panning
  • Nobuaki Fuji
  • James Wookey
  • Martin van Driel
  • Mark Lemmon
  • Veronique Ansan
  • Maren Böse
  • Simon Stähler
  • Hiroo Kanamori
  • James Richardson
  • Suzanne Smrekar
  • W. Bruce Banerdt
Article
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

Impact investigations will be an important aspect of the InSight mission. One of the scientific goals of the mission is a measurement of the current impact rate at Mars. Impacts will additionally inform the major goal of investigating the interior structure of Mars.

In this paper, we review the current state of knowledge about seismic signals from impacts on the Earth, Moon, and laboratory experiments. We describe the generalized physical models that can be used to explain these signals. A discussion of the appropriate source time function for impacts is presented, along with spectral characteristics including the cutoff frequency and its dependence on impact momentum. Estimates of the seismic efficiency (ratio between seismic and impact energies) vary widely. Our preferred value for the seismic efficiency at Mars is \(5 \times 10^{- 4}\), which we recommend using until we can measure it during the InSight mission, when seismic moments are not used directly. Effects of the material properties at the impact point and at the seismometer location are considered. We also discuss the processes by which airbursts and acoustic waves emanate from bolides, and the feasibility of detecting such signals.

We then consider the case of impacts on Mars. A review is given of the current knowledge of present-day cratering on Mars: the current impact rate, characteristics of those impactors such as velocity and directions, and the morphologies of the craters those impactors create. Several methods of scaling crater size to impact energy are presented. The Martian atmosphere, although thin, will cause fragmentation of impactors, with implications for the resulting seismic signals.

We also benchmark several different seismic modeling codes to be used in analysis of impact detections, and those codes are used to explore the seismic amplitude of impact-induced signals as a function of distance from the impact site. We predict a measurement of the current impact flux will be possible within the timeframe of the prime mission (one Mars year) with the detection of ∼ a few to several tens of impacts. However, the error bars on these predictions are large.

Specific to the InSight mission, we list discriminators of seismic signals from impacts that will be used to distinguish them from marsquakes. We describe the role of the InSight Impacts Science Theme Group during mission operations, including a plan for possible night-time meteor imaging. The impacts detected by these methods during the InSight mission will be used to improve interior structure models, measure the seismic efficiency, and calculate the size frequency distribution of current impacts.

Keywords

InSight Mars Impact cratering Seismology 

Notes

Acknowledgements

We are grateful to Jay Melosh and an unnamed reviewer for thoughtful and helpful comments. We appreciate the hard work of the engineering and operations teams who are making the InSight mission possible. Elizabeth Barrett provided valuable input. Thank you to Matthew Siegler for helping to address a reviewer comment. A portion of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. French co-authors thank the support of the French Space Agency CNES as well as ANR SIMARS. IPGP coauthors (IPGP contribution number 3988) also received support from the UnivEarth Labex at Sorbonne Paris Cité (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). N. Teanby and J. Wookey are funded by the UK Space Agency. Swiss co-authors recognize the support of the (1) Swiss National Science Foundation and French Agence Nationale de la Recherche (SNF-ANR project 157133 “Seismology on Mars”) and (2) Swiss State Secretariat for Education, Research and Innovation (SEFRI project “MarsQuake Service—Preparatory Phase”). We gratefully acknowledge the developers of the iSALE hydrocode. A portion of this work was performed using HPC resources of CINES (Centre Informatique National de l’Enseignement Supérieur) under the allocation A0030407341 made by GENCI (Grand Equipement National de Calcul Intensif). KM research is fully supported by the Australian Government (project numbers DE180100584 and DP180100661). This is InSight Contribution Number 47.

References

  1. K. Aki, P.G. Richards, Quantitative Seismology, 2nd edn. (University Science Books, Herndon, 2002), ISBN 0-935702-96-2, 704 pp. Google Scholar
  2. D.L. Anderson, F.K. Duennebier, G.V. Latham, M.F. Toksöz, R.L. Kovach, T.C. Knight, G. Sutton, The Viking seismic experiment. Science 194(4271), 1318–1321 (1976).  https://doi.org/10.1126/science.194.4271.1318 ADSCrossRefGoogle Scholar
  3. N. Artemieva, E. Pierazzo, The Canyon Diablo impact event: projectile motion through the atmosphere. Meteorit. Planet. Sci. 44(1), 25–42 (2009) ADSCrossRefGoogle Scholar
  4. B. Baldwin, Y. Sheaffer, Ablation and breakup of large meteoroids during atmospheric entry. J. Geophys. Res. 76(19), 4653–4668 (1971) ADSCrossRefGoogle Scholar
  5. W.B. Banerdt et al., The InSight mission. Space Sci. Rev. (2018, this issue) Google Scholar
  6. W.B. Banerdt, S. Smrekar, P. Lognonné, T. Spohn, S.W. Asmar, D. Banfield, L. Boschi, U. Christensen, V. Dehant, W. Folkner, D. Giardini, W. Goetze, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, N. Kobayashi, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, J. Tromp, T. van Zoest, R. Weber, M.A. Wieczorek, R. Garcia, K. Hurst, InSight: a discovery mission to explore the interior of Mars, in Lunar and Planetary Science Conference, Lunar and Planetary Inst. Technical Report 44 (2013), p. 1915 Google Scholar
