Advertisement

Space Science Reviews

, 214:109 | Cite as

Atmospheric Science with InSight

  • Aymeric Spiga
  • Don Banfield
  • Nicholas A. Teanby
  • François Forget
  • Antoine Lucas
  • Balthasar Kenda
  • Jose Antonio Rodriguez Manfredi
  • Rudolf Widmer-Schnidrig
  • Naomi Murdoch
  • Mark T. Lemmon
  • Raphaël F. Garcia
  • Léo Martire
  • Özgür Karatekin
  • Sébastien Le Maistre
  • Bart Van Hove
  • Véronique Dehant
  • Philippe Lognonné
  • Nils Mueller
  • Ralph Lorenz
  • David Mimoun
  • Sébastien Rodriguez
  • Éric Beucler
  • Ingrid Daubar
  • Matthew P. Golombek
  • Tanguy Bertrand
  • Yasuhiro Nishikawa
  • Ehouarn Millour
  • Lucie Rolland
  • Quentin Brissaud
  • Taichi Kawamura
  • Antoine Mocquet
  • Roland Martin
  • John Clinton
  • Éléonore Stutzmann
  • Tilman Spohn
  • Suzanne Smrekar
  • William B. Banerdt
Article
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

In November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars.

Keywords

Mars InSight Atmospheric science Planetary atmospheres 

Notes

Acknowledgements

Bertrand, Forget, Garcia, Kenda, Lognonné, Millour, Mimoun, Murdoch, Spiga acknowledge financial support from Centre National d’Études Spatiales (CNES). Spiga acknowledges computing support from Institut du développement et des ressources en informatique scientifique (IDRIS). Banfield, Lemmon, Lorenz acknowledge financial support from National Aeronautics and Space Administration (NASA). Banerdt, Daubar, Golombek, Mueller, Smrekar acknowledge that a portion of this research was carried out at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Teanby is supported by the UK Space Agency. Karatekin, Le Maistre, Van Hove, Dehant are financially supported by the Belgian PRODEX program managed by the European Space Agency (ESA), in collaboration with the Belgian Federal Science Policy Office. Kenda, Lognonné, Lucas, Rodriguez acknowledge financial support from the UnivEarthS LabEx program of Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-IDEX-0005-02). Rodriguez and Lucas acknowledge financial support from the French National Research Agency (ANR-APOSTIC-11-BS56-002 and ANR-12-BS05-001-3/EXO-DUNES). Forget and Spiga thank Luca Montabone and Mike Wolff from Space Science Institute for providing unpublished data: respectively dust opacity for MY33 and MRO/MARCI cloud opacity estimates. This paper was written with the collaborative tools Overleaf and Git. We acknowledge two anonymous reviewers for thorough and constructive comments which helped us to improve the paper.

References

  1. D.L. Anderson, W.F. Miller, G.V. Latham, Y. Nakamura, M.N. Toksoz, A.M. Dainty, F.K. Duennebier, A.R. Lazarewicz, R.L. Kovach, T.C.D. Knight, Seismology on Mars. J. Geophys. Lett. 82, 4524–4546 (1977) ADSCrossRefGoogle Scholar
  2. W.B. Banerdt, S. Smrekar et al., The InSight mission. Space Sci. Rev. (2018 this issue) Google Scholar
  3. D. Banfield, J.-A. Rodriguez Manfredi, C. Russell et al., The InSight auxiliary payload sensor suiteapss apss. Space Sci. Rev. (2018 this issue) Google Scholar
  4. G. Bellucci, F. Altieri, J.P. Bibring, G. Bonello, Y. Langevin, B. Gondet, F. Poulet, OMEGA/Mars Express: visual channel performances and data reduction techniques. Planet. Space Sci. 54, 675–684 (2006) ADSCrossRefGoogle Scholar
  5. J.-P. Bibring, A. Soufflot, M. Berthé, Y. Langevin, B. Gondet, P. Drossart, M. Bouyé, M. Combes, P. Puget, A. Semery, G. Bellucci, V. Formisano, V. Moroz, V. Kottsov, G. Bonello, S. Erard, O. Forni, A. Gendrin, N. Manaud, F. Poulet, G. Poulleau, T. Encrenaz, T. Fouchet, R. Melchiori, F. Altieri, N. Ignatiev, D. Titov, L. Zasova, A. Coradini, F. Capacionni, P. Cerroni, S. Fonti, N. Mangold, P. Pinet, B. Schmitt, C. Sotin, E. Hauber, H. Hoffmann, R. Jaumann, U. Keller, R. Arvidson, J. Mustard, F. Forget, OMEGA: Observatoire pour la Minéralogie, l’Eau, les Glaces et l’Activité, in ESA SP-1240: Mars Express: the Scientific Payload (2004), pp. 37–49 Google Scholar
  6. D.G. Blackburn, K.L. Bryson, V.F. Chevrier, L.A. Roe, K.F. White, Sublimation kinetics of CO2 ice on Mars. Planet. Space Sci. 58, 780–791 (2010) ADSCrossRefGoogle Scholar
  7. R.C. Blanchard, P.N. Desai, Mars Phoenix entry, descent, and landing trajectory and atmosphere reconstruction. J. Spacecr. Rockets 48, 809–821 (2011) ADSCrossRefGoogle Scholar
  8. N.T. Bridges, F. Ayoub, J.-P. Avouac, S. Leprince, A. Lucas, S. Mattson, Earth-like sand fluxes on Mars. Nature 485, 339–342 (2012) ADSCrossRefGoogle Scholar
  9. Q. Brissaud, R. Martin, R.F. Garcia, D. Komatitsch, Hybrid galerkin numerical modelling of elastodynamics and compressible Navier–Stokes couplings: applications to seismo-gravito acoustic waves. Geophys. J. Int. 210(2), 1047–1069 (2017) ADSCrossRefGoogle Scholar
  10. J. Businger, J. Wyngaard, Y. Izumi, E. Bradley, Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci. 28(2), 181–189 (1971) ADSCrossRefGoogle Scholar
  11. B.A. Cantor, MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186, 60–96 (2007) ADSCrossRefGoogle Scholar
