Space Science Reviews

, 214:118 | Cite as

Past, Present and Future of Active Radio Frequency Experiments in Space

  • A. V. StreltsovEmail author
  • J.-J. Berthelier
  • A. A. Chernyshov
  • V. L. Frolov
  • F. Honary
  • M. J. Kosch
  • R. P. McCoy
  • E. V. Mishin
  • M. T. Rietveld


Active ionospheric experiments using high-power, high-frequency transmitters, “heaters”, to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating-initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field.


Active experiments Ionospheric heating HAARP SURA Arecibo ULF wave Ionospheric feedback instability VLF waves Ionospheric irregularities Plasma instabilities Wave-particle interactions Artificial aurora EISCAT Ionosphere DEMETER Ionospheric resonator 



anomalous absorption


acoustic gravity wave


auroral kilometric radiation


artificial periodic irregularity


artificially stimulated emissions

BF layer

the region of scattering from the bottom side F region


broad upshifted maximum


broad upshifted structure


broad symmetrical structure


Canadian Advanced Digital Ionosonde


cosmic noise absorption


descending layer


downshifted maximum


Defense Meteorological Satellite Program


downshifted peak


Demonstration and Science Experiments satellite


descending virtual height


diagnostic wave


European Incoherent SCATter Scientific Association


electromagnetic ion cyclotron wave


effective radiated power


field-aligned current


field-aligned irregularity


High Frequency Active Auroral Research Program


HIgh Power Auroral Stimulation observatory


Ion Acoustic Parametric Decay instability


ionospheric Alfvén resonator


intermediate downshifted maximum


ionosphere disturbed volume


ionospheric feedback instability


Ionospheric Research Instrument


incoherent scatter radar


lower hybrid


large-scale irregularity


Langmuir turbulence


modulational instability


modular UHF ionospheric radar (at HAARP)


medium-scale irregularity


magnetic zenith


narrow continuum


naturally enhanced ion acoustic line


over-the-horizon radar


oscillating two-stream instability


parametric decay instability


Poker Flat incoherent scatter radar


plasma line


polar mesospheric summer echoes


polar mesospheric winter echoes


ponderomotive parametric instability


pump wave


quasi-periodic oscillation


subauroral polarization stream


subauroral ion drift


stimulated electromagnetic emission


strong Langmuir turbulence


striction self-action


small-scale irregularity


supra-small-scale irregularities


super strong (Langmuir) turbulence


total electron content


travelling ionospheric disturbance


thermal parametric instability


thermal self-focusing instability


upper hybrid


upper hybrid resonance


upshifted wideband emission


VLF and Particle Mapper satellite


wide-altitude extent ion line enhancements


weak turbulence



We acknowledge fruitful discussion of active experiments and heating facilities with H.C. Carlson, M. Cohen, M. Golkowski, S. Grach, M.M. Mogilevsky, E. Nossa, K.D. Papadopoulos, T. Pedersen, B. Watkins.

This work was made possible by the ISSI funding of the international scince team “Past, Present and Future of Active Experiments in Space” and supported in part through CNES grant DEMETER 2874949; US National Academy of Sciences; Air Force Office of Scientific Research; Russian Education Ministry project 3.1844.2017.