  7. W.B. Banerdt, S.E. Smrekar, T. Hoffman, S. Spath, P. Lognonné, T. Spohn, H. Stone, J. Willis, J. Feldman, R. De Paula, R. Turner, S. Asmar, D. Banfield, U. Christensen, J. Clinton, V. Dehant, W. Folkner, R. Garcia, D. Giardini, M. Golombek, M. Grott, T. Hudson, C. Johnson, G. Kargl, B. Knapmeyer-Endrun, J. Maki, D. Mimoun, A. Mocquet, P. Morgan, M. Panning, W.T. Pike, C. Russell, N. Teanby, J. Tromp, R. Weber, M. Wieczorek, K. Hurst, E. Barrett (The InSight Team), The InSight mission for 2018, in Lunar & Planetary Science Conference 48 (2017), abstract 1896 Google Scholar
  8. M.E. Banks, I.J. Daubar, N.C. Schmerr, M.P. Golombek, Predicted seismic signatures of recent dated Martian impact events: implications for the InSight lander, in Lunar and Planetary Science Conference 46 (2015), abstract 2679 Google Scholar
  9. G.D. Bart, P.L. Spinolo, Formation of airblast features associated with young Martian craters. Abstr. Program – Geol. Soc. Am. 45(7), 200-10 (2013) Google Scholar
  10. H.E. Bass, J.P. Chambers, Absorption of sound in the Martian atmosphere. J. Acoust. Soc. Am. 109, 2371 (2001).  https://doi.org/10.1121/1.4744345 ADSCrossRefGoogle Scholar
  11. K.J. Becker et al., ISIS support for NASA mission instrument ground data processing systems, in Lunar Planet. Sci. XLIV, Houston, Texas (2013), abstract #2829 Google Scholar
  12. J.F. Bell, M.J. Wolff, M.C. Malin, W.M. Calvin, B.A. Cantor, M.A. Caplinger, P.C. Thomas, Mars Reconnaissance Orbiter Mars Color Imager (MARCI): instrument description, calibration, and performance. J. Geophys. Res. 114(E8), E08S92 (2009).  https://doi.org/10.1029/2008JE003315 CrossRefGoogle Scholar
  13. A. Ben-Menahem, Source parameters of the Siberian explosion of June 30, 1908, from analysis and synthesis of seismic signals at four stations. Phys. Earth Planet. Inter. 11(1), 1–35 (1975).  https://doi.org/10.1016/0031-9201(75)90072-2 ADSCrossRefGoogle Scholar
  14. P. Bézier, Définition numérique des courbes et surfaces I. Automatisme 11, 625–632 (1966) Google Scholar
  15. P. Bézier, Définition numérique des courbes et surfaces II. Automatisme 12, 17–21 (1967) Google Scholar
  16. M. Böse, J. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, P. Lognonné, W.B. Banerdt, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. 262, 48–65 (2017).  https://doi.org/10.1016/j.pepi.2016.11.003 ADSCrossRefGoogle Scholar
  17. M. Böse, D. Giardini, S. Stähler, S. Ceylan, J. Clinton, M. van Driel, A. Khan, F. Euchner, P. Lognonné, B. Banerdt Magnitude Scales for Marsquakes (2018, in press) Google Scholar
  18. P. Brown, D.O. ReVelle, E.A. Silber, W.N. Edwards, S. Arrowsmith, L.E. Jackson, G. Tancredi, D. Eaton, Analysis of a crater-forming meteorite impact in Peru. J. Geophys. Res. 113, E09007 (2008) ADSCrossRefGoogle Scholar
  19. P.G. Brown, J.D. Assink, L. Astiz, R. Blaauw, M.B. Boslough, J. Borovička, N. Brachet, D. Brown, M. Campbell-Brown, L. Ceranna et al., A 500-kiloton airburst over Chelyabinsk and an enhanced hazard from small impactors. Nature 503, 238–241 (2013) ADSCrossRefGoogle Scholar
  20. K.J. Burleigh, H.J. Melosh, L.L. Tornabene, B. Ivanov, A.S. McEwen, I.J. Daubar, Impact airblast triggers dust avalanches on Mars. Icarus 217, 194–201 (2012) ADSCrossRefGoogle Scholar
  21. H. Chenet, P. Lognonné, M.A. Wieczorek, H. Mizutani, Lateral variations of lunar crustal thickness from the Apollo seismic data set. Earth Planet. Sci. Lett. 243, 1–14 (2006).  https://doi.org/10.1016/j.epsl.2005.12.017 ADSCrossRefGoogle Scholar
  22. P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Sci. Rev. 110, 85–130 (2004) ADSCrossRefGoogle Scholar
  23. P.R. Christensen, E. Engle, S. Anwar, S. Dickenshied, D. Noss, N. Gorelick, M. Weiss-Malik, JMARS—a planetary GIS, in American Geophysical Union Fall Meeting, IN22A-06 (2009) Google Scholar
  24. C.F. Chyba, P.J. Thomas, K.J. Zahnle, The 1908 tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361(6407), 40–44 (1993) ADSCrossRefGoogle Scholar
  25. É. Clévédé, P. Lognonné, 85.16 higher order perturbation theory: 3D synthetic seismogram package. Int. Geophys. 81, 1639 (2003).  https://doi.org/10.1016/S0074-6142(03)80295-4 CrossRefGoogle Scholar
  26. Clinton et al., Marsquake Service—building a Martian seismicity catalogue for InSight. Space Sci. Rev. (2018, this issue) Google Scholar
  27. G.S. Collins, H.J. Melosh, R.A. Marcus, Earth impact effects program: a web-based computer program for calculating the regional environmental consequences of a meteoroid impact on Earth. Meteorit. Planet. Sci. 40(6), 817–840 (2005) ADSCrossRefGoogle Scholar
  28. A.M. Dainty, M.N. Toksz, K.R. Anderson, P.J. Pines, Y. Nakamura, G. Latham, Seismic scattering and shallow structure of the Moon in Oceanus Procellarum. Moon 9, 1l–29 (1974) ADSCrossRefGoogle Scholar
  29. I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current Martian cratering rate. Icarus 225, 506–516 (2013).  https://doi.org/10.1016/j.icarus.2013.04.009 ADSCrossRefGoogle Scholar
  30. I.J. Daubar, C. Atwood-Stone, S. Byrne, A.S. McEwen, P.S. Russell, The morphology of small fresh craters on Mars and the Moon. J. Geophys. Res., Planets 119, 2620–2639 (2014).  https://doi.org/10.1002/2014JE004671 ADSCrossRefGoogle Scholar
  31. I.J. Daubar, M.P. Golombek, A.S. McEwen, S. Byrne, M.A. Kreslavsky, N.C. Schmerr, M.E. Banks, Measurement of the current Martian cratering size frequency distribution, predictions for and expected improvements from InSight, in Lunar and Planetary Science Conference Abstracts (2015), abstract 2468 Google Scholar