  12. B.A. Cantor, P.B. James, M. Caplinger, M.J. Wolff, Martian dust storms: 1999 Mars Orbiter Camera observations. J. Geophys. Res. 106, 23653–23688 (2001) ADSCrossRefGoogle Scholar
  13. B.A. Cantor, P.B. James, W.M. Calvin, MARCI and MOC observations of the atmosphere and surface cap in the north polar region of Mars. Icarus 208, 61–81 (2010) ADSCrossRefGoogle Scholar
  14. F. Cara, G. Di Giulio, A. Rovelli, A study on seismic noise variations at Colfiorito, Central Italy: implications for the use of h/v spectral ratios. Geophys. Res. Lett. 30(18) (2003) Google Scholar
  15. T.E. Chamberlain, H.L. Cole, R.G. Dutton, G.C. Greene, J.E. Tillman, Atmospheric measurements on Mars—the Viking meteorology experiment. Bull. Am. Meteorol. Soc. 57, 1094–1104 (1976) ADSCrossRefGoogle Scholar
  16. D. Choi, C. Dundas, Measurements of martian dust devil winds with HiRISE. Geophys. Res. Lett. 38 (2011) CrossRefGoogle Scholar
  17. R.T. Clancy, B.J. Sandor, M.J. Woff, P.R. Christensen, M.D. Smith, J.C. Pearl, B.J. Conrath, R.J. Wilson, An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, 9553–9571 (2000) ADSCrossRefGoogle Scholar
  18. R.T. Clancy, M.J. Wolff, P.R. Christensen, Mars aerosol studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res., Planets 108(E9), 1–2 (2003) Google Scholar
  19. J.F. Clinton, D. Giardini, P. Lognonné, B. Banerdt, M. van Driel, M. Drilleau, N. Murdoch, M. Panning, R. Garcia, D. Mimoun, M. Golombek, J. Tromp, R. Weber, M. Böse, S. Ceylan, I. Daubar, B. Kenda, A. Khan, L. Perrin, A. Spiga, Preparing for InSight: an invitation to participate in a blind test for martian seismicity. Seismol. Res. Lett. 88, 1290–1302 (2017) CrossRefGoogle Scholar
  20. J. Clinton et al., Marsquake service—building a martian seismicity catalogue for InSight. Space Sci. Rev. (2018 this issue) Google Scholar
  21. A. Colaïtis, A. Spiga, F. Hourdin, C. Rio, F. Forget, E. Millour, A thermal plume model for the Martian convective boundary layer. J. Geophys. Res., Planets 118, 1468–1487 (2013) ADSCrossRefGoogle Scholar
  22. D.S. Colburn, J.B. Pollack, R.M. Haberle, Diurnal variations in optical depth at Mars. Icarus 79, 159–189 (1989) ADSCrossRefGoogle Scholar
  23. M. Collins, S.R. Lewis, P.L. Read, F. Hourdin, Baroclinic wave transitions in the Martian atmosphere. Icarus 120, 344–357 (1996) ADSCrossRefGoogle Scholar
  24. I. Daubar, M. Golombek, S. Smrekar, W. Banerdt et al., Impact studies with InSight. Space Sci. Rev. (2018 this issue) Google Scholar
  25. R. Davy, J.A. Davis, P.A. Taylor, C.F. Lange, W. Weng, J. Whiteway, H.P. Gunnlaugson, Initial analysis of air temperature and related data from the phoenix met station and their use in estimating turbulent heat fluxes. J. Geophys. Res., Planets 115(E3), E00E13 (2010) ADSGoogle Scholar
  26. V. Dehant, W. Folkner, E. Renotte, D. Orban, S. Asmar, G. Balmino, J. Barriot, J. Benoist, R. Biancale, J. Biele, F. Budnik, S. Burger, O. de Viron, B. Häusler, Ö. Karatekin, S. Le Maistre, P. Lognonné, M. Menvielle, M. Mitrovic, M. Pätzold, A. Rivoldini, P. Rosenblatt, G. Schubert, T. Spohn, P. Tortora, T. van Hoolst, O. Witasse, M. Yseboodt, Lander radioscience for obtaining the rotation and orientation of Mars. Planet. Space Sci. 57, 1050–1067 (2009) ADSCrossRefGoogle Scholar
  27. V. Dehant, S. Le Maistre, A. Rivoldini, M. Yseboodt, P. Rosenblatt, T. Van Hoolst, M. Mitrovic, Ö. Karatekin, J. Marty, A. Chicarro, Revealing mars’ deep interior: future geodesy missions using radio links between landers, orbiters, and the Earth. Planet. Space Sci. 59, 1069–1081 (2011) ADSCrossRefGoogle Scholar
  28. P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, P. Lognonné, M. Golombek, E. De Laure, K. Hurst, J.-C. Dupla, S. Kedar, Y.J. Cui, B. Banerdt, An Investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site. Space Sci. Rev. 211, 191–213 (2017) ADSCrossRefGoogle Scholar
  29. P.S. du Courrech, C. Narteau, X. Gao, Two modes for dune orientation. Geology 42, 743–746 (2014) ADSCrossRefGoogle Scholar
  30. C.W. Ebeling, Inferring ocean storm characteristics from ambient seismic noise: a historical perspective, in Advances in Geophysics, ed. by R. Dmowska. Advances in Geophysics, vol. 53 (Elsevier, Amsterdam, 2012), pp. 1–33 Google Scholar
  31. M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res., Planets 115(E14), E00E16 (2010) Google Scholar
  32. M. Farrell, P.H. Smith, G.T. Delory, G. Hillard, J.R. Marshall, D. Catling, M. Hecht, D.M. Tratt, N. Renno, M.D. Desch, S. Cummer, J.G. Houser, B. Johnson, Electric and magnetic signatures of dust devils from the 2000–2001 matador desert tests. J. Geophys. Res. 109 (2004) Google Scholar
  33. L. Fenton, T.I. Michaels, Characterizing the sensitivity of daytime turbulent activity on Mars with the MRAMS LES: early results. Mars Int. J. Mars Sci. Explor. 5, 159–171 (2010) ADSGoogle Scholar
  34. F. Ferri, P.H. Smith, M. Lemmon, N.O. Rennó, Dust devils as observed by Mars Pathfinder. J. Geophys. Res., Planets 108, 5133 (2003) ADSCrossRefGoogle Scholar