  1. E.M. Allen, G.D. Thome, P.B. Rao, HF phased array observations of heater-induced spread-F. Radio Sci. 9(11), 905–916 (1974) ADSGoogle Scholar
  2. E.S. Andreeva, V.L. Frolov, V.E. Kunitsyn, A.S. Kryukovskii, D.S. Lukin, M.O. Nazarenko, A.M. Padokhin, Radiotomography and HF ray tracing of the artificially disturbed ionosphere above the SURA heating facility. Radio Sci. 51(6), 638–644 (2016). ADSCrossRefGoogle Scholar
  3. M. Ashrafi, M.J. Kosch, F. Honary, Heater-Induced altitude descent of the EISCAT UHF ion line enhancements: observations and modelling. Adv. Space Res. 38(11), 2645–2652 (2006) ADSGoogle Scholar
  4. M. Ashrafi, M.J. Kosch, K. Kaila, B. Isham, Spatiotemporal evolution of radio wave pump-induced ionospheric phenomena near the fourth electron gyroharmonic. J. Geophys. Res. 112, A05314 (2007). ADSCrossRefGoogle Scholar
  5. G. Atkinson, Auroral arcs: result of the interaction of a dynamic magnetosphere with the ionosphere. J. Geophys. Res. 75, 4746 (1970) ADSGoogle Scholar
  6. H. Bahcivan, J.W. Cutler, J.C. Springmann, R. Doe, M.J. Nicolls, Magnetic aspect sensitivity of high-latitude E region irregularities measured by the RAX-2 CubeSat. J. Geophys. Res. 119(2), 1233–1249 (2014) Google Scholar
  7. V.A. Bailey, Interaction by resonance of radio waves. Nature 139, 68–69 (1937) Google Scholar
  8. N.V. Bakhmet’eva, V.V. Belikovich, L.M. Kagan, A.A. Ponyatov, A.V. Tolmacheva, M.C. Kelley, M.J. Nicolls, New results of studying the lower ionosphere by the method of resonance scattering of radio waves from artificial periodic inhomogeneities. Radiophys. Quantum Electron. 48(9), 673–685 (2005) ADSGoogle Scholar
  9. R. Barr, VLF wave generation using VLF heating and the cubic nonlinearity of the ionosphere. Geophys. Res. Lett. 23, 2165 (1996). ADSCrossRefGoogle Scholar
  10. R. Barr, P. Stubbe, ELF and VLF wave generation by HF heating: a comparison of AM and CW techniques. J. Atmos. Terr. Phys. 59(18), 2265–2279 (1997) ADSGoogle Scholar
  11. R. Barr, M.T. Rietveld, H. Kopka, P. Stubbe, E. Nielsen, Extra-low-frequency radiation from the polar electrojet antenna. Nature 317(6033), 155–157 (1985a) ADSGoogle Scholar
  12. R. Barr, M.T. Rietveld, P. Stubbe, H. Kopka, The diffraction of VLF radio Waves by a patch of ionosphere illuminated by a powerful HF transmitter. J. Geophys. Res. 90(A3), 2861–2875 (1985b) ADSGoogle Scholar
  13. R. Barr, P. Stubbe, M.T. Rietveld, H. Kopka, ELF and VLF signals radiated by the ‘Polar Electrojet Antenna’: experimental results. J. Geophys. Res. 91(A4), 4451–4459 (1986) ADSGoogle Scholar
  14. R. Barr, M.T. Rietveld, P. Stubbe, H. Kopka, Ionospheric heater beam scanning: a realistic model of this mobile source of ELF/VLF radiation. Radio Sci. 23(3), 379–388 (1988) ADSGoogle Scholar
  15. R. Barr, P. Stubbe, M.T. Rietveld, ELF wave generation in the ionosphere using pulse modulated HF heating: initial tests of a technique for increasing ELF wave generation efficiency. Ann. Geophys. 17, 759–769 (1999) ADSGoogle Scholar
  16. A.F. Belenov, V.A. Bubnov, L.M. Erukhimov, V. Kiselev Yu, G.P. Komrakov, E.E. Mityakova, L.N. Rubtsov, V.P. Uryadov, V.L. Frolov, YuV. Chugunov, On parameters of artificial small-scale ionospheric irregularities. Radiophys. Quantum Electron. 20, 1240–1245 (1977) ADSGoogle Scholar
  17. V.V. Belikovich, E.A. Benediktov, G.G. Getmantsev, L.M. Erukhimov, N.A. Zuikov, G.P. Komrakov, Yu.S. Korobkov, N.A. Mityakov, V.O. Rapoport, V.Yu. Trakhtengertz V.L. Frolov, New results of investigations of nonlinear phenomena in the ionosphere. Radiophys. Quantum Electron. 18(4), 377–383 (1975) ADSGoogle Scholar
  18. V.V. Belikovich, L.M. Erukhimov, V.A. Zyuzin, S. Korobkov Yu, O.I. Maksimenko, A.M. Nasyrov, E.N. Sergeev, V.L. Frolov, P.B. Shavin, Times of development and relaxation of artificial small-scale irregularities. Radiophys. Quantum Electron. 31, 181–185 (1988) ADSGoogle Scholar
  19. V.V. Belikovich, S.M. Grach, A.N. Karashtin, D.S. Kotik, Yu.V. Tokarev, The SURA facility: study of the atmosphere and space. Radiophys. Quantum Electron. 50(7), 497–526 (2007) ADSGoogle Scholar
  20. P. Belyaev, S. Polyakov, V. Rappoport, V. Trakhtengerts, The ionospheric Alfvén resonator. J. Atmos. Terr. Phys. 52, 781 (1990) ADSGoogle Scholar
  21. I.V. Berezin, G.N. Boiko, V.M. Volkov, V.A. Zyuzin, G.P. Komrakov, A.M. Leonov, A.N. Maresov, V.A. Ryzhov, V.A. Solynin, Peculiarities of the development and saturation of artificial ionospheric turbulence during a high-power disturbing transitions. Radiophys. Quantum Electron. 30(6), 522–529 (1987) ADSGoogle Scholar
  22. P.A. Bernhardt, C.A. Selcher, R.H. Lehmberg et al., Stimulated Brillouin scatter in magnetized ionospheric plasma. Phys. Rev. Lett. 104, 165004 (2010). ADSCrossRefGoogle Scholar
  23. P.A. Bernhardt, C.A. Selcher, S. Kowtha, Electron and ion Bernstein waves excited in the ionosphere by high power EM waves at the second harmonic of the electron cyclotron frequency. Geophys. Res. Lett. 38, L19107 (2011). ADSCrossRefGoogle Scholar
  24. P. Bernhardt, C. Siefring, S. Briczinski, R. Michell, Large ionospheric disturbances produced by the HAARP HF facility. Radio Sci. 51, 1081–1093 (2016). ADSCrossRefGoogle Scholar
  25. N.F. Blagoveshchenskaya, V.A. Kornienko, T.D. Borisova, B. Thidé, M.J. Kosch, M.T. Rietveld, E.V. Mishin, R.Y. Luk’yanova, O.A. Troschichev, Ionospheric HF pump wave triggering of local auroral activation. J. Geophys. Res. 106(A12), 29071–29090 (2001) ADSGoogle Scholar
  26. N.F. Blagoveshchenskaya, V.A. Kornienko, T.D. Borisova, M.T. Rietveld, T. Bösinger, B. Thidé, T.B. Leyser, A. Brekke, Heater-induced phenomena in a coupled ionosphere–magnetosphere system. Adv. Space Res. 38, 2495–2502 (2006). ADSCrossRefGoogle Scholar
  27. N.F. Blagoveshchenskaya, T.D. Borisova, V.A. Kornienko, M.T. Rietveld, T.K. Yeoman, D.M. Wright, M. Rother, H. Lühr, E.V. Mishin, C. Roth, V.L. Frolov, M. Parot, J.L. Rauch, Modification of the high-latitude ionosphere by high-power HF radio waves, 2: results of coordinated satellite and ground-based observations. Radiophys. Quantum Electron. 54, 89–101, 0033-8443/11/5402-0089 (2011) ADSGoogle Scholar
  28. N.F. Blagoveshchenskaya, T.D. Borisova, T.K. Yeoman, M.T. Rietveld, I. Häggström, I.M. Ivanova, Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere. J. Atmos. Sol.-Terr. Phys. 105–106, 231–244 (2013) ADSGoogle Scholar
  29. N.F. Blagoveshchenskaya, T.D. Borisova, M. Kosch, T. Sergienko, U. Brändström, T.K. Yeoman, I. Häggström, Optical and ionospheric phenomena at EISCAT under continuous X-mode HF pumping. J. Geophys. Res. 119 (2014).
  30. N.F. Blagoveshchenskaya, T.D. Borisova, T.K. Yeoman, I. Häggström, A.S. Kalishin, Modification of the high latitude ionosphere F region by X-mode powerful HF radiowaves: experimental results from multi-instrument diagnostics. J. Atmos. Sol.-Terr. Phys. 135, 50–63 (2015). ADSCrossRefGoogle Scholar
  31. N.F. Blagoveshchenskaya, T.D. Borisova, A.S. Kalishin, T.K. Yeoman, I. Häggström, First observations of electron gyro-harmonic effects under X-mode HF pumping the high latitude ionospheric F-region. J. Atmos. Sol.-Terr. Phys. 155, 36–49 (2017) ADSGoogle Scholar
  32. G.N. Boiko, L.M. Erukhimov, V.L. Frolov, Excitation of small-scale irregularities near the pump wave reflection level. Geomagn. Aeron. 30(6), 843–846 (1990) Google Scholar
  33. N. Borisov, A. Gurevich, K. Papadopoulos, Direct Cerenkov excitation of waveguide modes by a mobile ionospheric heater. Radio Sci. 33(4), 859 (1996) ADSGoogle Scholar
  34. T.D. Borisova, N.F. Blagoveshchenskaya, T.K. Yeoman, I. Häggström, Excitation of artificial ionospheric turbulence in the high-latitude ionospheric F region as a function of the EISCAT/heating effective radiated power. Radiophys. Quantum Electron. 60, 4 (2017). CrossRefGoogle Scholar
  35. T. Bösinger, A. Kero, P. Pollari, A. Pashin, P. Belyaev, M. Rietveld, T. Turunen, J. Kangas, Generation of artificial magnetic pulsations in the Pc1 frequency range by periodic heating of the Earth’s ionosphere: indications of Alfven resonator effects. J. Atmos. Sol.-Terr. Phys. 62(4), 277–297 (2000) ADSGoogle Scholar
  36. C.J. Bryers, M.J. Kosch, A. Senior, M.T. Rietveld, T.K. Yeoman, The threshold of plasma instabilities pumped by high frequency radio waves at EISCAT. J. Geophys. Res. 118, 7472–7481 (2013a). CrossRefGoogle Scholar
  37. C.J. Bryers, M.J. Kosch, A. Senior, M.T. Rietveld, W. Singer, A comparison between resonant and non-resonant heating at EISCAT. J. Geophys. Res. 118, 6766–6776 (2013b). CrossRefGoogle Scholar
  38. T. Burinskaya, A. Volokitin, Nonlinear dynamics of thermal modulational instability. Physica 2D, 117–125 (1981) ADSGoogle Scholar
  39. V. Bychenkov, V. Silin, S. Uryupin, Ion-acoustic turbulence and anomalous transport. Phys. Rep. 164, 119–215 (1988) ADSGoogle Scholar
  40. P. Cannon, F. Honary, A GPU-accelerated finite-difference time-domain scheme for electromagnetic wave interaction with plasma. IEEE Trans. Antennas Propag. 63(7), 3042–3054 (2015). ADSMathSciNetCrossRefzbMATHGoogle Scholar
  41. P.D. Cannon, F. Honary, N. Borisov, Two-dimensional numerical simulation of O-mode to Z-mode conversion in the ionosphere. J. Geophys. Res. Space Phys. 121(3), 2755–2782 (2016). ADSCrossRefGoogle Scholar
  42. H.C. Carlson, High power HF modification-geophysics, span of EM effects, and energy budget. Adv. Space Res. 13, 1015–1024 (1993). CrossRefGoogle Scholar
  43. H. Carlson, V. Wickwar, G. Mantas, Observations of fluxes of suprathermal electrons accelerated by HF excited Langmuir instabilities. J. Atmos. Terr. Phys. 12, 1089 (1982) ADSGoogle Scholar
  44. H. Carlson, F. Djuth, L. Zhang, Creating space plasma from the ground. J. Geophys. Res. Space Phys. 122, 978 (2017). ADSCrossRefGoogle Scholar
  45. L.F. Chernogor, V.L. Frolov, Features of the wave disturbances in the ionosphere during periodic heating of the plasma by the SURA radiation. Radiophys. Quantum Electron. 56(5), 276–289 (2013) ADSGoogle Scholar