  32. I.J. Daubar, C.M. Dundas, S. Byrne, P.E. Geissler, G.D. Bart, A.S. McEwen, M. Chojnacki, Changes in blast zone Albedo patterns around new Martian impact craters. Icarus 267, 86–105 (2016).  https://doi.org/10.1016/j.icarus.2015.11.032 ADSCrossRefGoogle Scholar
  33. I.J. Daubar, M.E. Banks, N.C. Schmerr, M.P. Golombek, Recently Formed Crater Clusters on Mars (2018, in press) Google Scholar
  34. D.M. Davis, Meteoroid impacts as seismic sources on. Mars 105, 469–478 (1993) Google Scholar
  35. P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, P. Lognonné, M. Golombek, E. De Laure, K. Hurst, J.-C. Dupla, S. Kedar, Y.J. Cui, B. Banerdt, An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site. Space Sci. Rev. 211, 191–213 (2017).  https://doi.org/10.1007/s11214-017-0339-7 ADSCrossRefGoogle Scholar
  36. A. Domokos, J.F. Bell III., P. Brown, M.T. Lemmon, R. Suggs, J. Vaubaillon, W. Cook, Measurement of the meteoroid flux at Mars. Icarus 191, 141–150 (2007).  https://doi.org/10.1016/j.icarus.2007.04.017 ADSCrossRefGoogle Scholar
  37. G. Dreibus, H. Wänke, Mars: a volatile rich planet. Meteoritics 20, 367–382 (1985) ADSGoogle Scholar
  38. M. Drilleau, E. Beucler, A. Mocquet, O. Verhoeven, G. Moebs, G. Burgos, J.P. Montagner, P. Vacher, A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves. Geophys. J. Int. 195, 1165–1183 (2013) ADSCrossRefGoogle Scholar
  39. W.N. Edwards, D.W. Eaton, P.G. Brown, Seismic observations of meteors: coupling theory and observations. Rev. Geophys. 46, 2007RG000253 (2008) CrossRefGoogle Scholar
  40. C.S. Edwards, K.J. Nowicki, P.R. Christensen, J. Hill, N. Gorelick, K. Murray, Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J. Geophys. Res. 116, E10008 (2011).  https://doi.org/10.1029/2010JE003755 ADSCrossRefGoogle Scholar
  41. W. Friederich, J. Dalkolmo, Complete synthetic seismograms for a spherically symmetric Earth by a numerical computation of the Green’s function in the frequency domain. Geophys. J. Int. 122, 537–550 (1995).  https://doi.org/10.1111/j.1365-246X.1995.tb07012.x ADSCrossRefGoogle Scholar
  42. J. Gagnepain-Beyneix, P. Lognonné, H. Chenet, D. Lombardi, T. Spohn, A seismic model of the lunar mantle and constraints on temperature and mineralogy. Phys. Earth Planet. Inter. 159(3–4), 140–166 (2006).  https://doi.org/10.1016/j.pepi.2006.05.009 ADSCrossRefGoogle Scholar
  43. R.F. Garcia, J. Gagnepain-Beyneix, S. Chevrot, P. Lognonné, Very preliminary reference Moon model. Phys. Earth Planet. Inter. 188, 96–113 (2011).  https://doi.org/10.1016/j.pepi.2011.06.015 ADSCrossRefGoogle Scholar
  44. R.F. Garcia, Q. Brissaud, L. Rolland, R. Martin, D. Komatitsch, A. Spiga, P. Lognonné, W.B. Banerdt, Finite-difference modeling of acoustic and gravity wave propagation in Mars atmosphere: application to infrasounds emitted by meteor impacts. Space Sci. Rev. 211(1–4), 547–570 (2017).  https://doi.org/10.1007/s11214-016-0324-6 ADSCrossRefGoogle Scholar
  45. J.R. Geller, T. Ohminato, Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the direct solution method. Geophys. J. Int. 116(2), 421–446 (1994) ADSCrossRefGoogle Scholar
  46. R.J. Geller, N. Takeuchi, A new method for computing highly accurate DSM synthetic seismograms. Geophys. J. Int. 123, 449–470 (1995) ADSCrossRefGoogle Scholar
  47. F. Gilbert, A.M. Dziewonski, An application of normal mode theory to the retrieval of structural parameters and source mechanism from seismic spectra. Philos. Trans. R. Soc. A 278, 1280 (1975).  https://doi.org/10.1098/rsta.1975.0025 CrossRefGoogle Scholar
  48. M.P. Golombek, A revision of Mars seismicity from surface faulting, in Lunar Planet. Sci. Conf. XXXIII (2002), abstract 1244 Google Scholar
  49. M.P. Golombek, W.B. Banerdt, K.L. Tanaka, D.M. Tralli, A prediction of Mars seismicity from surface faulting. Science 258, 979–981 (1992) ADSCrossRefGoogle Scholar
  50. M.P. Golombek et al., Assessment of Mars Exploration Rover landing site predictions. Nature 436, 44–48 (2005).  https://doi.org/10.1038/nature03600 ADSCrossRefGoogle Scholar
  51. M.P. Golombek, A.F.C. Haldemann, R.A. Simpson, R.L. Fergason, N.E. Putzig, R.E. Arvidson, J.F. Bell III., M.T. Mellon, Martian surface properties from joint analysis of orbital, Earth-based, and surface observations, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III. (Cambridge University Press, Cambridge, 2008), pp. 468–497. Chap. 21 CrossRefGoogle Scholar
  52. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017).  https://doi.org/10.1007/s11214-016-0321-9 ADSCrossRefGoogle Scholar
  53. M.P. Golombek et al., Geology and physical properties investigations by the InSight lander. Space Sci. Rev. 214(5), 1–52 (2018).  https://doi.org/10.1007/s11214-018-0512-7 ADSCrossRefGoogle Scholar
  54. T. Gudkova, P. Lognonné, J. Gagnepain-Beyneix, Large impacts detected by the Apollo seismometers: impactor mass and source cutoff frequency estimations. Icarus 211, 1049–1065 (2011) ADSCrossRefGoogle Scholar
  55. T.V. Gudkova, P. Lognonné, K. Miljković, J. Gagnepain-Beyneix, Impact cutoff frequency—momentum scaling law inverted from Apollo seismic data. Earth Planet. Sci. Lett. 427, 57–65 (2015).  https://doi.org/10.1016/j.epsl.2015.06.037 ADSCrossRefGoogle Scholar
  56. N. Güldemeister, K. Wünnemann, Quantitative analysis of impact-induced seismic signals by numerical modeling. Icarus 296, 15–27 (2017) ADSCrossRefGoogle Scholar
  57. K. Gwinner et al., The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and its satellites. Planet. Space Sci. (2016).  https://doi.org/10.1016/j.pss.2016.02.014 CrossRefGoogle Scholar
  58. W.K. Hartmann, Martian cratering. Icarus 5(1–6), 565–576 (1966).  https://doi.org/10.1016/0019-1035(66)90071-6 ADSCrossRefGoogle Scholar
  59. W.K. Hartmann, Relative crater production rates on planets. Icarus 31(2), 260–276 (1977) ADSCrossRefGoogle Scholar