  35. F. Ferri, O. Karatekin, S. Lewis et al., Exomars atmospheric mars entry and landing investigations and analysis (amelia). Space Sci. Rev. (2018 this issue) Google Scholar
  36. T. Foken, 50 years of the Monin–Obukhov similarity theory. Bound.-Layer Meteorol. 119(3), 431–447 (2006) ADSCrossRefGoogle Scholar
  37. W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R.A. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278, 1749–1751 (1997) ADSCrossRefGoogle Scholar
  38. W.M. Folkner, V. Dehant, S. Le Maistre, M. Yseboodt, A. Rivoldini, T. Van Hoolst, S.W. Asmar, M.P. Golombek, The rotation and interior structure experiment on the InSight mission to Mars. Space Sci. Res. 214(5), 100 (2018).  https://doi.org/10.1007/s11214-018-0530-5 ADSCrossRefGoogle Scholar
  39. F. Forget, F. Hourdin, R. Fournier, C. Hourdin, O. Talagrand, M. Collins, S.R. Lewis, P.L. Read, J.-P. Huot, Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24176 (1999) ADSCrossRefGoogle Scholar
  40. F. Forget, A. Spiga, B. Dolla, S. Vinatier, R. Melchiorri, P. Drossart, A. Gendrin, J.-P. Bibring, Y. Langevin, B. Gondet, Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer, 1: retrieval method. J. Geophys. Res., Planets 112(E11), 8 (2007) Google Scholar
  41. D. Fritts, M. Alexander, Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41(1), 1003 (2003) ADSCrossRefGoogle Scholar
  42. S.G. Fryberger, G. Dean, Dune forms and wind regime, in A Study of Global Sand Seas, ed. by E.D. McKee. Geological Survey Professional Paper, vol. 1052 (United States Government Printing Office, New York, 1979), pp. 137–169 Google Scholar
  43. X. Gao, C. Narteau, O. Rozier, P.S. du Courrech, Phase diagrams of dune shape and orientation depending on sand availability. Sci. Rep. 5, 14677 (2015) ADSCrossRefGoogle Scholar
  44. R.F. Garcia, Q. Brissaud, L. Rolland, R. Martin, D. Komatitsch, A. Spiga, P. Lognonné, B. Banerdt, Finite-difference modeling of acoustic and gravity wave propagation in Mars atmosphere: application to infrasounds emitted by meteor impacts. Space Sci. Rev. 211, 547–570 (2017) ADSCrossRefGoogle Scholar
  45. J.R. Garratt, The Atmospheric Boundary Layer (Cambridge Univ. Press, New York, 1992) zbMATHGoogle Scholar
  46. I. Gaudot, E. Beucler, A. Mocquet, M. Schimmel, M. Le Feuvre, Statistical redundancy of instantaneous phases: theory and application to the seismic ambient wavefield. Geophys. J. Int. 204(2), 1159–1163 (2016) ADSCrossRefGoogle Scholar
  47. P. Gentine, G.-J. Steeneveld, B.G. Heusinkveld, A.A. Holtslag, Coupling between radiative flux divergence and turbulence near the surface. Q. J. R. Meteorol. Soc. (2018) Google Scholar
  48. M. Giuranna, V. Formisano, D. Biondi, A. Ekonomov, S. Fonti, D. Grassi, H. Hirsch, I. Khatuntsev, N. Ignatiev, M. Malgoska, A. Mattana, A. Maturilli, E. Mencarelli, F. Nespoli, R. Orfei, P. Orleanski, G. Piccioni, M. Rataj, B. Saggin, L. Zasova, Calibration of the Planetary Fourier Spectrometer long wavelength channel. Planet. Space Sci. 53, 993–1007 (2005) ADSCrossRefGoogle Scholar
  49. N.R. Goins, A.R. Lazarewicz, Martian seismicity. Geophys. Res. Lett. 6, 368–370 (1979) ADSCrossRefGoogle Scholar
  50. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R.L. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017) ADSCrossRefGoogle Scholar
  51. M. Golombek, M. Grott, G. Kargl, J. Andrade, J. Marshall, N. Warner, N.A. Teanby, V. Ansan, E. Hauber, J. Voigt, R. Lichtenheldt, B. Knapmeyer-Endrun, I.J. Daubar, D. Kipp, N. Muller, P. Lognonné, C. Schmelzbach, D. Banfield, A. Trebi-Ollennu, J. Maki, S. Kedar, D. Mimoun, N. Murdoch, S. Piqueux, P. Delage, W.T. Pike, C. Charalambous, R. Lorenz, L. Fayon, A. Lucas, S. Rodriguez, P. Morgan, A. Spiga, M. Panning, T. Spohn, S. Smrekar, T. Gudkova, R. Garcia, D. Giardini, U. Christensen, T. Nicollier, D. Sollberger, J. Robertsson, K. Ali, B. Kenda, W.B. Banerdt, Geology and physical properties investigations by the InSight lander. Space Sci. Rev. 214(5), 84 (2018).  https://doi.org/10.1007/s11214-018-0512-7 ADSCrossRefGoogle Scholar
  52. J. Gómez-Elvira, C. Armiens, L. Castañer, M. Domínguez, M. Genzer, F. Gómez, R. Haberle, A.-M. Harri, V. Jiménez, H. Kahanpää, L. Kowalski, A. Lepinette, J. Martín, J. Martínez-Frías, I. McEwan, L. Mora, J. Moreno, S. Navarro, M.A. de Pablo, V. Peinado, A. Peña, J. Polkko, M. Ramos, N.O. Renno, J. Ricart, M. Richardson, J. Rodríguez-Manfredi, J. Romeral, E. Sebastián, J. Serrano, M. de la Torre Juárez, J. Torres, F. Torrero, R. Urquí, L. Vázquez, T. Velasco, J. Verdasca, M.-P. Zorzano, J. Martín-Torres, REMS: the Environmental Sensor Suite for the Mars Science Laboratory Rover. Space Sci. Rev. 170, 583–640 (2012) ADSCrossRefGoogle Scholar