  46. A.A. Chernyshov et al., Approaches to studying the multiscale ionospheric structure using nanosatellites. Geomagn. Aeron. 56(1), 72–79 (2016). ADSCrossRefGoogle Scholar
  47. P.B. Chilson, E. Belova, M.T. Rietveld, S. Kirkwood, U.-P. Hoppe, First artificially induced modulation of PMSE using the EISCAT heating facility. Geophys. Res. Lett. 27(23), 3801–3804 (2000) ADSGoogle Scholar
  48. M.B. Cohen, U.S. Inan, Terrestrial VLF transmitter injection into the magnetosphere. J. Geophys. Res. 117, A08310 (2012). ADSCrossRefGoogle Scholar
  49. R. Cohen, J.D. Whitehead, Radio reflectivity of artificial modification of the ionospheric F layer. Geophys. Res. 75(31), 6439–6445 (1970) ADSGoogle Scholar
  50. M.B. Cohen, M. Golkowski, U.S. Inan, Orientation of the HAARP ELF ionospheric dipole and the auroral electrojet. Geophys. Res. Lett. 35, L02806 (2008). ADSCrossRefGoogle Scholar
  51. M.B. Cohen, U.S. Inan, M.A. Golkowski, M.J. McCarrick, ELF/VLF wave generation via ionospheric HF heating: experimental comparison of amplitude modulation, beam painting, and geometric modulation. J. Geophys. Res. 115, A02302 (2010). ADSCrossRefGoogle Scholar
  52. M.B. Cohen, U.S. Inan, D. Piddyachiy, N.G. Lehtinen, M. Golkowski, Magnetospheric injection of ELF/VLF waves with steerable HF heating of the lower ionosphere. J. Geophys. Res. 116, A06308 (2011). ADSCrossRefGoogle Scholar
  53. M. Cohen, M. Golkowski, N. Lehtinen, U. Inan, M. McCarrick, HF beam parameters in ELF/VLF wave generation via modulated heating of the ionosphere. J. Geophys. Res. 117 (2012a).
  54. M.B. Cohen, R.C. Moore, M. Golkowski, N.G. Lehtinen, ELF/VLF wave generation from the beating of two HF ionospheric heating sources. J. Geophys. Res. 117, A12310 (2012b). ADSCrossRefGoogle Scholar
  55. T. Cussac, M.A. Clair, P. Ultré-Guerard, F. Buisson, G. Lassalle-Balier, M. Ledu, C. Elisabelar, X. Passot, N. Rey, The DEMETER microsatellite and ground segment. Planet. Space Sci. 54(5), 413–427 (2006) ADSGoogle Scholar
  56. A.G. Demekhov, V.Y. Trakhtengerts, M.M. Mogilevsky, L.M. Zelenyi, Current problems in studies of magnetospheric cyclotron masers and new space project “RESONANCE”. Adv. Space Res. 32(3), 355–374 (2003) ADSGoogle Scholar
  57. R.S. Dhillon, T.R. Robinson, Observations of time dependence and aspect sensitivity of regions of enhanced UHF backscatter associated with RF heating. Ann. Geophys. 23, 75 (2005) ADSGoogle Scholar
  58. Y. Dimant, A. Gurevich, K. Zybin, Acceleration of electrons under the action of intense radio-waves near electron cyclotron harmonics. J. Atmos. Terr. Phys. 54, 425–436 (1992) ADSGoogle Scholar
  59. F. Djuth, D. DuBois, Temporal development of HF-excited Langmuir and ion turbulence at Arecibo. Earth Moon Planets 116, 19–53 (2015). ADSCrossRefGoogle Scholar
  60. F. Djuth, P. Stubbe, M. Sulzer, H. Kohl, M. Rietveld, J. Elder, Altitude characteristics of plasma turbulence excited with the Tromsøsuperheater. J. Geophys. Res. 99, 333–339 (1994) ADSGoogle Scholar
  61. F. Djuth, T. Pedersen, E. Gerken, P. Bernhardt, C. Selcher, W. Bristow, M. Kosch, Ionospheric modification at twice the electron cyclotron frequency. Phys. Rev. Lett. 94, 125001 (2005). ADSCrossRefGoogle Scholar
  62. D.F. DuBois, D.A. Russell, P.Y. Cheung, M.P. Sulzer, High-power high-frequency-induced Langmuir turbulence in the smooth ionosphere at Arecibo, I: theoretical predictions for altitude-resolved plasma line radar spectra. Phys. Plasmas 8(3), 791–801 (2001) ADSGoogle Scholar
  63. K. Dysthe, E. Mjølhus, H. Pécseli, K. Rypdal, Thermal cavitons. Phys. Scr. T2B, 548–559 (1982) ADSzbMATHGoogle Scholar
  64. B. Eliasson, Full-scale simulations of ionospheric Langmuir turbulence. Mod. Phys. Lett. B 27(8), 1330005 (2013). ADSCrossRefGoogle Scholar
  65. B. Eliasson, C.-L. Chang, K. Papadopoulos, Generation of ELF and ULF electromagnetic waves by modulated heating of the ionospheric F2 region. J. Geophys. Res. 117, A10320 (2012a). ADSCrossRefGoogle Scholar
  66. B. Eliasson, X. Shao, G. Milikh, E.V. Mishin, K. Papadopoulos, Numerical modeling of artificial ionospheric layers driven by high-power HF-heating. J. Geophys. Res. 117, A10321 (2012b). ADSCrossRefGoogle Scholar
  67. B. Eliasson, G. Milikh, X. Shao, E. Mishin, K. Papadopoulos, Incidence angle dependence of Langmuir turbulence and artificial ionospheric layers driven by high-power HF-heating. J. Plasma Phys. 81, 415810201 (2015). CrossRefGoogle Scholar
  68. L.M. Erukhimov, S.A. Metelev, N.A. Mityakov, V.L. Frolov, Hysteresis phenomenon by artificial excitation of irregularities in ionospheric plasma. Radiophys. Quantum Electron. 21, 1209–1211 (1978) ADSGoogle Scholar
  69. L.M. Erukhimov, S.A. Metelev, N.A. Mityakov, V.L. Frolov, Initial stage of interaction of intense radio waves with the plasma in the upper ionosphere. Geomagn. Aeron. 23(3), 352–356 (1983) Google Scholar
  70. L.M. Erukhimov, S.A. Metelev, E.N. Myasnikov, N.A. Mityakov, V.L. Frolov, Artificial ionospheric turbulence. Radiophys. Quantum Electron. 30, 156–171 (1987) ADSGoogle Scholar
  71. L.M. Erukhimov, C.A. Metelev, D.V. Razumov, Diagnostics of ionospheric irregularities due to artificial radio radiation. Radiophys. Quantum Electron. 31, 928–935 (1988) ADSGoogle Scholar
  72. D.T. Farley, C. La, Hoz.B. Fejer, Studies of the self-focusing instability at Arecibo. J. Geophys. Res. 88(A3), 2093–2102 (1983) ADSGoogle Scholar
  73. J.A. Fejer, Ionospheric modification and parametric instabilities. Rev. Geophys. Space Phys. 17, 135–153 (1979) ADSGoogle Scholar
  74. J.A. Fejer, H.M. Ierkic, R.F. Woodman, J. Rottger, M. Sulzer, R.A. Behnke, A. Veldhuis, Observations of the HF-enhanced plasma line with a 46.8-MHz radar and reinterpretation of previous observations with the 430-MHz radar. J. Geophys. Res. 88(A3), 2083–2092 (1983) ADSGoogle Scholar
  75. J. Fennelly, Demonstration and Science Experiment (DSX) Space Weather Experiment (SWx), in Solar Physics and Space Weather Instrumentation III, ed. by S. Fineschi, J. Fennelly. Proc. of SPIE, vol. 7438 (2009), p. 743805-1-10. CrossRefGoogle Scholar
  76. C.S. Fish et al., Design, development, implementation, and on-orbit performance of the Dynamic Ionosphere CubeSat Experiment mission. Space Sci. Rev. 181, 61–120 (2014). ADSCrossRefGoogle Scholar
  77. D. Forslund, Instabilities associated with heat conduction in the solar wind and their consequences. J. Geophys. Res. 75, 17–28 (1970). ADSCrossRefGoogle Scholar
  78. V.L. Frolov, Influence of modulation transfer in the action of a powerful emission on the ionospheric plasma. Radiophys. Quantum Electron. 24, 354–356 (1981) ADSGoogle Scholar
  79. V.L. Frolov, Control of spectral characteristics of artificial low-frequency ionosphere turbulence. Int. J. Geomagn. Aeron. 4(2), 159–165 (2003) Google Scholar
  80. V.L. Frolov et al., On the study of artificial ionospheric turbulence by means of stimulated electromagnetic emission. Radiophys. Quantum Electron. 37(7), 593–603 (1994) ADSGoogle Scholar
  81. V.L. Frolov, L.M. Erukhimov, S.A. Metelev, E.N. Sergeev, Temporal behavior of artificial small-scale ionospheric irregularities: Review of experimental results. J. Atmos. Sol.-Terr. Phys. 59(18), 2317–2333 (1997) ADSGoogle Scholar
  82. V.L. Frolov, E.N. Ermakova, L.M. Kagan et al., Features of the broad upshifted structure in stimulated electromagnetic emission spectra. J. Geophys. Res. 105(A9), 20,919–20,933 (2000) ADSGoogle Scholar
  83. V.L. Frolov, E.N. Sergeev, E.N. Ermakova et al., Spectral features of stimulated electromagnetic emissions, measured in the 4.3–9.5 MHz pump wave frequency range. Geophys. Res. Lett. 28(16), 3103–3106 (2001) ADSGoogle Scholar
  84. V.L. Frolov, E.N. Sergeev, G.P. Komrakov et al., The ponderomotive narrow continuum (NCp) component in stimulated electromagnetic emission spectra. J. Geophys. Res. 109, A07304 (2004). ADSCrossRefGoogle Scholar
  85. V.L. Frolov et al., Modification of the terrestrial ionosphere by high-power short-wave radio radiation. Phys. Usp. 50(3), 15–24 (2007). CrossRefGoogle Scholar
  86. V.L. Frolov et al., Gyroharmonic features of the irregularities HF-induced in the ionosphere. Radiophys. Quantum Electron. 55(6), 357–381 (2012) ADSGoogle Scholar
  87. V.L. Frolov et al., Generation of artificial ionospheric irregularities in the mid-latitude ionosphere modified by high-power high-frequency X-mode radio waves. Radiophys. Quantum Electron. 57(6), 393–416 (2014). ADSCrossRefGoogle Scholar
  88. V.L. Frolov, V.O. Rapoport, E.A. Schorokhova, A.S. Belov, M. Parrot, J.-L. Rauch, Features of the electromagnetic and plasma disturbances induced at the altitudes of the Earth’s outer ionosphere by modification of the ionospheric F2 region using high-power waves radiated by the SURA heating facility. Radiophys. Quantum Electron. 59(3), 177–198 (2016). ADSCrossRefGoogle Scholar
  89. V.L. Frolov, I.A. Bolotin, G.G. Vertogradov, V.G. Vertogradov, Generation of super small-scale artificial ionospheric irregularities in the ionosphere pumped by high-power HF radio waves. Radiophys. Quantum Electron. 60(6), 450–455 (2017). ADSCrossRefGoogle Scholar
  90. A. Galeev, R. Sagdeev, Nonlinear plasma theory, in Reviews of Plasma Phys., vol. 7, ed. by M.A. Leontovich (Consultants Bureau, New York, 1979), pp. 1–180 Google Scholar
  91. A. Galeev, R. Sagdeev, V. Shapiro, V. Shevchenko, Langmuir turbulence and dissipation of high-frequency energy. Sov. Phys. JETP 46, 711–719 (1977) ADSGoogle Scholar
  92. A. Galeev, R. Sagdeev, V. Shapiro, V. Shevehenko, Beam plasma discharge and suprathermal electron tails, in Active Experiments in Space (Alpbach, Austria). Eur. Space Agency Spec. Publ., vol. ESA SP-195 (1983), pp. 151–155 Google Scholar
  93. G.L. Gdalevich, Z. Klos, Y.M. Mikhailov, Excitation of ELF-VLF electric fields in ionospheric plasma in active experiments (Intercosmos-24 data). Geomagn. Aeron. 43(5), 602–609 (2003) Google Scholar
  94. L. Gelinas, M. Kelley, M. Sulzer, E. Mishin, M. Starks, In situ observations during an HF heating experiment at Arecibo: Evidence for Z-mode and electron cyclotron harmonic effects. J. Geophys. Res. 108, 1382 (2003). CrossRefGoogle Scholar