  60. W.K. Hartmann, Martian cratering 8: isochron refinement and the chronology of Mars. Icarus 174, 294–320 (2005) ADSCrossRefGoogle Scholar
  61. W.K. Hartmann, I.J. Daubar, Martian cratering 11. Utilizing decameter scale crater populations to study Martian history. Meteorit. Planet. Sci. 52, 493–510 (2017).  https://doi.org/10.1111/maps.12807 ADSCrossRefGoogle Scholar
  62. W.K. Hartmann, I.J. Daubar, O.P. Popova, E. Joseph, Martian cratering 12. Utilizing primary crater clusters to study crater populations and meteoroid properties. Meteorit. Planet. Sci. (2017, in press).  https://doi.org/10.1111/maps.13042
  63. N.A. Haskell, Analytic approximation for the elastic radiation from a contained underground explosion. J. Geophys. Res. 72, 2583–2587 (1967).  https://doi.org/10.1029/JZ072i010p02583 ADSCrossRefGoogle Scholar
  64. M.A.H. Hedlin, B.W. Stump, D.C. Pearson, X. Yang, Identification of mining blasts at mid- to far-regional distances using low frequency seismic signals, in Monitoring the Comprehensive Nuclear-Test-Ban Treaty: Seismic Event Discrimination and Identification. Pageoph Topical Volumes, ed. by W.R. Walter, H.E. Hartse (Birkhäuser, Basel, 2002) Google Scholar
  65. D.C. Helmberger, D.M. Hadley, Seismic source functions and attenuation from local and teleseismic observations of the NTS events Jorum and Handley. Bull. Seismol. Soc. Am. 71(1), 51–67 (1981) Google Scholar
  66. R.B. Herrmann, Computer programs in seismology: an evolving tool for instruction and research. Seismol. Res. Lett. 84, 1081–1088 (2013).  https://doi.org/10.1785/0220110096 CrossRefGoogle Scholar
  67. J.G. Hills, M.P. Goda, The fragmentation of small asteroids in the atmosphere. Astron. J. 105, 1114–1144 (1993) ADSCrossRefGoogle Scholar
  68. K.A. Holsapple, The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21, 333–373 (1993).  https://doi.org/10.1146/annurev.ea.21.050193.002001 ADSCrossRefGoogle Scholar
  69. K. Holsapple, K.R. Housen, A crater and its ejecta: an interpretation of deep impact. Icarus 187, 345–356 (2007) ADSCrossRefGoogle Scholar
  70. K.A. Holsapple, R.M. Schmidt, Point source solutions and coupling parameters in cratering mechanics. J. Geophys. Res. 92, 6350–6376 (1987).  https://doi.org/10.1029/JB092iB07p06350 ADSCrossRefGoogle Scholar
  71. B. Ivanov, Mars/Moon cratering rate ratio estimates. Space Sci. Rev. 96, 87–104 (2001).  https://doi.org/10.1023/A:1011941121102 ADSCrossRefGoogle Scholar
  72. B.A. Ivanov, N.A. Artemieva, Numerical modeling of the formation of large impact craters, in Catastrophic events and mass extinctions: Impacts and beyond, ed. by C. Koeberl, K.G. MacLeod. Geological Society of America Special Paper, vol. 356 (2002), pp. 619–630 CrossRefGoogle Scholar
  73. B. Ivanov, D. Deniem, G. Neukum, Implementation of dynamic strength models into 2d hydrocodes: applications for atmospheric breakup and impact cratering. Int. J. Impact Eng. 20(1), 411–430 (1997) CrossRefGoogle Scholar
  74. B.A. Ivanov, H.J. Melosh, A.S. McEwen, New small impact craters in high resolution HiRISE images—III, in Lunar and Planetary Science Conference Abstracts (2010), abstract 2020 Google Scholar
  75. R. Jaumann, G. Neukum, T. Behnke, T.C. Duxbury, E. Eichentopf, H. Hoffmann, A. Hoffmeister, U. Köhler, K-D. Matz, T.B. McCord, V. Mertens, J. Obserst, R. Pischel, D. Reiss, E. Ress, T. Roatsch, P. Saiger, F. Scholten, G. Schwartz, K. Stephan, M. Wählisch (the HRSC Co-Investigation Team), The High-Resolution Stereo Camera (HRSC) experiment on the Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55, 928–952 (2007) ADSCrossRefGoogle Scholar
  76. Y. JeongAhn, R. Malhotra, The current impact flux on Mars and its seasonal variation. Icarus 262, 140–153 (2015) ADSCrossRefGoogle Scholar
  77. K. Kawai, N. Takeuchi, R.J. Geller, Geoph. J. Int. 164, 411 (2006) ADSCrossRefGoogle Scholar
  78. T. Kawamura, P. Lognonné, Y. Nishikawa, S. Tanaka, Evaluation of deep moonquake source parameters: implication for fault characteristics and thermal state. J. Geophys. Res., Planets 122, 1487–1504 (2017).  https://doi.org/10.1002/2016JE005147 ADSCrossRefGoogle Scholar
  79. S. Kedar, J. Andrade, W. Bruce Banerdt, P. Delage, M.P. Golombek, M. Grott, T. Hudson et al., Analysis of regolith properties using seismic signals generated by InSight’s HP3 penetrator. Space Sci. Rev. 211(1–4), 315–337 (2017).  https://doi.org/10.1007/s11214-017-0391-3 ADSCrossRefGoogle Scholar
  80. A. Khan, K. Mosegaard, An inquiry into the lunar interior: a nonlinear inversion of the Apollo lunar seismic data. J. Geophys. Res. 107(E6), 5036 (2002).  https://doi.org/10.1029/2001JE001658 CrossRefGoogle Scholar
  81. A. Khan, J.A.D. Connolly, A. Pommier, J. Noir, Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution. J. Geophys. Res., Planets 119(10), 2197–2221 (2014).  https://doi.org/10.1002/2014JE004661 ADSCrossRefGoogle Scholar
  82. A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch, D. Mimoun, M. Panning, M. Knapmeyer, W.B. Banerdt, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016).  https://doi.org/10.1016/j.pepi.2016.05.017 ADSCrossRefGoogle Scholar
  83. R.L. Kirk, E. Howington-Kraus, B. Redding, D. Galuszka, T.M. Hare, B.A. Archinal, L.A. Soderblom, J.M. Barrett, High-resolution topomapping of candidate MER landing sites with Mars Orbiter Camera narrow-angle images. J. Geophys. Res. 108(E12), 29 (2003).  https://doi.org/10.1029/2003JE00213 CrossRefGoogle Scholar
  84. M. Knapmeyer, J. Oberst, E. Hauber, M. Wählisch, C. Deuchler, R. Wagner, Working models for spatial distribution and level of Mars’ seismicity. J. Geophys. Res. 111, E11006 (2006).  https://doi.org/10.1029/2006JE002708 ADSCrossRefGoogle Scholar