  53. J. Gómez-Elvira, C. Armiens, I. Carrasco, M. Genzer, F. Gómez, R. Haberle, V.E. Hamilton, A.-M. Harri, H. Kahanpää, O. Kemppinen, A. Lepinette, J. Martín Soler, J. Martín-Torres, J. Martínez-Frías, M. Mischna, L. Mora, S. Navarro, C. Newman, M.A. de Pablo, V. Peinado, J. Polkko, S.C.R. Rafkin, M. Ramos, N.O. Rennó, M. Richardson, J.A. Rodríguez-Manfredi, J.J. Romeral Planelló, E. Sebastián, M. de la Torre Juárez, J. Torres, R. Urquí, A.R. Vasavada, J. Verdasca, M.-P. Zorzano, Curiosity’s rover environmental monitoring station: overview of the first 100 sols. J. Geophys. Res., Planets 119(7), 1680–1688 (2014). 2013JE004576 ADSCrossRefGoogle Scholar
  54. F. González-Galindo, A. Määttänen, F. Forget, A. Spiga, The martian mesosphere as revealed by CO2 clouds observations and general circulation modeling. Icarus 216, 10–22 (2011) ADSCrossRefGoogle Scholar
  55. E.E. Gossard, W.H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves—Their Generation and Propagation, 1st edn. Developments in Atmospheric Science, vol. 2 (Elsevier, Amsterdam, 1975) Google Scholar
  56. E. Gossard, W. Munk, On gravity waves in the atmosphere. J. Meteorol. 11(4), 259–269 (1954) CrossRefGoogle Scholar
  57. R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars Exploration Rover Spirit. J. Geophys. Res., Planets 111(E10), 12 (2006) Google Scholar
  58. R. Greeley, D.A. Waller, N.A. Cabrol, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, M. Pendleton Hoffer, S.D. Thompson, P.L. Whelley, Gusev Crater, Mars: observations of three dust devil seasons. J. Geophys. Res., Planets 115, E00F02 (2010) ADSCrossRefGoogle Scholar
  59. S.D. Guzewich, A.D. Toigo, M.I. Richardson, C.E. Newman, E.R. Talaat, D.W. Waugh, T.H. McConnochie, The impact of a realistic vertical dust distribution on the simulation of the Martian general circulation. J. Geophys. Res., Planets 118, 980–993 (2013) ADSCrossRefGoogle Scholar
  60. S.D. Guzewich, C.E. Newman, M. de la Torre Juárez, R.J. Wilson, M. Lemmon, M.D. Smith, H. Kahanpää, A.-M. Harri, Atmospheric tides in Gale Crater, Mars. Icarus 268, 37–49 (2016) ADSCrossRefGoogle Scholar
  61. S.D. Guzewich, C.E. Newman, M.D. Smith, J.E. Moores, C.L. Smith, C. Moore, M.I. Richardson, D. Kass, A. Kleinböhl, M. Mischna, F.J. Martín-Torres, M.-P. Zorzano-Mier, M. Battalio, The vertical dust profile over Gale crater, Mars. J. Geophys. Res., Planets 122(12), 2779–2792 (2017) ADSCrossRefGoogle Scholar
  62. S.D. Guzewich, A.D. Toigo, H. Wang, An investigation of dust storms observed with the Mars Color Imager. Icarus 289, 199–213 (2017) ADSCrossRefGoogle Scholar
  63. R.M. Haberle, M.A. Kahre, Detecting secular climate change on Mars. Mars Int. J. Mars Sci. Explor. 5, 68–75 (2010) ADSGoogle Scholar
  64. R.M. Haberle, J. Gómez-Elvira, M. Torre Juárez, A.-M. Harri, J.L. Hollingsworth, H. Kahanpää, M.A. Kahre, M. Lemmon, F.J. Martín-Torres, M. Mischna, J.E. Moores, C. Newman, S.C.R. Rafkin, N. Rennó, M.I. Richardson, J.A. Rodríguez-Manfredi, A.R. Vasavada, M.-P. Zorzano-Mier, Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. J. Geophys. Res., Planets 119, 440–453 (2014) ADSCrossRefGoogle Scholar
  65. R.M. Haberle, R.T. Clancy, F. Forget, M.D. Smith, R.W. Zurek, The Atmosphere and Climate of Mars, vol. 18 (Cambridge Univ. Press, London, 2017) CrossRefGoogle Scholar
  66. R.M. Haberle, M.D.L.T.Juárez, M.A. Kahre, D.M. Kass, J.R. Barnes, J.L. Hollingsworth, A.-M. Harri, H. Kahanpää, Detection of northern hemisphere transient eddies at Gale crater Mars. Icarus 307, 150–160 (2018) ADSCrossRefGoogle Scholar
  67. V.E. Hamilton, A.R. Vasavada, E. Sebastián, M. Torre Juárez, M. Ramos, C. Armiens, R.E. Arvidson, I. Carrasco, P.R. Christensen, M.A. De Pablo, W. Goetz, J. Gómez-Elvira, M.T. Lemmon, M.B. Madsen, F.J. Martín-Torres, J. Martínez-Frías, A. Molina, M.C. Palucis, S.C.R. Rafkin, M.I. Richardson, R.A. Yingst, M.-P. Zorzano, Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. J. Geophys. Res., Planets 119, 745–770 (2014) ADSCrossRefGoogle Scholar
  68. A. Haned, E. Stutzmann, M. Schimmel, S. Kiselev, A. Davaille, A. Yelles-Chaouche, Global tomography using seismic hum. Geophys. J. Int. 204(2), 1222–1236 (2016) ADSCrossRefGoogle Scholar
  69. A.-M. Harri, M. Genzer, O. Kemppinen, H. Kahanpää, J. Gomez-Elvira, J.A. Rodriguez-Manfredi, R. Haberle, J. Polkko, W. Schmidt, H. Savijärvi, J. Kauhanen, E. Atlaskin, M. Richardson, T. Siili, M. Paton, M. de la Torre Juarez, C. Newman, S. Rafkin, M.T. Lemmon, M. Mischna, S. Merikallio, H. Haukka, J. Martin-Torres, M.-P. Zorzano, V. Peinado, R. Urqui, A. Lapinette, A. Scodary, T. Mäkinen, L. Vazquez, N. Rennó (The REMS/MSL Science Team), Pressure observations by the curiosity rover: initial results. J. Geophys. Res., Planets 119(1), 82–92 (2014) ADSCrossRefGoogle Scholar
  70. N.G. Heavens, M.I. Richardson, A. Kleinböhl, D.M. Kass, D.J. McCleese, W. Abdou, J.L. Benson, J.T. Schofield, J.H. Shirley, P.M. Wolkenberg, Vertical distribution of dust in the Martian atmosphere during northern spring and summer: high-altitude tropical dust maximum at northern summer solstice. J. Geophys. Res., Planets 116(E15), E01007 (2011) ADSGoogle Scholar