  95. G. Getmantsev, N. Zuikov, D. Kotik, L. Mironenko, N. Mityakov, V. Rapoport, Y. Sazonov, V. Trakhtengerts, V. Eidman, Combination frequencies in the interaction between high-power short-wave radiation and ionospheric plasma. JETP Lett. 20, 101 (1974) ADSGoogle Scholar
  96. A. Gigliotti, W. Gekelman, P. Pribyl, S. Vincena, A. Karavaev, X. Shao, A.S. Sharma, D. Papadopoulos, Generation of polarized shear Alfven waves by rotating magnetic field source. Phys. Plasmas 16, 092106 (2009) ADSGoogle Scholar
  97. M. Gołkowski, U.S. Inan, A.R. Gibby, M.B. Cohen, Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater. J. Geophys. Res. 113, A10201 (2008). ADSCrossRefGoogle Scholar
  98. M. Gołkowski, U.S. Inan, M.B. Cohen, Cross modulation of whistler mode and HF waves above the HAARP ionospheric heater. Geophys. Res. Lett. 36, L15103 (2009). ADSCrossRefGoogle Scholar
  99. M. Gołkowski, U.S. Inan, M.B. Cohen, A.R. Gibby, Amplitude and phase of nonlinear magnetospheric wave growth excited by the HAARP HF heater. J. Geophys. Res. 115, A00F04 (2010). ADSCrossRefGoogle Scholar
  100. M. Gołkowski, M.B. Cohen, D.L. Carpenter, U.S. Inan, On the occurrence of ground observations of ELF/VLF magnetospheric amplification induced by the HAARP facility. J. Geophys. Res. 116, A04208 (2011). ADSCrossRefGoogle Scholar
  101. W.E. Gordon, H.C. Carlson, R.L. Showen, Ionospheric heating at Arecibo: first tests. J. Geophys. Rev. 76(31), 7808–7813 (1971) ADSGoogle Scholar
  102. S. Grach, Thermal parametric instability in ionospheric plasma at frequencies close to \(\omega _{He}\) and 2\(\omega _{He}\). Radiophys. Quantum Electron. 22, 357–361 (1979) ADSGoogle Scholar
  103. S. Grach, N. Mityakov, V. Rapoport, V. Trakhtengertz, Thermal parametric turbulence in a plasma. Physica D 2, 102–106 (1981) ADSzbMATHGoogle Scholar
  104. S.M. Grach, B. Thidé, T.B. Leyser, Plasma waves near the double resonance layer in the ionosphere. Radiophys. Quantum Electron. 37, 392–402 (1994) ADSGoogle Scholar
  105. S. Grach, S. Sergeev, V. Yashnov, V. Kotov, Spectra of stimulated electromagnetic emission of the ionosphere during pump frequency sweeping near gyroharmonics. II. Discussion of the results. Radiophys. Quantum Electron. 51, 499–514 (2008) ADSGoogle Scholar
  106. S. Grach, E. Sergeev, E. Mishin, A. Shindin, M. McCarrick, Intermediate downshifted maximum of stimulated electromagnetic emission at high-power HF heating: A new twist on an old problem. J. Geophys. Res. Space Phys. 120, 666–674 (2015). ADSCrossRefGoogle Scholar
  107. S. Grach, E. Sergeev, E. Mishin, A. Shindin, Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves. Phys. Usp. 59, 1091–1128 (2016). ADSCrossRefGoogle Scholar
  108. A. Gurevich, Nonlinear Phenomena in the Ionosphere (Springer, New York, 1978) Google Scholar
  109. A. Gurevich, Nonlinear effects in the ionosphere. Phys. Usp. 50, 1091–1121 (2007). ADSCrossRefGoogle Scholar
  110. A.V. Gurevich, V.V. Migulin, Investigations in the U.S.S.R. of non-linear phenomena in the ionosphere. J. Atmos. Terr. Phys. 44(12), 1019–1024 (1982) ADSGoogle Scholar
  111. A.V. Gurevich, K.P. Zybin, Strong field aligned scattering of UHF radio waves in ionospheric modification. Phys. Lett. A 358, 159–165 (2006) ADSzbMATHGoogle Scholar
  112. A.V. Gurevich, A.V. Lukyanov, K.P. Zybin, Stationary state of isolated striations developed during ionospheric modification. Phys. Lett. A. 206, 247–259 (1995) ADSGoogle Scholar
  113. A. Gurevich, A. Lukyanov, K. Zybin, Anomalous absorption of powerful radio waves on the striations developed during ionospheric modification. Phys. Lett. A 211, 363–372 (1996) ADSGoogle Scholar
  114. A. Gurevich, T. Hagfors, H. Carlson, A. Karashtin, K. Zybin, Self oscillations and bunching of striations in ionospheric modifications. Phys. Lett. A. 239, 385–392 (1998) ADSGoogle Scholar
  115. A. Gurevich, K. Zybin, H. Carlson, T. Pedersen, Magnetic zenith effect in ionospheric modifications. Phys. Lett. A 305, 264–274 (2002) ADSGoogle Scholar
  116. B. Gustavsson, B. Eliasson, HF radio wave acceleration of ionospheric electrons: analysis of HF-induced optical enhancements. J. Geophys. Res. 113, A08319 (2008). ADSCrossRefGoogle Scholar
  117. B. Gustavsson, T. Sergienko, M.J. Kosch, M.T. Rietveld, A. Steen, B.U.E. Brandstrom, T.B. Leyser, B. Isham, P. Gallop, T. Aso, M. Ejiri, K. Kaila, J. Jussila, H. Holma, The electron distribution during HF pumping—a picture painted in all colours. Ann. Geophys. 23, 1747–1754 (2005) ADSGoogle Scholar
  118. B. Gustavsson, T. Leyser, M. Kosch, M. Rietveld, Å. Steen, B. Brändström, T. Aso, Electron gyroharmonic effects in ionization and electron acceleration during High-Frequency pumping in the ionosphere. Phys. Rev. Lett. 97, 195002 (2006). ADSCrossRefGoogle Scholar
  119. B. Gustavsson, M. Kosch, A. Wong, T. Pedersen, C. Heinselman, C. Mutiso, B. Bristow, J. Hughes, W. Wang, First estimates of volume distribution of HF-pump enhanced emissions at 6300 and 5577 Å: a comparison between observations and theory. Ann. Geophys. 26, 3999–4012 (2008) ADSGoogle Scholar
  120. B. Gustavsson, R. Newsome, T.B. Leyser, M.J. Kosch, L. Norin, M. McCarrick, T. Pedersen, B.J. Watkins, First observations of X-mode suppression of O-mode HF enhancements at 6300 Å. Geophys. Res. Lett. 36, L20102 (2009). ADSCrossRefGoogle Scholar
  121. B. Gustavsson, M.T. Rietveld, N.V. Ivchenko, M.J. Kosch, The rise and fall of electron temperatures, I: Ohmic heating of ionospheric electrons from under-dense HF-radio wave pumping. J. Geophys. Res. 115, A12332 (2010). ADSCrossRefGoogle Scholar
  122. P. Guzdar, P. Chaturvedi, K. Papadopoulos, S. Ossakow, The thermal self-focussing instability near the critical surface in the high-latitude ionosphere. J. Geophys. Res. 103, 2231–2237 (1998) ADSGoogle Scholar
  123. O. Havnes, C. La Hoz, L.I. Naesheim, M.T. Rietveld, First observations of the PMSE overshoot effect and its use for investigating the conditions in the summer mesosphere. Geophys. Res. Lett. 30(23), 2229 (2003). ADSCrossRefGoogle Scholar
  124. R. Helliwell, Whistlers and Related Ionospheric Phenomena (Stanford University Press, Stanford, 1965) Google Scholar
  125. R. Helliwell, VLF simulated experiments in the magnetosphere from Siple station, Antarctica. Rev. Geophys. 26, 551 (1988) ADSGoogle Scholar
  126. F.H. Hibberd, E. Nielsen, P. Stubbe, H. Kopka, M.T. Rietveld, Production of auroral zone E region irregularities by powerful HF heating. J. Geophys. Res. 88(A8), 6347–6351 (1983) ADSGoogle Scholar
  127. P. Hoeg, Directional changes in the irregularity drift during artificial generation of striations. Phys. Scr. 33, 469–474 (1986) ADSGoogle Scholar
  128. H. Holma, K. Kaila, M.J. Kosch, M.T. Rietveld, Recognising the blue emission in artificial aurora. Adv. Space Res. 38(11), 2653–2658 (2006) ADSGoogle Scholar
  129. O. Holt, A. Brekke, T. Hansen, H. Kopka, P. Stubbe, HF modification of the auroral D-region detected by a partial reflection experiment. J. Atmos. Terr. Phys. 47(6), 537–545 (1985) ADSGoogle Scholar
  130. F. Honary, T. Robinson, D. Wright, A. Stocker, M. Rietveld, I. McCrea, First direct evidence of the reduced striations at pump frequencies close to the electron gyroharmonics. Ann. Geophys. 17, 1235–1238 (1999) ADSGoogle Scholar
  131. F. Honary, N. Borisov, M. Beharrell, A. Senior, Temporal development of the magnetic zenith effect. J. Geophys. Res. 116, A06309 (2011). ADSCrossRefGoogle Scholar
  132. J. Huang, S. Kuo, A theoretical model for the broad upshifted maximum in the stimulated electromagnetic emission spectrum. J. Geophys. Res. 99, 19,569–19,576 (1994) ADSGoogle Scholar
  133. J. Huang, S.P. Kuo, A generation mechanism for the downshifted peak in stimulated electromagnetic emission spectrum. J. Geophys. Res. 100, 21,433–21,438 (1995). ADSCrossRefGoogle Scholar
  134. A. Hussein, W. Scales, J. Huang, Theoretical and simulation studies of broad up-shifted sideband generation in ionospheric stimulated radiation. Geophys. Res. Lett. 25, 955–958 (1998) ADSGoogle Scholar
  135. D.L. Hysell, M.C. Kelley, Y.M. Yampolski, V.S. Beley, A.V. Koloskov, P.V. Ponomarenko, O.F. Tyrnov, HF radar observations of decaying artificial field-aligned irregularities. J. Geophys. Res. 101(A12), 26981–26993 (1996). ADSCrossRefGoogle Scholar
  136. D.L. Hysell, E. Nossa, M. McCarrick, Excitation threshold and gyroharmonic suppression of artificial E region field-aligned plasma density irregularities. Radio Sci. 45, RS6003 (2010). ADSCrossRefGoogle Scholar
  137. D. Hysell, R. Miceli, E. Kendall, N. Schlatter, R. Varney, B. Watkins, T. Pedersen, P. Bernhardt, J. Huba, Heater-induced ionization inferred from spectrometric airglow measurements. J. Geophys. Res. 119 (2014).
  138. U. Inan, H. Chang, R. Helliwell, W. Imhof, J. Reagan, M. Walt, Precipitation of radiation belt electrons by man-made waves: a comparison between theory and measurement. J. Geophys. Res. 90, 359 (1985) ADSGoogle Scholar
  139. U. Inan, T. Bell, J. Bortnik, J. Albert, Controlled precipitation of radiation belt electrons. J. Geophys. Res. 108, 1186 (2003). CrossRefGoogle Scholar
  140. U.S. Inan, M. Gołkowski, D.L. Carpenter, N. Reddell, R.C. Moore, T.F. Bell, E. Paschal, P. Kossey, E. Kennedy, S.Z. Meth, Multi-hop whistler-mode ELF/VLF signals and triggered emissions excited by the HAARP HF heater. Geophys. Res. Lett. 31, L24805 (2004). ADSCrossRefGoogle Scholar
  141. B. Isham, T. Hagfors, E. Mishin, M. Rietveld, C. LaHoz, W. Kofman, T. Leyser, A search for the location of the HF excitation of enhanced ion acoustic and Langmuir waves with EISCAT and the Tromsøheater. Radiophys. Quantum Electron. 42, 607–618 (1999b) Google Scholar
  142. B. Isham, C. Hoz, M. Rietveld, T. Hagfors, T. Leyser, Cavitating Langmuir turbulence observed during EISCAT high latitude ionospheric interaction experiments. Phys. Rev. Lett. 83, 2576 (1999a) ADSGoogle Scholar