  85. B. Knapmeyer-Endrun, M.P. Golombek, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia, Mars. Space Sci. Rev. 211, 339–382 (2017).  https://doi.org/10.1007/s11214-016-0300-1 ADSCrossRefGoogle Scholar
  86. D. Komatitsch, J.P. Vilotte, The spectral element method: an efficient tool to simulate the seismic response of 2D and 3D geological structures. Bull. Seismol. Soc. Am. 88(2), 368–392 (1998) zbMATHGoogle Scholar
  87. L.D. Landau, E.M. Lifshitz, Electrodynamic of Solids (Science, Moscow, 1982) Google Scholar
  88. G. Latham, M. Ewing, J. Dorman, F. Press, N. Toksoz, G. Sutton, R. Meissner, F. Duennebi, Y. Nakamura, R. Kovach, M. Yates, Seismic data from man-made impacts on the Moon. Science 170, 620–626 (1970a) ADSCrossRefGoogle Scholar
  89. G.V. Latham, W.G. McDonald, H.J. Moore, Missile impacts as sources of seismic energy on the Moon. Science 168, 242–245 (1970b) ADSCrossRefGoogle Scholar
  90. M. Le Feuvre, M.A. Wieczorek, Nonuniform cratering of the Moon and a revised crater chronology of inner Solar System. Icarus 214, 1–20 (2011) ADSCrossRefGoogle Scholar
  91. A. Le Pichon, K. Antier, Y. Cansi, B. Hernandez, E. Minaya, B. Burgoa, D. Drob, L.G. Evers, J. Vaubaillon, Evidence for a meteoritic origin of the September 15, 2007, Carancas crater. Meteorit. Planet. Sci. 43, 1797–1809 (2008) ADSCrossRefGoogle Scholar
  92. P. Lognonné et al., SEIS: The Seismic Experiment for Internal Structure of InSight. Space Sci. Rev. (2018, this issue) Google Scholar
  93. P. Lognonné, E. Clévédé, 10 normal modes of the Earth and planets. Int. Geophys. 81, 125 (2002).  https://doi.org/10.1016/S0074-6142(02)80213-3 CrossRefGoogle Scholar
  94. P. Lognonné, C. Johnson, Planetary seismology, in Treatise on Geophysics, vol. 10 (2007), pp. 69–122.  https://doi.org/10.1016/B978-044452748-6.00154-1 CrossRefGoogle Scholar
  95. P. Lognonné, C.L. Johnson, Planetary seismology, in Treatise on Geophysics, ed. by G. Schubert 2nd edn. (Elsevier, Oxford, 2015), pp. 65–120.  https://doi.org/10.1016/B978-0-444-53802-4.00167-6. ISBN 978-0-444-53803-1 CrossRefGoogle Scholar
  96. P. Lognonné, T. Kawamura, Impact seismology on terrestrial and giant planets, in Extraterrestrial Seismology, ed. by V. Tong, R. García (Cambridge University Press, Cambridge, 2015), pp. 250–263.  https://doi.org/10.1017/CBO9781107300668.021 CrossRefGoogle Scholar
  97. P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14(3), 239–302 (1993).  https://doi.org/10.1007/BF00690946 ADSCrossRefGoogle Scholar
  98. P. Lognonné, B. Mosser, F.A. Dahlen, Excitation of the Jovian seismic waves by the Shoemaker-Levy 9 cometary impact. Icarus 110, 186–195 (1994).  https://doi.org/10.1006/icar.1994.1115 ADSCrossRefGoogle Scholar
  99. P. Lognonné, J. Gagnepain-Beyneix, H. Chenet, A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon. Earth Planet. Sci. Lett. 211, 27–44 (2003) ADSCrossRefGoogle Scholar
  100. P. Lognonné, M. Le Feuvre, C.L. Johnson, R.C. Weber, Moon meteoritic seismic hum: steady state prediction. J. Geophys. Res. 114, E12003 (2009) ADSCrossRefGoogle Scholar
  101. P. Lognonné, F. Karakostas, L. Rolland, Y. Nishikawa, Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: from Earth observation to Mars and Venus perspectives. J. Acoust. Soc. Am. 140(2), 1447–1468 (2016) ADSCrossRefGoogle Scholar
  102. R.D. Lorenz, M. Panning, Empirical recurrence rates for ground motion signals on planetary surfaces. Icarus 303, 273–279 (2017).  https://doi.org/10.1016/j.icarus.2017.10.008 ADSCrossRefGoogle Scholar
  103. A. Lucas, C. Narteau, S. Rodriguez, O. Rozier, Y. Callot, A. Garcia, S. Courrech Du Pont, Sediment flux from the morphodynamics of elongating linear dunes. Geology (2015).  https://doi.org/10.1130/G37101.1 CrossRefGoogle Scholar
  104. Maki et al., The Mars Insight Lander Cameras. Space Sci. Rev. (2018, this issue) Google Scholar
  105. J.N. Maki, J.F. Bell, K.E. Herkenhoff, S.W. Squyres, A. Kiely, M. Klimesh, M. Schwochert, T. Litwin, R. Willson, A. Johnson, M. Maimone, E. Baumgartner, A. Collins, M. Wadsworth, S.T. Elliot, A. Dingizian, D. Brown, E.C. Hagerott, L. Scherr, R. Deen, D. Alexander, J. Lorre, The Mars exploration rover engineering cameras. J. Geophys. Res. 108(E12), 8071 (2003).  https://doi.org/10.1029/2003JE002077 CrossRefGoogle Scholar
  106. J. Maki, D. Thiessen, A. Pourangi, P. Kobzeff, T. Litwin, L. Scherr, S. Elliott, A. Dingizian, M. Maimone, The Mars science laboratory engineering cameras. Space Sci. Rev. 170, 77–93 (2012).  https://doi.org/10.1007/s11214-012-9882-4 ADSCrossRefGoogle Scholar
  107. M.C. Malin, K.S. Edgett, L.V. Posiolova, S.M. McColley, E.Z.N. Dobrea, Present-day impact cratering rate and contemporary gully activity on Mars. Science 314, 1573–1577 (2006) ADSCrossRefGoogle Scholar
  108. M.C. Malin et al., Context camera investigation on board the Mars reconnaissance orbiter. J. Geophys. Res. 112, E05S04 (2007).  https://doi.org/10.1029/2006JE002808 CrossRefGoogle Scholar
  109. M.C. Malin, K.S. Edgett, B.A. Cantor, M.A. Caplinger, G.E. Danielson, E.H. Jensen, K.D. Supulver, An overview of the 1985–2006 Mars Orbiter Camera science investigation. Mars J. 5, 1–60 (2010).  https://doi.org/10.1555/mars.2010.0001 ADSCrossRefGoogle Scholar
  110. K. Matsumoto, R. Yamada, F. Kikuchi, S. Kamata, Y. Ishihara, T. Iwata, H. Hanada, S. Sasaki, Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR. Geophys. Res. Lett. 42, 7351–7358 (2015).  https://doi.org/10.1002/2015GL065335 ADSCrossRefGoogle Scholar
  111. S. May, Meteor impact detection on Mars with change detection framework, IEEE IGARSS (2018, submitted) Google Scholar
  112. A.S. McEwen et al., Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007).  https://doi.org/10.1029/2005JE002605 CrossRefGoogle Scholar