  71. N.G. Heavens, M.S. Johnson, W.A. Abdou, D.M. Kass, A. Kleinböhl, D.J. McCleese, J.H. Shirley, R.J. Wilson, Seasonal and diurnal variability of detached dust layers in the tropical Martian atmosphere. J. Geophys. Res., Planets 119, 1748–1774 (2014) ADSCrossRefGoogle Scholar
  72. E. Hébrard, C. Listowski, P. Coll, B. Marticorena, G. Bergametti, A. Määttänen, F. Montmessin, F. Forget, An aerodynamic roughness length map derived from extended martian rock abundance data. J. Geophys. Res. 117(E4), E04008 (2012) ADSCrossRefGoogle Scholar
  73. S.L. Hess, J.A. Ryan, J.E. Tillman, R.M. Henry, C.B. Leovy, The annual cycle of pressure on Mars measured by Viking landers 1 and 2. Geophys. Res. Lett. 7, 197–200 (1980) ADSCrossRefGoogle Scholar
  74. D.P. Hinson, M. Pätzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008) ADSCrossRefGoogle Scholar
  75. U. Högström, Review of some basic characteristics of the atmospheric surface layer. Bound.-Layer Meteorol. 78(3), 215–246 (1996) ADSCrossRefGoogle Scholar
  76. J.L. Hollingsworth, R.M. Haberle, J. Barnes, A.F.C. Bridger, J.B. Pollack, H. Lee, J. Schaeffer, Orographic control of storm zones on Mars. Nature 380, 413–416 (1996) ADSCrossRefGoogle Scholar
  77. C. Holstein-Rathlou, A. Maue, P. Withers, Atmospheric studies from the Mars Science Laboratory entry, descent and landing atmospheric structure reconstruction. Planet. Space Sci. 120, 15–23 (2016) ADSCrossRefGoogle Scholar
  78. F. Hourdin, P. Le Van, F. Forget, O. Talagrand, Meteorological variability and the annual surface pressure cycle on Mars. J. Atmos. Sci. 50, 3625–3640 (1993) ADSCrossRefGoogle Scholar
  79. T. Imamura, A. Watanabe, Y. Maejima, Convective generation and vertical propagation of fast gravity waves on Mars: one- and two-dimensional modeling. Icarus 267, 51–63 (2016) ADSCrossRefGoogle Scholar
  80. P.S. Jackson, J.C.R. Hunt, Turbulent wind flow over a low hill. Q. J. R. Meteorol. Soc. 101, 929–955 (1975) ADSCrossRefGoogle Scholar
  81. R. Jaumann, G. Neukum, T. Behnke, T.C. Duxbury, K. Eichentopf, J. Flohrer, S.V. Gasselt, B. Giese, K. Gwinner, E. Hauber, H. Hoffmann, A. Hoffmeister, U. Köhler, K.-D. Matz, T.B. McCord, V. Mertens, J. Oberst, R. Pischel, D. Reiss, E. Ress, T. Roatsch, P. Saiger, F. Scholten, G. Schwarz, K. Stephan, M. Wählisch (the HRSC Co-Investigator Team), The high-resolution stereo camera (HRSC) experiment on Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55, 928–952 (2007) ADSCrossRefGoogle Scholar
  82. H. Kahanpää, C. Newman, J. Moores, M.-P. Zorzano, J. Martín-Torres, S. Navarro, A. Lepinette, B. Cantor, M.T. Lemmon, P. Valentín-Serrano, A. Ullán, W. Schmidt, Convective vortices and dust devils at the MSL landing site: annual variability. J. Geophys. Res., Planets 121, 1514–1549 (2016) ADSCrossRefGoogle Scholar
  83. M.A. Kahre, J.R. Murphy, R.M. Haberle, Modeling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res., Planets 111(E10), 6008 (2006) ADSCrossRefGoogle Scholar
  84. K.M. Kanak, On the numerical simulation of dust devil-like vortices in terrestrial and Martian convective boundary layers. Geophys. Res. Lett. 33, 19 (2006) CrossRefGoogle Scholar
  85. ö. Karatekin, L. Montabone, Atmospheric angular momentum and rotation variations of Mars between Martian years 24 and 27, in Mars Atmosphere: Modelling and Observation, 5th International Workshop, ed. by F. Forget, M. Millour (2014) Google Scholar
  86. Ö. Karatekin, O. de Viron, S. Lambert, V. Dehant, P. Rosenblatt, T. van Hoolst, S. Le Maistre, Atmospheric angular momentum variations of Earth, Mars and Venus at seasonal time scales. Planet. Space Sci. 59, 923–933 (2011) ADSCrossRefGoogle Scholar
  87. ö. Karatekin, V. Dehant, W.M. Folkner, S. Le Maistre, S. Asmar, A. Konopliv, Radioscience experiment to monitor atmospheric angular momentum variations onboard the forthcoming 2018 InSight and 2020 ExoMars Rovers, in Mars Atmosphere: Modelling and Observation, 6th International Workshop, ed. by F. Forget, M. Millour (2017) Google Scholar
  88. D.M. Kass, J.T. Schofield, T.I. Michaels, S.C.R. Rafkin, M.I. Richardson, A.D. Toigo, Analysis of atmospheric mesoscale models for entry, descent, and landing. J. Geophys. Res., Planets 108, 8090 (2003) ADSCrossRefGoogle Scholar
  89. S. Kedar, J. Andrade, W. Banerdt, P. Delage, M. Golombek, M. Grott, T. Hudson, A. Kiely, M. Knapmeyer, B. Knapmeyer-Endrun, C. Krause, T. Kawamura, P. Lognonné, T. Pike, Y. Ruan, T. Spohn, N. Teanby, J. Tromp, J. Wookey, Analysis of regolith properties using seismic signals generated by InSight’s hp3 penetrator. Space Sci. Rev. (2017) Google Scholar
  90. B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R. Lorenz, D. Banfield, M. Golombek, Modeling of ground deformation and shallow surface waves generated by martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. (2017) Google Scholar
  91. A. Kleinböhl, J.T. Schofield, D.M. Kass, W.A. Abdou, C.R. Backus, B. Sen, J.H. Shirley, W.G. Lawson, M.I. Richardson, F.W. Taylor, N.A. Teanby, D.J. McCleese, Mars Climate Sounder limb profile retrieval of atmospheric temperature, pressure, and dust and water ice opacity. J. Geophys. Res., Planets 114, 10006 (2009) ADSCrossRefGoogle Scholar