  143. B. Isham, C.A. Tepley, M.P. Sulzer, Q.H. Zhou, M.C. Kelley, J.S. Friedman, S.A. Gonz´alez, Upper atmospheric observations at the Arecibo Observatory: Examples obtained using new capabilities. J. Geophys. Res. 105, 18609–18637 (2000). ADSCrossRefGoogle Scholar
  144. Y. Istomin, T. Leyser, Parametric decay of an electromagnetic wave near electron cyclotron harmonics. Phys. Plasmas 2, 2084–2097 (1995) ADSGoogle Scholar
  145. H.G. James, V.L. Frolov, E.S. Andreeva, A.M. Padokhin, C.L. Siefring, SURA heating facility transmissions to the CASSIOPE/e-POP satellite. Radio Sci. 52, 259–270 (2017). ADSCrossRefGoogle Scholar
  146. T.B. Jones, T. Robinson, P. Stubbe, H. Kopka, A hysteresis effect in the generation of field-aligned irregularities by a high-power radio wave. Radio Sci. 18(6), 835–839 (1983) ADSGoogle Scholar
  147. L.M. Kagan, V.L. Frolov, Significance of field-aligned currents for F-region perturbation. J. Atmos. Terr. Phys. 58(13), 1465–1474 (1996) ADSGoogle Scholar
  148. L.M. Kagan, M.C. Kelley, F. Garcia et al., The structure of electromagnetic wave-induced 557.7-nm emission associated with a aporadic-E event over Arecibo. Phys. Rev. Lett. 85(1), 218–221 (2000) ADSGoogle Scholar
  149. L.M. Kagan et al., Optical and RF diagnostics of the ionosphere over the SURA facility: review of results. Radio Phys. Radio Astron. 11(3), 221–241 (2006) ADSGoogle Scholar
  150. K.S. Kalogerakis, T.G. Slanger, E.A. Kendall, T.R. Pedersen, M.J. Kosch, B. Gustavsson, M.T. Rietveld, Remote Oxygen Sensing by Ionospheric Excitation (ROSIE). Ann. Geophys. 27, 1–7 (2009) Google Scholar
  151. A.V. Karavaev, N.A. Gumerov, K. Papadopoulos, X. Shao, A.S. Sharma, W. Gekelman, A. Gigliotti, P. Pribyl, S. Vincena, Generation of whistler waves by a rotating magnetic field source. Phys. Plasmas 17, 012102 (2010) ADSGoogle Scholar
  152. A.V. Karavaev, N.A. Gumerov, K. Papadopoulos, X. Shao, A.S. Sharma, W. Gekelman, A. Gligliotti, P. Pribyl, S. Vincena, Generation of shear Alfvén waves by a rotating magnetic field source: 3D simulations. Phys. Plasmas 18, 032113 (2011) ADSGoogle Scholar
  153. A.J. Kavanagh, F. Honary, M.T. Rietveld, A. Senior, First observations of the artificial modulation of polar mesospheric winter echoes. Geophys. Res. Lett. 33, L19801 (2006). ADSCrossRefGoogle Scholar
  154. M.C. Kelley, T.L. Arce, J. Salowey, M. Sulzer, W.T. Armstrong, M. Carter, L. Duncan, Density depletions at the 10-m scale induced by the Arecibo heater. J. Geophys. Res. 100, 17367–17376 (1995) ADSGoogle Scholar
  155. E. Kendall, R. Marshall, R.T. Parris, A. Bhatt, A. Coster, T. Pedersen, P. Bernhardt, C. Selcher, Decameter structure in heater-induced airglow at the high frequency active auroral research program facility. J. Geophys. Res. 115, A08306 (2010). ADSCrossRefGoogle Scholar
  156. A. Kero, T. Bösinger, P. Pollari, E. Turunen, M. Rietveld, First EISCAT measurement of electron-gas temperature in the artificially heated D-region ionosphere. Ann. Geophys. 18(9), 1210–1215 (2000) ADSGoogle Scholar
  157. E. Kolesnikova, T.R. Robinson, J.A. Davies, D.M. Wright, M. Lester, Excitation of Alfven waves by modulated HF heating of the ionosphere, with application to FAST observations. Ann. Geophys. 20, 57–67 (2002) ADSGoogle Scholar
  158. M. Kosch, T. Rietveld, T. Hagfors, T. Leyser, High-latitude HF-induced airglow displaced equatorwards of the pump beam. Geophys. Res. Lett. 27, 2817–2820 (2000). ADSCrossRefGoogle Scholar
  159. M.J. Kosch, M.T. Rietveld, A.J. Kavanagh, C. Davis, T. Yeoman, F. Honary, T. Hagfors, High-latitude pump-induced optical emissions for frequencies close to the third electron gyro-harmonic. Geophys. Res. Lett. 29(23), 2112 (2002). ADSCrossRefGoogle Scholar
  160. M. Kosch, M. Rietveld, A. Senior, I. McCrea, A. Kavanagh, B. Isham, F. Honary, Novel artificial optical annular structures in the high latitude ionosphere. Geophys. Res. Lett. 31, L12805 (2004). ADSCrossRefGoogle Scholar
  161. M. Kosch, T. Pedersen, J. Hughes, R. Marshall, E. Gerken, A. Senior, D. Sentman, M. McCarrick, F. Djuth, Artificial optical emissions at HAARP for pump frequencies near the third and second gyroharmonic. Ann. Geophys. 23, 1585–1592 (2005) ADSGoogle Scholar
  162. M. Kosch, T. Pedersen, E. Mishin, S. Oyama, J. Hughes, A. Senior, B. Watkins, B. Bristow, Coordinated optical and radar observations of ionospheric pumping for a frequency pass through the second electron gyroharmonic at HAARP. J. Geophys. Res. 112, A06325 (2007a). ADSCrossRefGoogle Scholar
  163. M. Kosch, T. Pedersen, E. Mishin, M. Starks, E. Gerken-Kendall, D. Sentman, S. Oyama, B. Watkins, Temporal evolution of pump beam self-focusing at the high-frequency active auroral research program. J. Geophys. Res. 112, A08304 (2007b). ADSCrossRefGoogle Scholar
  164. M.J. Kosch, T. Pedersen, M.T. Rietveld, B. Gustavsson, S.M. Grach, T. Hagfors, Artificial optical emissions in the high-latitude thermosphere induced by powerful radio waves: an observational review. Adv. Space Res. 40, 365–376 (2007c). ADSCrossRefGoogle Scholar
  165. M. Kosch, Y. Ogawa, M. Rietveld, S. Nozawa, R. Fujii, An analysis of pump-induced artificial ionospheric ion upwelling at EISCAT. J. Geophys. Res. 115, A12317 (2010). ADSCrossRefGoogle Scholar
  166. M.J. Kosch, C. Bryers, M.T. Rietveld, T.K. Yeoman, Y. Ogawa, Aspect angle sensitivity of pump-induced optical emissions at EISCAT. Earth Planets Space 66, 159 (2014a). CrossRefGoogle Scholar
  167. M.J. Kosch, H. Vickers, Y. Ogawa, A. Senior, N. Blagoveshchenskaya, First observation of the anomalous electric field in the topside ionosphere by ionospheric modification over EISCAT. Geophys. Res. Lett. 41(21), 7427–7435 (2014b). ADSCrossRefGoogle Scholar
  168. D.S. Kotik, E.N. Ermakova, Resonances in the generation of electromagnetic signals due to the thermal cubic nonlinearity in the lower ionosphere. J. Atmos. Sol.-Terr. Phys. 60(12), 1257 (1998) ADSGoogle Scholar
  169. V.E. Kunitsyn, E.D. Tereshchenko, E.S. Andreeva, I.A. Nesterov, Satellite radio probing and radio tomography of the ionosphere. Usp. Fiz. Nauk 180(5), 548–553 (2010). CrossRefGoogle Scholar
  170. V.E. Kunitsyn, E.S. Andreeva, V.L. Frolov, G.P. Komrakov, M.O. Nazarenko, A.M. Padokhin, Sounding of HF heating-induced artificial ionospheric disturbances by navigation satellite radio transmissions. Radio Sci. 47(4), RS0L15 (2012). CrossRefGoogle Scholar
  171. S. Kuo, Electron cyclotron harmonic resonances in high-frequency heating of the ionosphere. Phys. Plasmas 20, 092124 (2013). ADSCrossRefGoogle Scholar
  172. S. Kuo, Ionospheric modifications in high frequency heating experiments. Phys. Plasmas 22, 012901 (2015). ADSCrossRefGoogle Scholar
  173. S. Kuo, M. Lee, P. Kossey, Excitation of oscillating two-stream instability by upper hybrid pump in ionospheric heating experiments at Tromsø. Geophys. Res. Lett. 24, 2969–2972 (1997) ADSGoogle Scholar
  174. S. Kuo, A. Snyder, P. Kossey, C.-L. Chang, J. Labenski, VLF wave generation by beating of two HF waves in the ionosphere. Geophys. Res. Lett. 38, L10608 (2011). ADSCrossRefGoogle Scholar
  175. S. Kuo, A. Snyder, P. Kossey, C.-L. Chang, J. Labenski, Beating HF waves to generate VLF waves in the ionosphere. J. Geophys. Res. 117, A03318 (2012). ADSCrossRefGoogle Scholar
  176. N. Lehtinen, U. Inan, Radiation of ELF/VLF waves by harmonically varying currents into a stratified ionosphere with application to radiation by a modulated electrojet. J. Geophys. Res. 113, A06301 (2008). ADSCrossRefGoogle Scholar
  177. T.B. Leyser, Stimulated electromagnetic emissions by high-frequency electromagnetic pumping of the ionospheric plasma. Space Sci. Rev. 98, 223 (2001). ADSCrossRefGoogle Scholar
  178. T.B. Leyser, E. Nordblad, Self-focused radio frequency L wave pumping of localized upper hybrid oscillations in high-latitude ionospheric plasma. Geophys. Res. Lett. 36(24), L24105 (2009). ADSCrossRefGoogle Scholar
  179. T.B. Leyser, A.Y. Wong, Powerful electromagnetic waves for active environmental research in geospace. Rev. Geophys. 47, 1 (2009). CrossRefGoogle Scholar
  180. T.B. Leyser, B. Thide, H. Derblom et al., Dependence of stimulated electromagnetic emission on the ionosphere and pump wave. J. Geophys. Res. 95(A10), 17,233–17,244 (1990) ADSGoogle Scholar
  181. T.B. Leyser, B. Thide, M. Waldenvik et al., Spectral structure of stimulated electromagnetic emission between electron cyclotron harmonics. J. Geophys. Res. 98(A10), 17,597–17,606 (1993) ADSGoogle Scholar
  182. T.B. Leyser, B. Thide, M. Waldenvik et al., Downshifted maximum features in stimulated electromagnetic emission spectra. J. Geophys. Res. 99(A10), 19,555–19,568 (1994) ADSGoogle Scholar
  183. T.B. Leyser, B. Gustavsson, B.U.E. Brandstrom, Å. Steen, F. Honary, M.T. Rietveld, T. Aso, M. Ejiri, Simultaneous measurements of high-frequency pump-enhanced airglow and ionospheric temperatures at auroral latitudes. Adv. Polar Upper Atmos. Res. 14, 1–11 (2000) Google Scholar
  184. A. Mahmoudian, W.A. Scales, M.J. Kosch, A. Senior, M. Rietveld, Dusty space plasma diagnosis using temporal behavior of polar mesospheric summer echoes during active modification. Ann. Geophys. 29, 2169–2179 (2011) ADSGoogle Scholar
  185. A. Mahmoudian, W. Scales, P. Bernhardt, A. Samimi, E. Kendall, J. Ruohoniemi, B. Isham, O. Vega-Cancel, M. Bordikar, Ion gyro-harmonic structuring in the stimulated radiation spectrum and optical emissions during electron gyro-harmonic heating. J. Geophys. Res. 118, 1270–1287 (2013). CrossRefGoogle Scholar
  186. T. Majeed, D.J. Strickland, New survey of electron impact cross sections for photoelectron and auroral electron energy loss calculations. J. Phys. Chem. Ref. Data 26, 335–349 (1997) ADSGoogle Scholar
  187. G.A. Markov, Excitation of a magnetospheric maser through modification of the Earth’s ionosphere by high-power HF radio emission from a ground-based transmitter. J. Exp. Theor. Phys. 111, 916 (2010). ADSCrossRefGoogle Scholar