  113. A.S. McEwen, E.M. Eliason, V.C. Gulick, Y. Spinoza, R.A. Beyer (HiRISE Team), HiRISE: The People’s Camera. AGU Fall Meeting Abstracts (2010), abstract #ED23A-0712 Google Scholar
  114. A. McGarr, G.V. Latham, D.E. Gault, Meteoroid impacts as sources of seismicity on the Moon. J. Geophys. Res. 74, 5981–5994 (1969) ADSCrossRefGoogle Scholar
  115. H.J. Melosh, Impact Cratering: A Geological Process, Oxford Monographs on Geology and Geophysics (Oxford University Press, New York, 1989) Google Scholar
  116. K. Miljković, G.S. Collins, S. Mannick, P.A. Bland, Morphology and population of binary asteroid impact craters. Earth Planet. Sci. Lett. 363, 121–132 (2013) ADSCrossRefGoogle Scholar
  117. K. Miljkovic, E.K. Sansom, I.J. Daubar, F. Karakostas, P. Lognonné, Fate of meteoroid impacts on Mars detectable by the InSight mission, in 47th Lunar Planet. Sci. Conference. LPI Contribution, vol. No (2016), p. 1768 Google Scholar
  118. D. Mimoun, N. Murdoch, P. Lognonné, K. Hurst, W.T. Pike, J. Hurley, T. Nébut, W.B. Banerdt, The noise model of the SEIS seismometer of the InSight mission to Mars. Space Sci. Rev. 211, 383–428 (2017).  https://doi.org/10.1007/s11214-017-0409-x ADSCrossRefGoogle Scholar
  119. Morgan et al., A pre-landing assessment of regolith properties at the InSight landing site. Space Sci. Rev. 214(6), 1–47 (2018).  https://doi.org/10.1007/s11214-018-0537-y ADSCrossRefGoogle Scholar
  120. S.L. Murchie, R.E. Arvidson, P. Bedini, K. Beisser, J.P. Bibring, J. Bishop, J. Boldt et al., Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res., Planets 112(5), 1–57 (2007).  https://doi.org/10.1029/2006JE002682 CrossRefGoogle Scholar
  121. N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, D. Banfield, W.B. Banerdt, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. 211(1–4), 429–455 (2017).  https://doi.org/10.1007/s11214-016-0311-y ADSCrossRefGoogle Scholar
  122. Y. Nakamura, New identification of deep moonquakes in the Apollo lunar seismic data. Phys. Earth Planet. Inter. 139(3–4), 197–205 (2003).  https://doi.org/10.1016/j.pepi.2003.07.017 ADSCrossRefGoogle Scholar
  123. Y. Nakamura, Timing problem with the lunar module impact data as recorded by the LSPE and corrected near-surface structure at the Apollo 17 landing site. J. Geophys. Res., Planets 116(12), 3–5 (2011).  https://doi.org/10.1029/2011JE003972 CrossRefGoogle Scholar
  124. Y. Nakamura, D.L. Anderson, Martian wind activity detected by a seismometer at Viking lander 2 site. Geophys. Res. Lett. 6, 499–502 (1979).  https://doi.org/10.1029/GL006i006p00499 ADSCrossRefGoogle Scholar
  125. Y. Nakamura, D.R. Lammlein, G.V. Latham et al., New seismic data on the state of the deep lunar interior. Science 181, 49–51 (1973).  https://doi.org/10.1126/science.181.4094.49 ADSCrossRefGoogle Scholar
  126. Y. Nakamura, G.V. Latham, H.J. Dorman, F.K. Duennebier, Seismic structure of the Moon: a summary of current status, in Proc. Lunar Sci. Conf., vol. 7 (1976), pp. 3113–3121 Google Scholar
  127. L. Neslusan, J. Svoren, V. Porubcan, A computer program for calculation of a theoretical meteor-stream radiant. Astron. Astrophys. 331, 411–413 (1998) ADSGoogle Scholar
  128. G. Neukum, B. Ivanov, Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data, in Hazards due to Comets and Asteroids, ed. by T. Gehrels, M.S. Matthews, A. Schumann (University of Arizona Press, Tucson, AZ, 1994), pp. 359–416 Google Scholar
  129. G. Neukum, R. Jaumann (the HRSC Co-Investigator Team HRSC), The high resolution stereo camera of Mars Express. ESA special publications SP–1240 (2004) Google Scholar
  130. G. Neukum, D.U. Wise, Mars: a standard crater curve and possible new time scale. Science 194(4272), 1381–1387 (1976) ADSCrossRefGoogle Scholar
  131. T. Nissen-Meyer, M. van Driel, S.C. Stähler, K. Hosseini, S. Hempel, L. Auer, A. Colombi, A. Fournier, AxiSEM: broadband 3-D seismic wavefields in axisymmetric media. Solid Earth 5, 425–445 (2014).  https://doi.org/10.5194/se-5-425-2014 ADSCrossRefGoogle Scholar
  132. J. Oberst, Y. Nakamura, A new estimate of the meteoroid impact flux on the Moon, in Proceedings of the Lunar Science Conference XX (1989), pp. 802–803 Google Scholar
  133. J. Oberst, A. Christou, R. Suggs, D. Moser, I.J. Daubar, A.S. McEwen, M. Burchell, T. Kawamura, H. Hiesinger, K. Wünnemann, R. Wagner, M.S. Robinson, The present-day flux of large meteoroids on the lunar surface—a synthesis of models and observational techniques. Planet. Space Sci. 74, 179–193 (2012) ADSCrossRefGoogle Scholar
  134. M.P. Panning, E. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W.B. Banerdt, Verifying single-station seismic approaches using Earth-based data: preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015).  https://doi.org/10.1016/j.icarus.2014.10.035 ADSCrossRefGoogle Scholar
  135. M. Panning, P. Lognonné, W.B. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.-F. Blanchette-Guertin, E. Bozdag, M. Drilleau, T. Gudkova, S. Hempel, A. Khan, V. Lekic, N. Murdoch, A.-C. Plesa, A. Rivoldini, N. Schmerr, Y. Ruan, O. Verhoeven, C. Gao, U. Christensen, J. Clinton, V. Dehant, D. Giardini, D. Mioun, W.T. Pike, S. Smrekar, M. Wieckzorek, M. Knapmeyer, J. Wookey, Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. 221, 611–650 (2017) ADSCrossRefGoogle Scholar
  136. Q.R. Passey, H. Melosh, Effects of atmospheric breakup on crater field formation. Icarus 42(2), 211–233 (1980) ADSCrossRefGoogle Scholar
  137. H.J. Patton, W.R. Walter, Regional moment—magnitude relations for earthquakes and explosions. Geophys. Res. Lett. 20, 277–280 (1993) ADSCrossRefGoogle Scholar
  138. J. Peterson, Observations and modeling of seismic background noise. U.S. Geol. Surv. Tech. Rept. 93-322, 1–95 (1993) Google Scholar