  92. B. Knapmeyer-Endrun, P. Golombek M, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed insight landing site in Elysium planitia, Mars. Space Sci. Rev. (2016) Google Scholar
  93. N. Kobayashi, K. Nishida, Continuous excitation of planetary free oscillations by atmospheric disturbances. Nature 395, 357–360 (1998) ADSCrossRefGoogle Scholar
  94. A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011) ADSCrossRefGoogle Scholar
  95. O. Korablev, F. Montmessin, A. Trokhimovskiy, A.A. Fedorova, A.V. Shakun, A.V. Grigoriev, B.E. Moshkin, N.I. Ignatiev, F. Forget, F. Lefèvre, K. Anufreychik, I. Dzuban, Y.S. Ivanov, Y.K. Kalinnikov, T.O. Kozlova, A. Kungurov, V. Makarov, F. Martynovich, I. Maslov, D. Merzlyakov, P.P. Moiseev, Y. Nikolskiy, A. Patrakeev, D. Patsaev, A. Santos-Skripko, O. Sazonov, N. Semena, A. Semenov, V. Shashkin, A. Sidorov, A.V. Stepanov, I. Stupin, D. Timonin, A.Y. Titov, A. Viktorov, A. Zharkov, F. Altieri, G. Arnold, D.A. Belyaev, J.L. Bertaux, D.S. Betsis, N. Duxbury, T. Encrenaz, T. Fouchet, J.-C. Gérard, D. Grassi, S. Guerlet, P. Hartogh, Y. Kasaba, I. Khatuntsev, V.A. Krasnopolsky, R.O. Kuzmin, E. Lellouch, M.A. Lopez-Valverde, M. Luginin, A. Määttänen, E. Marcq, J. Martin Torres, A.S. Medvedev, E. Millour, K.S. Olsen, M.R. Patel, C. Quantin-Nataf, A.V. Rodin, V.I. Shematovich, I. Thomas, N. Thomas, L. Vazquez, M. Vincendon, V. Wilquet, C.F. Wilson, L.V. Zasova, L.M. Zelenyi, M.P. Zorzano, The Atmospheric Chemistry Suite (ACS) of three spectrometers for the ExoMars 2016 Trace Gas Orbiter. Space Sci. Rev. 214(7) (2018) Google Scholar
  96. P. Kuchynka, W.M. Folkner, A.S. Konopliv, R.S. Park, S. Le Maistre, V. Dehant, New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 229, 340–347 (2014) ADSCrossRefGoogle Scholar
  97. M.V. Kurgansky, L. Baez, E.M. Ovalle, A simple model of the magnetic emission from a dust devil. J. Geophys. Res., Planets 112(E11), E11008 (2007) ADSCrossRefGoogle Scholar
  98. S.E. Larsen, H.E. Jørgensen, L. Landberg, e. al, Aspects of the atmospheric surface layers on Mars and Earth. Bound.-Layer Meteorol. 105, 451–470 (2002) ADSCrossRefGoogle Scholar
  99. S. Le Maistre, P. Rosenblatt, A. Rivoldini, V. Dehant, J.-C. Marty, Ö. Karatekin, Lander radio science experiment with a direct link between Mars and the Earth. Planet. Space Sci. 68(1), 105–122 (2012) ADSCrossRefGoogle Scholar
  100. M.T. Lemmon, M.J. Wolff, M.D. Smith, R.T. Clancy, D. Banfield, G.A. Landis, A. Ghosh, P.H. Smith, N. Spanovich, B. Whitney, P. Whelley, R. Greeley, S. Thompson, J.F. Bell, S.W. Squyres, Atmospheric imaging results from the Mars Exploration Rovers: spirit and opportunity. Science 306, 1753–1756 (2004) ADSCrossRefGoogle Scholar
  101. M.T. Lemmon, M.J. Wolff, J.F. Bell III., M.D. Smith, B.A. Cantor, P.H. Smith, Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015) ADSCrossRefGoogle Scholar
  102. S.R. Lewis, P.R. Barker, Atmospheric tides in a Mars general circulation model with data assimilation. Adv. Space Res. 36, 2162–2168 (2005) ADSCrossRefGoogle Scholar
  103. S.R. Lewis, D.P. Mulholland, P.L. Read, L. Montabone, R.J. Wilson, M.D. Smith, The solsticial pause on Mars, 1: a planetary wave reanalysis. Icarus 264, 456–464 (2016) ADSCrossRefGoogle Scholar
  104. D. Li, G.G. Katul, S.S. Zilitinkevich, Revisiting the turbulent prandtl number in an idealized atmospheric surface layer. J. Atmos. Sci. 72(6), 2394–2410 (2015) ADSCrossRefGoogle Scholar
  105. D.K. Lilly, On the numerical simulation of buoyant convection. Tellus 14(2), 148–172 (1962) ADSCrossRefGoogle Scholar
  106. P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14, 239–302 (1993) ADSCrossRefGoogle Scholar
  107. P. Lognonné, E. Clévédé, H. Kanamori, Computation of seismograms and atmospheric oscillations by normal-mode summation for a spherical earth model with realistic atmosphere. Geophys. J. Int. 135, 388–406 (1998) ADSCrossRefGoogle Scholar
  108. P. Lognonné, F. Karakostas, L. Rolland, Y. Nishikawa, Modeling of atmospheric-coupled Rayleigh waves on planets with atmosphere: from Earth observation to Mars and Venus perspectives. J. Acoust. Soc. Am. 140(2) (2016) Google Scholar
  109. P. Lognonné, W.B. Banerdt, D. Giardini, W.T. Pike et al., SEIS: the seismic experiment for internal structure of InSight. Space Sci. Rev. (2018 this issue) Google Scholar
  110. R.D. Lorenz, Observing desert dust devils with a pressure logger. Geosci. Instrum. Methods Data Syst. 2(2), 477–505 (2012) CrossRefGoogle Scholar
  111. R.D. Lorenz, Heuristic estimation of dust devil vortex parameters and trajectories from single-station meteorological observations: application to insight at Mars. Icarus 271, 326–337 (2016) ADSCrossRefGoogle Scholar
  112. R.D. Lorenz, D. Christie, Dust devil signatures in infrasound records of the international monitoring system. Geophys. Res. Lett. 42(6), 2009–2014 (2015) ADSCrossRefGoogle Scholar