  188. J.D. Mathews, A short history of geophysical radar at Arecibo Observatory. Hist. Geo-Space Sci. 4, 19–33 (2013). ADSCrossRefGoogle Scholar
  189. A.S. Maxworth, M. Gołkowski, M.B. Cohen, R.C. Moore, H.T. Chorsi, S.D. Gedney, R. Jacobs, Multistation observations of the azimuth, polarization, and frequency dependence of ELF/VLF waves generated by electrojet modulation. Radio Sci. 50 (2015).
  190. M.J. McCarrick, D. Sentman, A. Wong, R. Wuerker, B. Chouinard, Excitation of ELF waves in the Schumann resonance range by modulated HF heating of the polar electrojet. Radio Sci. 25, 1291 (1990) ADSGoogle Scholar
  191. I. McCrea, A. Aikio, L. Alfonsi, E. Belova, S. Buchert, M. Clilverd, N. Engler, B. Gustavsson, C. Heinselman, J. Kero, M. Kosch, H. Lamy, T. Leyser, Y. Ogawa, K. Oksavik, A. Pellinen-Wannberg, F. Pitout, M. Rapp, I. Stanislawska, J. Vierinen, The science case for the EISCAT_3D radar. Prog. Earth Planet. Sci. 2, 21 (2015). ADSCrossRefGoogle Scholar
  192. G.M. Milikh, K. Papadopoulos, Enhanced ionospheric ELF/VLF generation efficiency by multiple timescale modulated heating. Geophys. Res. Lett. 34, L20804 (2007). ADSCrossRefGoogle Scholar
  193. G. Milikh, A. Gurevich, K. Zybin, J. Secan, Perturbations of GPS signals by the ionospheric irregularities generated due to HF-heating at triple of electron gyrofrequency. Geophys. Res. Lett. 35, L22102 (2008b). ADSCrossRefGoogle Scholar
  194. G.M. Milikh, K. Papadopoulos, H. Shroff, C.L. Chang, T. Wallace, E.V. Mishin, M. Parrot, J.J. Berthelier, Formation of artificial ionospheric ducts. Geophys. Res. Lett. 35, L17104 (2008a). ADSCrossRefGoogle Scholar
  195. G.M. Milikh, A.G. Demekhov, K. Papadopoulos, A. Vartanyan, J.D. Huba, G. Joyce, Model for artificial ionospheric duct formation due to HF heating. Geophys. Res. Lett. 37, L07803 (2010b). ADSCrossRefGoogle Scholar
  196. G.M. Milikh, E. Mishin, I. Galkin, A. Vartanyan, C. Roth, B.W. Reinisch, Ion outflows and artificial ducts in the topside ionosphere at HAARP. Geophys. Res. Lett. 37, L18102 (2010a). ADSCrossRefGoogle Scholar
  197. J. Minkoff, P. Kugelman, I. Weissman, Radio frequency scattering from a heated ionospheric volume, 1, VHF/UHF field-aligned and plasma-line backscatter measurements. Radio Sci. 9(11), 941–955 (1974) ADSGoogle Scholar
  198. E. Mishin, Heat transport in the solar wind. Astrophys. Space Sci. 27, 367–382 (1974) ADSGoogle Scholar
  199. E. Mishin, T. Pedersen, Ionizing wave via high-power HF acceleration. Geophys. Res. Lett. 38, L01105 (2011). ADSCrossRefGoogle Scholar
  200. E. Mishin, V. Telegin, Spectrum of suprathermal electrons in the auroral plasma. Sov. J. Plasma Phys. 12, 509–511 (1986) Google Scholar
  201. E. Mishin, T. Hagfors, B. Isham, A generation mechanism for topside enhanced incoherent backscatter during high frequency modification experiments in Tromsø. Geophys. Res. Lett. 28, 479–482 (2001) ADSGoogle Scholar
  202. E. Mishin, W. Burke, T. Pedersen, On the onset of HF-induced airglow at magnetic zenith. J. Geophys. Res. 109, A02305 (2004). ADSCrossRefGoogle Scholar
  203. E. Mishin, W. Burke, T. Pedersen, HF-induced airglow at magnetic zenith: theoretical considerations. Ann. Geophys. 23, 47–53 (2005a) ADSGoogle Scholar
  204. E. Mishin, M. Kosch, T. Pedersen, W. Burke, HF-induced airglow at magnetic zenith: coexistence of the thermal and parametric instabilities near electron gyroharmonics. Geophys. Res. Lett. 32, L23106 (2005b). ADSCrossRefGoogle Scholar
  205. E. Mishin, E. Sutton, G. Milikh, I. Galkin, C. Roth, M. Förster, F2-region atmospheric gravity waves due to high-power HF heating and subauroral polarization streams. Geophys. Res. Lett. 39, L11101 (2012). ADSCrossRefGoogle Scholar
  206. E. Mishin, B. Watkins, N. Lehtinen, B. Eliasson, T. Pedersen, S. Grach, Artificial ionospheric layers driven by high-frequency radiowaves: An assessment. J. Geophys. Res. Space Phys. 121, 3497–3524 (2016). ADSCrossRefGoogle Scholar
  207. E. Mjølhus, On linear conversion in a magnetized plasma. Radio Sci. 25, 1321–1339 (1990) ADSGoogle Scholar
  208. E. Mjølhus, On the small scale striation effect in ionospheric radio modification experiments near harmonics of the electron gyro frequency. J. Atmos. Terr. Phys. 55, 907 (1993) ADSGoogle Scholar
  209. E. Mjølhus, E. Helmersen, D. DuBois, Geometric aspects of HF driven Langmuir turbulence in the ionosphere. Nonlinear Process. Geophys. 10, 151–177 (2003) ADSGoogle Scholar
  210. M.M. Mogilevsky, L.M. Zelenyi, A.G. Demekhov, A.A. Petrukovich, D.R. Shklyar, RESONANCE project for studies of wave-particle interactions in the inner magnetosphere, in Dynamics of the Earth’s Radiation Belts and Inner Magnetosphere, ed. by e.D. Summers, I.R. Mann, D.N. Baker, M. Schulz (American Geophysical Union, Washington, 2012). CrossRefGoogle Scholar
  211. R.C. Moore, S. Fujjimaru, M. Cohen, M. Golkowski, M.J. McCarrick, On the altitude of the ELF/VLF source region generated during “beat wave” HF heating experiments. Geophys. Res. Lett. 39, L18101 (2012). ADSCrossRefGoogle Scholar
  212. R.C. Moore, S. Fujimaru, D.A. Kotovsky, M. Gołkowski, Observations of ionospheric ELF and VLF wave generation by excitation of the thermal cubic nonlinearity. Phys. Rev. Lett. 111(23), 235007 (2013). ADSCrossRefGoogle Scholar
  213. S.L. Musher, A.M. Rubenchik, B.I. Sturman, Collective effects associated with lower hybrid heating of plasma. Plasma Phys. 20, 1131–1150 (1978) ADSGoogle Scholar
  214. C. Mutiso, J. Hughes, G. Sivjee, T. Pedersen, B. Gustavsson, M. Kosch, Previously unreported optical emissions generated during ionospheric heating. Geophys. Res. Lett. 35, L14103 (2008). ADSCrossRefGoogle Scholar
  215. A. Najmi, G. Milikh, J. Secan, K. Chiang, M. Psiaki, P. Bernhardt, S. Briczinski, C. Siefring, C.L. Chang, K. Papadopoulos, Generation and detection of super small striations by F region HF heating. J. Geophys. Res. Space Phys. 119(7) (2014).
  216. A. Najmi, B. Eliasson, X. Shao, G. Milikh, K. Papadopoulos, Simulations of ionospheric turbulence produced by HF heating near the upper hybrid layer. Radio Sci. 51, 704–717 (2016). ADSCrossRefGoogle Scholar
  217. S. Oyama, B. Watkins, F. Djuth, M. Kosch, P. Bernhardt, C. Heinselman, Persistent enhancement of the HF pump-induced plasma line measured with a UHF diagnostic radar at HAARP. J. Geophys. Res. 111, A06309 (2006). ADSCrossRefGoogle Scholar
  218. K. Papadopoulos, H.-B. Zhou, C.-L. Chang, Cerenkov excitation of whistler/helicon waves by ionospheric HF heating. Geophys. Res. Lett. 21(17), 1767 (1994) ADSGoogle Scholar
  219. K. Papadopoulos, T. Wallace, M. McCarrick, G.M. Milikh, X. Yang, On the efficiency of ELF/VLF generation using HF heating of the auroral electrojet. Plasma Phys. Rep. 29, 561 (2003) ADSGoogle Scholar
  220. K. Papadopoulos, C.-L. Chang, J. Labenski, T. Wallace, First demonstration of HF driven ionospheric currents. Geophys. Res. Lett. 38, L20107 (2011b). ADSCrossRefGoogle Scholar
  221. K. Papadopoulos, N. Gumerov, X. Shao, C.-L. Cheng, I. Doxas, HF driven current in the polar ionosphere. Geophys. Res. Lett. 38, L12103 (2011a). ADSCrossRefGoogle Scholar
  222. T.R. Pedersen, H.C. Carlson, First observations of HF heater produced airglow at the High Frequency Active Auroral Research Program facility: thermal excitation and spatial structuring. Radio Sci. 36(5), 1013–1026 (2001). ADSCrossRefGoogle Scholar
  223. T.R. Pedersen, E. Gerken, Creation of visible artificial optical emissions in the aurora by high-power radio waves. Nature 433, 498–500 (2005). ADSCrossRefGoogle Scholar
  224. T. Pedersen, M. McCarrick, E. Gerken, C. Selcher, D. Sentman, H. Carlson, A. Gurevich, Magnetic zenith enhancement of HF radio-induced airglow production at HAARP. Geophys. Res. Lett. 30, 1169–1172 (2003). ADSCrossRefGoogle Scholar
  225. T. Pedersen, R. Esposito, E. Kendall, D. Sentman, M. Kosch, E. Mishin, R. Marshall, Observations of artificial and natural optical emissions at the HAARP facility. Ann. Geophys. 26, 1089–1099 (2008) ADSGoogle Scholar
  226. T. Pedersen, B. Gustavsson, E. Mishin, E. MacKenzie, H.C. Carlson, M. Starks, T. Mills, Optical ring formation and ionization production in high-power HF heating experiments at HAARP. Geophys. Res. Lett. 36, L18107 (2009). ADSCrossRefGoogle Scholar
  227. T. Pedersen, B. Gustavsson, E. Mishin, E. Kendall, T. Mills, H.C. Carlson, A.L. Snyder, Creation of artificial ionospheric layers using high-power HF waves. Geophys. Res. Lett. 37, L02106 (2010). ADSCrossRefGoogle Scholar
  228. T. Pedersen, M. McCarrick, B. Reinisch, B. Watkins, R. Hamel, V. Paznukhov, Production of artificial ionospheric layers by frequency sweeping near the 2nd gyroharmonic. Ann. Geophys. 29, 47–51 (2011). ADSCrossRefGoogle Scholar
  229. F.W. Perkins, A theoretical model for short-scale field-aligned plasma density striations. Radio Sci. 9(11), 1065–1070 (1974) ADSGoogle Scholar
  230. D. Piddyachiy, U.S. Inan, T.F. Bell, N.G. Lehtinen, M. Parrot, DEMETER observations of an intense upgoing column of ELF/VLF radiation excited by the HAARP HF heater. J. Geophys. Res. 113, A10308 (2008). ADSCrossRefGoogle Scholar
  231. S. Polyakov, V. Rapoport, The ionospheric Alfvén resonator. Geomagn. Aeron. 21, 816 (1981) ADSGoogle Scholar
  232. P.V. Ponomarenko, T.B. Leyser, B. Thide, New electron gyroharmonic effects in HF scatter from pump-excited magnetic field-aligned ionospheric irregularities. J. Geophys. Res. 104(A5), 10,081–10,087 (1999) ADSGoogle Scholar
  233. P.V. Ponomarenko, Yu.M. Yampolski, A.V. Zalizovsky, D. Hysell, O. Tyrnov, Interaction between artificial ionospheric irregularities and natural MHD waves. J. Geophys. Res. 105(A1), 171–181 (2000) ADSGoogle Scholar
  234. R. Pradipta, M.C. Lee, J.F. Cohen, D.J. Watkins, Generation of artificial acoustic-gravity waves and traveling ionospheric disturbances in HF heating experiments. Earth Moon Planets (2015). CrossRefGoogle Scholar
  235. V.O. Rapoport, V.L. Frolov, S.V. Polyakov, G.P. Komrakov, N.A. Ryzhov, G.A. Markov, A.S. Belov, M. Parrot, J.-L. Rauch, VLF electromagnetic field structures in the ionosphere disturbed by SURA RF heating facility. J. Geophys. Res. 115, A10322 (2010). ADSCrossRefGoogle Scholar