  139. N.A. Petersson et al. Lawrence Livermore National Laboratory Technical Report LLNL-TR-422928 (2010) Google Scholar
  140. A.C. Plesa, M. Grott, N. Tosi, D. Breuer, T. Spohn, M. Wieczorek, How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res. (2016).  https://doi.org/10.1002/2016JE005126 CrossRefGoogle Scholar
  141. A.C. Plesa, M. Knapmeyer, M.P. Golombek, D. Breuer, M. Grott, T. Kawamura, P. Lognonné, N. Tosi, R.C. Weber, Present-day Mars’ seismicity predicted from 3-D thermal evolution models of interior dynamics. Geophys. Res. Lett. 45(6), 2580–2589 (2018).  https://doi.org/10.1002/2017GL076124 ADSCrossRefGoogle Scholar
  142. J.B. Plescia, M.S.S. Robinson, R. Wagner, R. Baldridge, Ranger and Apollo S-IVB spacecraft impact craters. Planet. Space Sci. 124 (May). Elsevier, 15–35 (2016).  https://doi.org/10.1016/j.pss.2016.01.002 ADSCrossRefGoogle Scholar
  143. P.W. Pomeroy, Long period seismic waves from large, near-surface nuclear explosions. Bull. Seismol. Soc. Am. 53, 109–149 (1963) Google Scholar
  144. O.P. Popova, I.V. Nemtchinov, W.K. Hartmann, Bolides in the present and past Martian atmosphere and effects on cratering processes. Meteorit. Planet. Sci. 38(6), 905–925 (2003).  https://doi.org/10.1111/j.1945-5100.2003.tb00287.x ADSCrossRefGoogle Scholar
  145. O. Popova, J. Borovička, W.K. Hartmann, P. Spurnỳ, E. Gnos, I. Nemtchinov, J.M. Trigo-Rodríguez, Very low strengths of interplanetary meteoroids and small asteroids. Meteorit. Planet. Sci. 46(10), 1525–1550 (2011) ADSCrossRefGoogle Scholar
  146. W.L. Quaide, V.R. Oberbeck, Thickness determinations of the lunar surface layer from lunar impact craters. J. Geophys. Res. 73, 5247–5270 (1968) ADSCrossRefGoogle Scholar
  147. P.J. Register, D.L. Mathias, L.F. Wheeler, Asteroid fragmentation approaches for modeling atmospheric energy deposition. Icarus 284, 157–166 (2017) ADSCrossRefGoogle Scholar
  148. J.E. Richardson, S. Kedar, An experimental investigation of the seismic signal produced by hypervelocity impacts, in Lunar and Planetary Science Conference 44 (2013), abstract 2863 Google Scholar
  149. J.E. Richardson, H.J. Melosh, R.J. Greenberg, D.P. O’Brien, The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus 179(2), 325–349 (2005).  https://doi.org/10.1016/j.icarus.2005.07.005 ADSCrossRefGoogle Scholar
  150. A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraint on the interior structure and composition of Mars. Icarus 213(2), 451–472 (2011).  https://doi.org/10.1016/j.icarus.2011.03.024 ADSCrossRefGoogle Scholar
  151. S.W. Ruff, P.R. Christensen, Bright and dark regions on Mars: particle size and mineralogical characteristics based on thermal emission spectrometer data. J. Geophys. Res., Planets 107, 1–22 (2002).  https://doi.org/10.1029/2001JE001580 CrossRefGoogle Scholar
  152. N.C. Schmerr, M.E. Banks, I.J. Daubar, The seismic signatures of impact events on Mars: implications for the InSight lander, in LPSC 47 (2016), abstract 1320 Google Scholar
  153. R.M. Schmidt, K.R. Housen, Some recent advances in the scaling of impact and explosion cratering. Int. J. Impact Eng. 5, 543–560 (1987).  https://doi.org/10.1016/0734-743X(87)90069-8 ADSCrossRefGoogle Scholar
  154. F. Selsis, M.T. Lemmon, J. Vaubaillon, J.F. Bell III., Extraterrestrial meteors: a Martian meteor and its parent comet. Nature 435, 581 (2005).  https://doi.org/10.1038/435581a ADSCrossRefGoogle Scholar
  155. L.E. Senft, S.T. Stewart, Modeling impact cratering in layered surfaces. J. Geophys. Res. 112, E11002 (2007).  https://doi.org/10.1029/2007JE002894 ADSCrossRefGoogle Scholar
  156. D.E. Shean, O. Alexandrov, Z.M. Moratto, B.E. Smith, I.R. Joughin, C. Porter, P. Morin, An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. ISPRS J. Photogramm. Remote Sens. 116, 101 (2016) ADSCrossRefGoogle Scholar
  157. P. Shearer, Introduction to Seismology, 2nd edn. (Cambridge University Press, Cambridge, 2009). 412 pp. CrossRefGoogle Scholar
  158. N.I. Shishkin, Seismic efficiency of a contact explosion and a high-velocity impact. J. Appl. Mech. Tech. Phys. 48, 145–152 (2007).  https://doi.org/10.1007/s10808-007-0019-6 ADSCrossRefzbMATHGoogle Scholar
  159. Smrekar et al., Pre-mission InSights on the interior of Mars. Space Sci. Rev. (2018).  https://doi.org/10.1007/s11214-018-0563-9 CrossRefGoogle Scholar
  160. F. Sohl, T. Spohn, The interior structure of Mars: implications from SNC meteorites. J. Geophys. Res. 102, 1613–1636 (1997).  https://doi.org/10.1029/96JE03419 ADSCrossRefGoogle Scholar
  161. T. Spohn et al. HP3 Instrument Paper. Space Sci. Rev. (2018, this issue) Google Scholar
  162. J. Stevanović, N.A. Teanby, J. Wookey, N. Selby, I.J. Daubar, J. Vaubaillon, R. Garcia, Bolide airbursts as a seismic source for the 2018 Mars InSight mission. Space Sci. Rev. 211, 525–545 (2017) ADSCrossRefGoogle Scholar
  163. J. Sweeney, N.H. Warner, M.P. Golombek, R. Kirk, R.L. Fergason, A. Pivarunas, Crater Degradation and Surface Erosion Rates at the InSight Landing Site, Western Elysium Planitia, Mars (Expanded Abstract). 47th Lunar and Planetary Science, Abstract #1576, Lunar and Planetary (Institute, Houston, 2016) Google Scholar
  164. G. Tancredi, J. Ishitsuka, P.H. Schultz, R.S. Harris, P. Brown, D.O. ReVelle, K. Antier, A. Le Pichon, D. Rosales, E. Vidal, M.E. Varela, L. Sanchez, S. Benavente, J. Bojorquez, D. Cabezas, A. Dalmau, A meteorite crater on Earth formed on September 15, 2007: the Carancas hypervelocity impact. Meteorit. Planet. Sci. 44, 1967–1984 (2009) ADSCrossRefGoogle Scholar
  165. Teanby, Predicted detection rates of regional-scale meteorite impacts on Mars with the InSight short-period seismometer. Icarus 256, 49–62 (2015) ADSCrossRefGoogle Scholar
  166. N.A. Teanby, J. Wookey, Seismic detection of meteorite impacts on Mars. Phys. Earth Planet. Inter. 186, 70–80 (2011) ADSCrossRefGoogle Scholar