  113. R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W.B. Banerdt, Seismometer detection of dust devil vortices by ground tilt. Bull. Seismol. Soc. Am. (2015) Google Scholar
  114. R.D. Lorenz, Y. Nakamura, J.R. Murphy, Viking-2 seismometer measurements on mars: Pds data archive and meteorological applications. Earth Space Sci. 4(11), 681–688 (2017) ADSCrossRefGoogle Scholar
  115. A. Lucas, C. Narteau, S. Rodriguez, O. Rozier, Y. Callot, A. Garcia, P.S. du Courrech, Sediment flux from the morphodynamics of elongating linear dunes. Geology 43, 1027–1030 (2015) ADSCrossRefGoogle Scholar
  116. A. Määttänen, H. Savijärvi, Sensitivity tests with a one-dimensional boundary-layer Mars model. Bound.-Layer Meteorol. 113(3), 305–320 (2004) ADSCrossRefGoogle Scholar
  117. A. Määttänen, T. Fouchet, O. Forni, R. Melchiorri, F. Forget, H. Savijarvi, J.P. Bibring, Y. Langevin, B. Gondet, V. Formisano, M. Giuranna, A study of the properties of a local dust storm with Mars Express OMEGA and PFS data. Icarus 201(2), 504–516 (2009) ADSCrossRefGoogle Scholar
  118. A. Määttänen, F. Montmessin, B. Gondet, F. Scholten, H. Hoffmann, F. González-Galindo, A. Spiga, F. Forget, E. Hauber, G. Neukum, J. Bibring, J. Bertaux, Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus 209, 452–469 (2010) ADSCrossRefGoogle Scholar
  119. J.-B. Madeleine, F. Forget, E. Millour, L. Montabone, M.J. Wolff, Revisiting the radiative impact of dust on Mars using the LMD global climate model. J. Geophys. Res., Planets 116, 11010 (2011) ADSCrossRefGoogle Scholar
  120. J.-B. Madeleine, F. Forget, A. Spiga, M.J. Wolff, F. Montmessin, M. Vincendon, D. Jouglet, B. Gondet, J.-P. Bibring, Y. Langevin, B. Schmitt, Aphelion water-ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express. J. Geophys. Res., Planets 117(E16) (2012) CrossRefGoogle Scholar
  121. J.A. Magalhaes, J.T. Schofield, A. Seiff, Results of the Mars Pathfinder atmospheric structure investigation. J. Geophys. Res. 104, 8943–8956 (1999) ADSCrossRefGoogle Scholar
  122. J.N. Maki, M. Golombek, R. Deen, H. Abarca, C. Sorice, T. Goodsall, M. Schwochert, M. Lemmon, A. Trebi-Ollennu, W.B. Banerdt, The color cameras on the InSight lander. Space sci. Rev. 214(6), 105 (2018).  https://doi.org/10.1007/s11214-018-0536-z ADSCrossRefGoogle Scholar
  123. M.C. Malin, M.A. Caplinger, S.D. Davis, Observational evidence for an active surface reservoir of solid carbon dioxide on mars. Science 294(5549), 2146–2148 (2001) ADSCrossRefGoogle Scholar
  124. M. Malin, J. Bell, B. Cantor, M.A. Caplinger, W. Calvin, R. Clancy, K. Edgett, L. Edwards, R. Haberle, P. James, S. Lee, M. Ravine, P. Thomas, M. Wolff, Context Camera Investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112 (2007) Google Scholar
  125. M.C. Malin, W.M. Calvin, B.A. Cantor, R.T. Clancy, R.M. Haberle, P.B. James, P.C. Thomas, M.J. Wolff, J.F. Bell, S.W. Lee, Climate, weather, and north polar observations from the Mars Reconnaissance Orbiter Mars Color Imager. Icarus 194, 501–512 (2008) ADSCrossRefGoogle Scholar
  126. M.C. Malin, B.A. Cantor, A.W. Britton, Mro marci weather report for the week of 4 June 2018–10 June 2018. Malin Space Science Systems Captioned Image Release, MSSS-534 (2018). http://www.msss.com/msss_images/2018/06/13/
  127. L.J. Martin, R.W. Zurek, An analysis of the history of dust activity on Mars. J. Geophys. Res. 98(E2), 3221–3246 (1993) ADSCrossRefGoogle Scholar
  128. G. Martínez, F. Valero, L. Vázquez, Characterization of the Martian Surface Layer. J. Atmos. Sci. 66, 187–198 (2009) ADSCrossRefGoogle Scholar
  129. G.M. Martínez, C.N. Newman, A. De Vicente-Retortillo, E. Fischer, N.O. Renno, M.I. Richardson, A.G. Fairén, M. Genzer, S.D. Guzewich, R.M. Haberle, A.-M. Harri, O. Kemppinen, M.T. Lemmon, M.D. Smith, M. de la Torre-Juárez, A.R. Vasavada, The modern near-surface martian climate: a review of in-situ meteorological data from Viking to curiosity. Space Sci. Rev. 212(1), 295–338 (2017) ADSCrossRefGoogle Scholar
  130. P. Mason, Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46(11), 1492–1516 (1989) ADSCrossRefGoogle Scholar
  131. A. McEwen, L. Tornabene, H. Team, E. Eliason, J. Bergstrom, N. Bridges, C. Hansen, W. Delamere, J. Grant, V. Gulick, K. Herkenhoff, L. Keszthelyi, R. Kirk, M. Mellon, S.W. Squyres, N. Thomas, C. Weitz, Mars Reconnaissance Orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112 (2007) Google Scholar
  132. D. McNamara, R. Buland, Ambient noise levels in the continental United States. Bull. Seismol. Soc. Am. 94, 1517–1527 (2004) CrossRefGoogle Scholar
  133. S.M. Metzger, J.R. Carr, J.R. Johnson, T.J. Parker, M.T. Lemmon, Dust devil vortices seen by the Mars Pathfinder camera. Geophys. Res. Lett. 26, 2781–2784 (1999) ADSCrossRefGoogle Scholar
  134. T.I. Michaels, S.C.R. Rafkin, Large eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130, 1251–1274 (2004) ADSCrossRefGoogle Scholar