  236. B. Reinisch et al., First results from the Radio Plasma Imager on IMAGE. Geophys. Res. Lett. 28, 1167–1170 (2001). ADSCrossRefGoogle Scholar
  237. F.J. Rich, M. Hairston, Large-scale convection patterns observed by DMSP. J. Geophys. Res. 79, 3827 (1994) ADSGoogle Scholar
  238. M.T. Rietveld, P.N. Collis, J.-P.St. Maurice, Naturally enhanced ion-acoustic waves in the auroral ionosphere observed by the EISCAT 933 MHz radar. J. Geophys. Res. 96, 19291–19305 (1991) ADSGoogle Scholar
  239. M.T. Rietveld, H. Kohl, H. Kopka, P. Stubbe, Introduction to ionospheric heating at Tromsø. Experimental overview. J. Atmos. Terr. Phys. 55, 577–599 (1993) ADSGoogle Scholar
  240. M.T. Rietveld, B. Isham, H. Kohl, C. La Hoz, T. Hagfors, Measurements of HF-enhanced plasma and ion lines at EISCAT with high altitude resolution. J. Geophys. Res. 105(A4), 7429–7439 (2000) ADSGoogle Scholar
  241. M.T. Rietveld, B. Isham, T. Grydeland, C. La Hoz, T.B. Leyser, F. Honary, H. Ueda, M. Kosch, T. Hagfors, HF-pump-induced parametric instabilities in the auroral E-region. Adv. Space Res. 29(9), 1363–1368 (2002) ADSGoogle Scholar
  242. M.T. Rietveld, M.J. Kosch, N.F. Blagoveshchenskaya, V.A. Kornienko, T.B. Leyser, T.K. Yeoman, Ionospheric electron heating, optical emissions and striations induced by powerful HF radio waves at high latitudes: aspect angle dependence. J. Geophys. Res. 108(A4), 1141 (2003). CrossRefGoogle Scholar
  243. M.T. Rietveld, A. Senior, J. Markkanen, A. Westman, New capabilities of the upgraded EISCAT high-power HF facility. Radio Sci. 51 (2016).
  244. T. Robinson, The heating of the high latitude ionosphere by high-power radio waves. Phys. Rep. 179, 79–209 (1989) ADSGoogle Scholar
  245. T.R. Robinson, The Role of natural E-region plasma turbulence in the enhanced absorption of HF radio waves in the auroral ionosphere: Implications for RF heating of the auroral electrojet. Ann. Geophys. 12(4), 316–332 (1994) ADSGoogle Scholar
  246. P. Robinson, Nonlinear wave collapse and strong turbulence. Rev. Mod. Phys. 69, 507–573 (1997) ADSGoogle Scholar
  247. T.R. Robinson, F. Honary, A. Stocker, T.B. Jones, Factors influencing the heating of the auroral electrojet by high power radio waves. Adv. Space Res. 15(12), 41–44 (1995) ADSGoogle Scholar
  248. T.R. Robinson, G. Bond, P. Eglitis, F. Honary, M.T. Rietveld, RF heating of a strong auroral electrojet. Adv. Space Res. 21(5), 689–692 (1998) ADSGoogle Scholar
  249. T.R. Robinson, R. Strangeway, D.M. Wright, J.A. Davies, R.B. Horne, T.K. Yeoman, A.J. Stocker, M. Lester, M.T. Rietveld, I.R. Mann, C.W. Carlson, J.P. McFadden, FAST observations of ULF waves injected into the magnetosphere by means of modulated RF heating of the auroral electrojet. Geophys. Res. Lett. 27(19), 3165–3168 (2000) ADSGoogle Scholar
  250. T.R. Robinson, T.K. Yeoman, R.S. Dhillon, M. Lester, E.C. Thomas, J.D. Thornhill, D.M. Wright, A.P. van Eyken, I. McCrea, First observations of SPEAR induced artificial backscatter from CUTLASS and the EISCAT Svalbard radar. Ann. Geophys. 24, 291–309 (2006) ADSGoogle Scholar
  251. Yu. Ruzhin et al., On the possibility of localization of a substorm by using the SURA heating facility. Radiophys. Quantum Electron. 55(1–2), 85–94 (2012) ADSGoogle Scholar
  252. R. Sagdeev, The 1976 Oppenheimer Lectures: Critical problems in plasma astrophysics. Rev. Mod. Phys. 51, 1–20 (1979) ADSGoogle Scholar
  253. A. Samimi, W.A. Scales, P.A. Bernhardt, S.J. Briczinski, M.J. McCarrick, Ion gyroharmonic structures in stimulated radiation during second electron gyroharmonic heating, 1: theory. J. Geophys. Res. Space Phys. 118, 502–514 (2013). ADSCrossRefGoogle Scholar
  254. A. Samimi, W.A. Scales, P.A. Bernhardt, S.J. Briczinski, M.J. McCarrick, Ion gyroharmonic structures in stimulated radiation during second electron gyroharmonic heating, 2: simulations. J. Geophys. Res. Space Phys. 119, 462–478 (2014). ADSCrossRefGoogle Scholar
  255. J.C. Samson, D.D. Wallis, T.J. Hughes, F. Greutzberg, J.M. Ruohoniemi, R.A. Greenwald, Substorm intensifications and field line resonaces in the nightside magnetosphere. J. Geophys. Res. 97, 8495 (1992) ADSGoogle Scholar
  256. J.-A. Sauvaud, T. Moreau, R. Maggiolo, J.-P. Treilhou, C. Jacquey, A. Cros, J. Coutelier, J. Rouzaud, E. Penou, M. Gangloff, High-energy electron detection onboard DEMETER: The IDP spectrometer, description and first results on the inner belt. Planet. Space Sci. 54, 502–511 (2006) ADSGoogle Scholar
  257. M. Scherbarth, A. Adler, G. Ginet, Demonstration and Science Experiment (DSX) Mission, in Solar Physics and Space Weather Instrumentation III, ed. by S. Fineschi, J. Fennelly. Proc. of SPIE, vol. 7438 (2009), p. 74380B-1-10. CrossRefGoogle Scholar
  258. N.M. Schlatter, N. Ivchenko, B. Gustavsson, T. Leyser, M. Rietveld, Observations of HF induced instability in the auroral E region. Ann. Geophys. 31, 1103–1108 (2013). ADSCrossRefGoogle Scholar
  259. N.M. Schlatter, V. Belyey, B. Gustavsson, N. Ivchenko, D. Whiter, H. Dahlgren, S. Tuttle, T. Grydeland, Auroral ion acoustic wave enhancement observed with a radar interferometer system. Ann. Geophys. 33, 837–844 (2015). ADSCrossRefGoogle Scholar
  260. W. Schumann, On the damping of electromagnetic self-oscillations in the system earth–air–ionosphere. Z. Naturforsch. 7(a2), 250149 (1952). (in German) ADSCrossRefGoogle Scholar
  261. H. Scoffield, T. Yeoman, T. Robinson, L. Baddeley, R. Dhillon, D. Wright, T. Raita, T. Turunen, First results of artificial stimulation of the ionospheric Alfvén resonator at 78 N. Geophys. Res. Lett. 33(L19), 103 (2006). CrossRefGoogle Scholar
  262. K.J.F. Sedgemore-Schulthess, J.-P. St. Maurice, Naturally enhanced ion-acoustic spectra and their interpretation. Surv. Geophys. 22, 55–92 (2001) ADSGoogle Scholar
  263. A. Senior, F. Honary, P.J. Chapman, M.T. Rietveld, T.S. Kelso, M.J. Kosch, High-frequency magnetospheric sounding at EISCAT: some trials and their implications. Radio Sci. 43, RS4009 (2008). ADSCrossRefGoogle Scholar
  264. A. Senior, M.T. Rietveld, M.J. Kosch, W. Singer, Diagnosing radio plasma heating in the polar summer mesosphere using cross-modulation: Theory and observations. J. Geophys. Res. 115, A09318 (2010). ADSCrossRefGoogle Scholar
  265. A. Senior, M.T. Rietveld, F. Honary, W. Singer, M.J. Kosch, Measurements and modelling of cosmic noise absorption changes due to radio heating of the D-region ionosphere. J. Geophys. Res. 116, A04310 (2011). ADSCrossRefGoogle Scholar
  266. A. Senior, M.T. Rietveld, I. Haggstrom, M.J. Kosch, Radio-induced incoherent scatter ion line enhancements with wide altitude extents in the high-latitude ionosphere. Geophys. Res. Lett. 40(9), 1669–1674 (2013). ADSCrossRefGoogle Scholar
  267. A. Senior, A. Mahmoudian, H. Pinedo, C. La Hoz, M.T. Rietveld, W.A. Scales, M.J. Kosch, First modulation of high-frequency polar mesospheric summer echoes by radio heating of the ionosphere. Geophys. Res. Lett. 41(15), 5347–5353 (2014). ADSCrossRefGoogle Scholar
  268. E.N. Sergeev et al., Exploring HF-induced ionospheric turbulence by Doppler sounding and stimulated electromagnetic emissions at HAARP heating facility. Radio Sci. 51 (2016).
  269. E.N. Sergeev, V.L. Frolov, G.P. Komrakov, B. Thide, Temporal evolution of HF-excited plasma waves, measured at different pump frequencies by stimulated electromagnetic emission. J. Atmos. Sol.-Terr. Phys. 59(18), 2383–2400 (1997) ADSGoogle Scholar
  270. E.N. Sergeev, V.L. Frolov, G.N. Boiko, G.P. Komrakov, Results of investigation of the Langmuir and upper hybrid plasma turbulence evolution by means of the stimulated ionospheric emission. Radiophys. Quantum Electron. 41(3), 206–228 (1998) ADSGoogle Scholar
  271. E.N. Sergeev, S.M. Grach, G.P. Komrakov, V.L. Frolov, P. Stubbe, B. Thide, T.B. Leyser, T.D. Carozzi, Influence of small-scale irregularities on characteristics of the overshoot effect in the temporal evolution of stimulated electromagnetic emission. Part I. Development stage. Radiophys. Quantum Electron. 42(7), 544–556 (1999) ADSGoogle Scholar
  272. E.N. Sergeev, S.M. Grach, P.V. Kotov, Study of the excitation conditions and characteristics of ionospheric plasma turbulence at the development stage of the pondermotive parametric instability. Radiophys. Quantum Electron. 47(3), 185–204 (2004) ADSGoogle Scholar
  273. E.N. Sergeev, V.L. Frolov, S.M. Grach, P.V. Kotov, On the morphology of SEE spectral features in a wide pump wave frequency range. Adv. Space Res. 38(11), 2518–2526 (2006). ADSCrossRefGoogle Scholar
  274. E. Sergeev, S. Grach, A. Shindin, E. Mishin, P. Bernhardt, S. Briczinski, B. Isham, M. Broughton, J. LaBelle, B. Watkins, Artificial ionospheric layers during pump frequency stepping near the 4th gyroharmonic at HAARP. Phys. Rev. Lett. 110 (2013).
  275. E.N. Sergeev, S.M. Grach, V.L. Frolov, A.V. Shinding, Diagnostics of the generation, decay, and transfer of artificial plasma perturbations by means of short pulses of a high-power radio emission. Radiophys. Quantum Electron. 59(11), 876–887 (2017). ADSCrossRefGoogle Scholar
  276. T. Sergienko, I. Kornilov, E. Belova et al., Optical effects in the aurora caused by ionospheric HF heating. J. Atmos. Sol.-Terr. Phys. 99(18), 2401–2407 (1997) ADSGoogle Scholar
  277. T. Sergienko, B. Gustavsson, U. Brandstrom, K. Axelsson, Modelling of optical emissions enhanced by the HF pumping of the ionospheric F-region. Ann. Geophys. 30, 885–895 (2010). ADSCrossRefGoogle Scholar
  278. V. Shapiro, V. Shevchenko, Strong turbulence of plasma oscillations, in Basic Plasma Physics, vol. 2, ed. by A. Galeev, R. Sudan (North-Holland, New York, 1984), pp. 123–182 Google Scholar
  279. A.V. Shindin et al., The 630 nm and 557.7 nm airglow during HF ionosphere pumping by the SURA facility radiation for pump frequencies near the fourth electron gyroharmonic. Radiophys. Quantum Electron. 57(11), 759–772 (2015) ADSGoogle Scholar