  167. N. Thomas, G. Cremonese, R. Ziethe, M. Gerber, M. Brändli, G. Bruno, J.J. Wray, The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev. 212(3–4), 1897–1944 (2017).  https://doi.org/10.1007/s11214-017-0421-1 ADSCrossRefGoogle Scholar
  168. M.N. Toksöz, F. Press, K. Anderson, A. Dainty, G. Latham, M. Ewing, F. Duennebier, Velocity structure and properties of the lunar crust. Moon 4(3–4), 490–504 (1972).  https://doi.org/10.1007/BF00562013 ADSCrossRefGoogle Scholar
  169. Vaubaillon, A confidence index for forecasting of meteor showers. Planet. Space Sci. 143, 78–82 (2017) ADSCrossRefGoogle Scholar
  170. J. Vaubaillon, F. Colas, L. Jorda, A new method to predict meteor showers. I. Description of the model. Astron. Astrophys. 439(2), 751–760 (2005) ADSCrossRefGoogle Scholar
  171. R.V. Wagner, D.M. Nelson, J.B. Plescia, M.S. Robinson, E.J. Speyerer, E. Mazarico, Coordinates of anthropogenic features on the Moon. Icarus 283, 92–103 (2017).  https://doi.org/10.1016/j.icarus.2016.05.011 ADSCrossRefGoogle Scholar
  172. J.D. Walker, Loading sources for seismological investigations of asteroids and comets. Int. J. Impact Eng. 29, 757–769 (2003) CrossRefGoogle Scholar
  173. N.H. Warner, M.P. Golombek, J. Sweeney, R. Fergason, R. Kirk, C. Schwartz, Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: implications for Hesperian-Amazonian terrains and the InSight lander mission. Space Sci. Rev. 211, 147–190 (2017).  https://doi.org/10.1007/s11214-017-0352-x ADSCrossRefGoogle Scholar
  174. W.A. Watters, L.M. Geiger, M. Fendrock, R. Gibson, Morphometry of small recent impact craters on Mars: size and terrain dependence, short-term modification. J. Geophys. Res., Planets 120, 226–254 (2015).  https://doi.org/10.1002/2014JE004630 ADSCrossRefGoogle Scholar
  175. G.C. Werth, R.F. Herbst, Comparison of amplitudes of seismic waves from nuclear explosions in four mediums. J. Geophys. Res. 68, 1463–1475 (1963).  https://doi.org/10.1029/JZ068i005p01463 ADSCrossRefGoogle Scholar
  176. L.F. Wheeler, P.J. Register, D.L. Mathias, A fragment-cloud model for asteroid breakup and atmospheric energy deposition. Icarus 295, 149–169 (2017) ADSCrossRefGoogle Scholar
  177. F.J.W. Whipple, The great Siberian meteor and the waves, seismic and aerial, which it produced. Q. J. R. Meteorol. Soc. 56, 287–304 (1930) Google Scholar
  178. E.A. Whitaker, in Artificial Lunar Impact Craters: Four New Identifications. NASA Special Publication, vol. 315 (1972), pp. 29–39 Google Scholar
  179. J.-P. Williams, Acoustic environment of the Martian surface. J. Geophys. Res., Planets 106(E3), 5033–5041 (2001) ADSCrossRefGoogle Scholar
  180. J.-P. Williams, A.V. Pathare, O. Aharonson, The production of small primary craters on Mars and the Moon. Icarus 235, 23–36 (2014) ADSCrossRefGoogle Scholar
  181. J.H. Woodhouse, The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun, in Seismological Algorithms, Computational Methods and Computer Programs, ed. by D.J. Doornbos (Academic Press, London, 1988), pp. 321–370 Google Scholar
  182. K. Wunnemann, D. Nowka, G.S. Collins, D. Elbeshausen, M. Bierhaus, Scaling of impact crater formation on planetary surfaces—insights from numerical modeling, in Proc. 11th Hypervelocity Impact Symposium, no. 120 (2011) Google Scholar
  183. M. Yasui, E. Matsumoto, M. Arakawa, Experimental study on impact-induced seismic wave propagation through granular materials. Icarus 260, 320–331 (2015) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Ingrid Daubar
    • 1
  • Philippe Lognonné
    • 2
  • Nicholas A. Teanby
    • 3
  • Katarina Miljkovic
    • 4
  • Jennifer Stevanović
    • 3
    • 5
  • Jeremie Vaubaillon
    • 6
  • Balthasar Kenda
    • 2
  • Taichi Kawamura
    • 2
    • 7
  • John Clinton
    • 8
  • Antoine Lucas
    • 2
  • Melanie Drilleau
    • 2
  • Charles Yana
    • 9
  • Gareth S. Collins
    • 10
  • Don Banfield
    • 11
  • Matthew Golombek
    • 1
  • Sharon Kedar
    • 1
  • Nicholas Schmerr
    • 12
  • Raphael Garcia
    • 13
  • Sebastien Rodriguez
    • 2
  • Tamara Gudkova
    • 14
  • Stephane May
    • 9
  • Maria Banks
    • 15
  • Justin Maki
    • 1
  • Eleanor Sansom
    • 4
  • Foivos Karakostas
    • 2
  • Mark Panning
    • 1
  • Nobuaki Fuji
    • 2
  • James Wookey
    • 3
  • Martin van Driel
    • 8
  • Mark Lemmon
    • 16
  • Veronique Ansan
    • 17
  • Maren Böse
    • 8
  • Simon Stähler
    • 8
  • Hiroo Kanamori
    • 18
  • James Richardson
    • 19
  • Suzanne Smrekar
    • 1
  • W. Bruce Banerdt
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Institut de Physique du Globe de Paris-Sorbone Paris CitéUniversité Paris Sorbonne, DiderotParisFrance
  3. 3.School of Earth SciencesUniversity of BristolBristolUK
  4. 4.School of Earth and Planetary ScienceCurtin UniversityPerthAustralia
  5. 5.Atomic Weapons EstablishmentAldermastonUK
  6. 6.IMCCEParisFrance
  7. 7.National Astronomical Observatory of JapanTokyoJapan
  8. 8.ETH ZurichZurichSwitzerland
  9. 9.Centre National d’Etudes SpatialesParisFrance
  10. 10.Dept. Earth Science & EngineeringImperial CollegeLondonUK
  11. 11.420 Space Sciences, Cornell Center for Astrophysics and Planetary ScienceCornell UniversityIthacaUSA
  12. 12.Department of GeologyUniversity of MarylandCollege ParkUSA
  13. 13.ISAE-SUPAEROToulouse UniversityToulouseFrance
  14. 14.Schmidt Institute of Physics of the Earth RASMoscowRussia
  15. 15.NASA Goddard Space Flight CenterGreenbeltUSA
  16. 16.Texas A&M Univ.College StationUSA
  17. 17.LPG Nantes, UMR6112CNRS-Université de NantesNantes cédex 3France
  18. 18.California Institute of TechnologyPasadenaUSA
  19. 19.Planetary Science InstituteTucsonUSA

Personalised recommendations