  280. M.M. Shvarts, S.M. Grach, E.N. Sergeev, V.L. Frolov, On the generation of the stimulated electromagnetic emission. The computer simulation results. Adv. Space Res. 15(12), 59–62 (1995) Google Scholar
  281. C.L. Siefring, P.A. Bernhardt, H.G. James, R.T. Parris, The CERTO beacon on CASSIOPE/e-POP and experiments using high-power HF ionospheric heaters. Space Sci. Rev. 189, 107–122 (2014). ADSCrossRefGoogle Scholar
  282. F. Simoes, R. Pfaff, H. Freudenreich, Satellite observations of Schumann resonances in the Earth’s ionosphere. Geophys. Res. Lett. 38(L22), 101 (2011). CrossRefGoogle Scholar
  283. M. Starodubtsev, V. Nazarov, A. Kostrov, Laboratory study of nonlinear trapping of magnetized Langmuir waves inside a density depletion. Phys. Rev. Lett. 98, 195001 (2007). ADSCrossRefGoogle Scholar
  284. A.V. Streltsov, T.R. Pedersen, An alternative method for generation of ULF waves by ionospheric heating. Geophys. Res. Lett. 37, L14101 (2010). ADSCrossRefGoogle Scholar
  285. A.V. Streltsov, T.R. Pedersen, Excitation of zero-frequency magnetic field-aligned currents by ionospheric heating. Ann. Geophys. 29, 1147 (2011). ADSCrossRefGoogle Scholar
  286. A. Streltsov, W. Lotko, G. Milikh, Simulations of ULF field-aligned currents generated by HF heating of the ionosphere. J. Geophys. Res. 110, 629 (2005). CrossRefGoogle Scholar
  287. A.V. Streltsov, T.R. Pedersen, E.V. Mishin, A.L. Snyder, Ionospheric feedback instability and substorm development. J. Geophys. Res. 115, A07205 (2010a). ADSCrossRefGoogle Scholar
  288. A.V. Streltsov, M. Gołkowski, U.S. Inan, K.D. Papadopoulos, Propagation of whistler-mode waves with a modulated frequency in the magnetosphere. J. Geophys. Res. 115, A09209 (2010b). ADSCrossRefGoogle Scholar
  289. A.V. Streltsov, C.-L. Chang, J. Labenski, G.M. Milikh, A. Vartanyan, A.L. Snyder, Excitation of the ionospheric Alfvén resonator from the ground: theory and experiments. J. Geophys. Res. 116, A10221 (2011). ADSCrossRefGoogle Scholar
  290. A.V. Streltsov, T. Guido, B. Tulegenov, J. Labenski, C.-L. Chang, Artificial excitation of ELF waves with frequency of Schumann resonance. J. Atmos. Sol.-Terr. Phys. 119, 110 (2014). ADSCrossRefGoogle Scholar
  291. P. Stubbe, Review of ionospheric modification experiments at Tromsø. J. Atmos. Terr. Phys. 58, 1–4 (1996). 349–368 Google Scholar
  292. P. Stubbe, T. Hagfors, The Earth’s ionosphere: a wall-less plasma laboratory. Surv. Geophys. 18(1), 57–127 (1997) ADSGoogle Scholar
  293. P. Stubbe, H. Kopka, Modulation of the polar electrojet by powerful HF waves. J. Geophys. Res. 82(16), 2319–2325 (1977) ADSGoogle Scholar
  294. P. Stubbe, H. Kopka, Stimulated electromagnetic emission in a magnetized plasma: A new symmetrical spectral feature. Phys. Rev. Lett. 65(2), 183–186 (1990) ADSGoogle Scholar
  295. P. Stubbe, H. Kopka, R.L. Dowden, Generation of ELF and VLF waves by polar electrojet modulation: Experimental results. J. Geophys. Res. 86(A11), 9073 (1981) ADSGoogle Scholar
  296. P. Stubbe, H. Kopka, H. Lauche, M.T. Rietveld, A. Brekke, O. Holt, T.B. Jones, T. Robinson, A. Hedberg, B. Thidé, B. Crochet, H.-J. Lotz, Ionospheric modification experiments in northern Scandinavia. J. Atmos. Terr. Phys. 44(12), 1025–1041 (1982) ADSGoogle Scholar
  297. P. Stubbe, H. Kopka, B. Thidé, H. Derblom, Stimulated electromagnetic emission: a new technique to study the parametric decay instability in the ionosphere. J. Geophys. Res. 89(A9), 7523–7536 (1984) ADSGoogle Scholar
  298. P. Stubbe, H. Kopka, M.T. Rietveld, A. Frey, P. Hoeg, H. Kohl, E. Nielsen, G. Rose, C. LaHoz, R. Barr, H. Derblom, A. Hedberg, B. Thide, T.B. Jones, T. Robinson, A. Brekke, T. Hansen, O. Holt, Ionospheric modification experiments with the Tromsøheating facility. J. Atmos. Terr. Phys. 47(12), 1151–1163 (1985) ADSGoogle Scholar
  299. P. Stubbe, A.J. Stocker, F. Honary, T.R. Robinson, T.B. Jones, Stimulated electromagnetic emissions (SEE) and anomalous HF wave absorption near electron gyroharmonics. J. Geophys. Res. 99, 6233–6246 (1994) ADSGoogle Scholar
  300. B. Sturman, Interaction of potential oscillations in a magnetoactive plasma. Radiophys. Quantum Electron. 17, 1349–1355 (1974) ADSGoogle Scholar
  301. M.P. Sulzer, J.D. Mathews, A.A. Tomko, A UHF cross-modulation D region heating experiment with aeronomic implications. Radio Sci. 17(2), 435–443 (1982) ADSGoogle Scholar
  302. V. Surkov, N. Nosikova, A. Plyasov, V. Pilipenko, V. Ignatov, Penetration of Schumann resonances into the upper ionosphere. J. Atmos. Sol.-Terr. Phys. 97, 65 (2013) ADSGoogle Scholar
  303. B.D.H. Tellegen, Interaction between radio waves. Nature 131, 840 (1933). ADSCrossRefGoogle Scholar
  304. E.D. Tereshchenko, B.Z. Khudukon, A.V. Gurevich, K.P. Zybin, V.L. Frolov, E.N. Myasnikov, N.V. Muravieva, H.C. Carlson, Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes. Phys. Lett. A 325, 381–388 (2004) ADSGoogle Scholar
  305. B. Thidé, H. Kopka, P. Stubbe, Observations of stimulated scattering of a strong high frequency radio wave in the ionosphere. Phys. Rev. Lett. 49, 1561–1564 (1982). ADSCrossRefGoogle Scholar
  306. G.D. Thome, D.W. Blood, First observations of RF backscatter from field-aligned irregularities produced by ionospheric heating. Radio Sci. 9(11), 917–921 (1974) ADSGoogle Scholar
  307. V. Trakhtengertz, A.Y. Feldstein, Quiet auroral arcs: ionospheric effect of magnetospheric convection stratification. Planet. Space Sci. 32, 127 (1984) ADSGoogle Scholar
  308. T.T. Tsuda, M.T. Rietveld, M.J. Kosch, S. Oyama, K. Hosokawa, S. Nozawa, T. Kawabata, A. Mizuno, Y. Ogawa, A survey of conditions for artificial aurora experiments at EISCAT Tromsø site using dynasonde data. Earth Planets Space 70, 40 (2018). ADSCrossRefGoogle Scholar
  309. V.P. Uryadov, G.G. Vertogradov, V.G. Vertogradov, G.P. Komrakov, N. Cherkashin Yu, V.V. Vas’kov, Field-aligned scattering of HF radio waves under modification of the ionosphere by high-power oblique radio waves. Radiophys. Quantum Electron. 50(8), 611–618 (2007) ADSGoogle Scholar
  310. A. Vartanyan, G.M. Milikh, E. Mishin, M. Parrot, I. Galkin, B. Reinisch, J. Huba, G. Joyce, K. Papadopoulos, Artificial ducts caused by HF heating of the ionosphere by HAARP. J. Geophys. Res. 117, A10307 (2012). ADSCrossRefGoogle Scholar
  311. A. Vartanyan, G.M. Milikh, B. Eliasson, A.C. Najmi, M. Parrot, K. Papadopoulos, Generation of whistler waves by continuous HF heating of the upper ionosphere. Radio Sci. 51, 1188 (2016). ADSCrossRefGoogle Scholar
  312. V.V. Vas’kov, N.I. Bud’ko, O.V. Kapustina, Y.M. Mikhailov, N.A. Ryabova, G.L. Gdalevich, G.P. Komrakov, A.N. Maresov, Detection on the INTERCOSMOS-24 satellite of VLF and ELF waves stimulated in the topside ionosphere by the heating facility SURA. J. Atmos. Sol.-Terr. Phys. 60(12), 1261–1274 (1998). ADSCrossRefGoogle Scholar
  313. J. Vierinen, A. Kero, M.T. Rietveld, High latitude artificial periodic irregularity observations with the upgraded EISCAT heating facility. J. Atmos. Sol.-Terr. Phys. 105–106, 253–261 (2013) ADSGoogle Scholar
  314. M.N. Vlasov, M.C. Kelley, D.L. Hysell, The main types of electron energy distribution determined by model fitting to optical emissions during HF wave ionospheric modification experiments. J. Geophys. Res. 118, 3877–3890 (2013). CrossRefGoogle Scholar
  315. A. Volokitin, C. Krafft, Wave decay processes in a weakly magnetized plasma. Phys. Lett. A 336, 193–198 (2005) ADSGoogle Scholar
  316. A. Volokitin, E. Mishin, Relaxation of an electron beam in a plasma with infrequent collisions. Sov. J. Plasma Phys. 5, 654 (1979) ADSGoogle Scholar
  317. J. Wang, D. Newman, M. Goldman, Vlasov simulations of electron heating by Langmuir turbulence near the critical altitude in the radiation-modified ionosphere. J. Atmos. Sol.-Terr. Phys. 59, 2461 (1997). ADSCrossRefGoogle Scholar
  318. A.Y. Wong, J. Carroll, R. Dickman, W. Harrison, W. Huhn, B. Lure, M. McCarrick, J. Santoru, C. Schock, G. Wong, R.F. Wuerker, High-power radiating facility at the HIPAS Observatory. Radio Sci. 25(6), 1269–1282 (1990) ADSGoogle Scholar
  319. D.M. Wright, J.A. Davies, T.K. Yeoman, T. Robinson, S.R. Cash, E. Kolesnikova, M. Lester, P.J. Chapman, R.J. Strangeway, R.B. Horne, M.T. Rietveld, C.W. Carlson, Detection of artificially generated ULF waves by the FAST spacecraft and its application to the “tagging” of narrow flux tubes. J. Geophys. Res. 108(A2), 1090 (2003). CrossRefGoogle Scholar
  320. H. Xi, W. Scales, Numerical simulation studies on the broad upshifted maximum of ionospheric stimulated electromagnetic emission. J. Geophys. Res. 106, 12,787 (2001). ADSCrossRefGoogle Scholar
  321. N.A. Zabotin, E.S. Kovalenko, Simple numerical model of radio wave multiple scattering effects in the ionospheric plasma layer. Waves Random Media 9(3), 393–399 (1999). ADSCrossRefzbMATHGoogle Scholar
  322. V. Zakharov, Collapse and self-focusing of Langmuir waves, in Basic Plasma Physics, vol. 2, ed. by A. Galeev, R. Sudan (North-Holland, New York, 1984), pp. 81–121 Google Scholar
  323. H.L. Zhou, J. Huang, S.P. Kuo, Cascading of the upper hybrid/electron Bernstein wave in ionospheric heating experiments. Phys. Plasmas 1, 3044–3052 (1994) ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Embry-Riddle Aeronautical UniversityDaytona BeachUSA
  2. 2.National Academy of Sciences at Space Vehicles DirectorateAir Force Research LaboratoryAlbuquerqueUSA
  4. 4.Space Research InstituteMoscowRussia
  5. 5.Nizhny Novgorod State UniversityNizhny NovgorodRussia
  6. 6.Kazan Federal UniversityKazanRussia
  7. 7.Lancaster UniversityLancasterUK
  8. 8.South African National Space AgencyHermanusSouth Africa
  9. 9.University of the Western CapeBellvilleSouth Africa
  10. 10.Geophysical InstituteUniversity of Alaska FairbanksFairbanksUSA
  11. 11.Air Force Research LaboratorySpace Vehicles DirectorateAlbuquerqueUSA
  12. 12.EISCATRamfjordbotnNorway
  13. 13.UiT The Arctic University of NorwayTromsøNorway

Personalised recommendations