  135. E. Millour, F. Forget, A. Spiga, T. Navarro, J.-B. Madeleine, L. Montabone, F. Lefevre, J.-Y. Chaufray, M.A. Lopez-Valverde, F. Gonzalez-Galindo, S.R. Lewis, P.L. Read, M.-C. Desjean, J.-P. Huot (MCD/GCM Development Team), The Mars climate database (MCD version 5.1), in Eighth International Conference on Mars. LPI Contributions, vol. 1791 (2014), p. 1184 Google Scholar
  136. E. Millour, F. Forget, A. Spiga, T. Navarro, J.-B. Madeleine, L. Montabone, A. Pottier, F. Lefevre, F. Montmessin, J.-Y. Chaufray, M.A. Lopez-Valverde, F. Gonzalez-Galindo, S.R. Lewis, P.L. Read, J.-P. Huot, M.-C. Desjean (MCD/GCM Development Team), The Mars climate database (MCD version 5.2), in European Planetary Science Congress (2015), p. 10 Google Scholar
  137. D. Mimoun, N. Murdoch, P. Lognonné, K. Hurst, W.T. Pike, J. Hurley, T. Nébut, W.B. Banerdt, S. Team, The noise model of the seis seismometer of the insight mission to Mars. Space Sci. Rev. (2017) Google Scholar
  138. A.S. Monin, A.M. Obukhov, Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy Geofiz. Inst. AN SSSR 24, 163–187 (1954) Google Scholar
  139. L. Montabone, S.R. Lewis, P.L. Read, Interannual variability of Martian dust storms in assimilation of several years of Mars global surveyor observations. Adv. Space Res. 36, 2146–2155 (2005) ADSCrossRefGoogle Scholar
  140. L. Montabone, F. Forget, E. Millour, R.J. Wilson, S.R. Lewis, B. Cantor, D. Kass, A. Kleinböhl, M.T. Lemmon, M.D. Smith, M.J. Wolff, Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015) ADSCrossRefGoogle Scholar
  141. J.E. Moores, M.T. Lemmon, P.H. Smith, L. Komguem, J.A. Whiteway, Atmospheric dynamics at the Phoenix landing site as seen by the Surface Stereo Imager. J. Geophys. Res., Planets 115, E00E08 (2010) ADSCrossRefGoogle Scholar
  142. J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C.R. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, M. de la Torre Juárez, N. Rennó, J. Bell, F. Calef, B. Cantor, T.H. Mcconnochie, A.-M. Harri, M. Genzer, M.H. Wong, M.D. Smith, F.J. Martín-Torres, M.-P. Zorzano, O. Kemppinen, E. McCullough, Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249, 129–142 (2015a) ADSCrossRefGoogle Scholar
  143. J.E. Moores, M.T. Lemmon, S.C.R. Rafkin, R. Francis, J. Pla-Garcia, M. de la Torre Juárez, K. Bean, D. Kass, R. Haberle, C. Newman, M. Mischna, A. Vasavada, N. Rennó, J. Bell, F. Calef, B. Cantor, T.H. Mcconnochie, A.-M. Harri, M. Genzer, M. Wong, M.D. Smith, F. Javier Martín-Torres, M.-P. Zorzano, O. Kemppinen, E. McCullough, Atmospheric movies acquired at the Mars Science Laboratory landing site: cloud morphology, frequency and significance to the Gale Crater water cycle and Phoenix mission results. Adv. Space Res. 55, 2217–2238 (2015b) ADSCrossRefGoogle Scholar
  144. P. Morgan, M. Grott, B. Knapmeyer-Endrun, M. Golombek, P. Delage, P. Lognonné, S. Piqueux, I. Daubar, N. Murdoch, C. Charalambous, W.T. Pike, N. Müller, A. Hagermann, M. Siegler, R. Lichtenheldt, N. Teanby, S. Kedar, A pre-landing assessment of regolith properties at the InSight landing site. Space Sci. Rev. 214(6), 104 (2018).  https://doi.org/10.1007/s11214-018-0537-y ADSCrossRefGoogle Scholar
  145. M. Mucciarelli, M.R. Gallipoli, D. Di Giacomo, F. Di Nota, E. Nino, The influence of wind on measurements of seismic noise. Geophys. J. Int. 161(2), 303–308 (2005) ADSCrossRefGoogle Scholar
  146. D.P. Mulholland, P.L. Read, S.R. Lewis, Simulating the interannual variability of major dust storms on Mars using variable lifting thresholds. Icarus 223, 344–358 (2013) ADSCrossRefGoogle Scholar
  147. D.P. Mulholland, A. Spiga, C. Listowski, P.L. Read, An assessment of the impact of local processes on dust lifting in martian climate models. Icarus 252, 212–227 (2015) ADSCrossRefGoogle Scholar
  148. D.P. Mulholland, S.R. Lewis, P.L. Read, J.-B. Madeleine, F. Forget, The solsticial pause on Mars, 2: modelling and investigation of causes. Icarus 264, 465–477 (2016) ADSCrossRefGoogle Scholar
  149. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from large eddy simulations and demonstration of pressure decorrelation techniques for the Insight Mission. Space Sci. Rev. (2017a) Google Scholar
  150. N. Murdoch, D. Mimoun, R. Garcia, W. Rapin, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. (2017b) Google Scholar
  151. N. Murdoch, D. Alazard, N. Teanby, R. Myhill, B. Knapmeyer-Endrum, Flexible mode modelling of the InSight lander and consequences for the SEIS instrument. Space Sci. Rev. (2018 submitted for publication) Google Scholar
  152. J.R. Murphy, S. Nelli, Mars Pathfinder convective vortices: frequency of occurrence. Geophys. Res. Lett. 29(23), 230000 (2002) CrossRefGoogle Scholar
  153. J. Murphy, K. Steakley, M. Balme, G. Deprez, F. Esposito, H. Kahanpää, M. Lemmon, R. Lorenz, N. Murdoch, L. Neakrase, M. Patel, P. Whelley, Field measurements of terrestrial and martian dust devils. Space Sci. Rev. 203(1), 39–87 (2016) ADSCrossRefGoogle Scholar
  154. Y. Nakamura, D.L. Anderson, Martian wind activity detected by a seismometer at Viking lander 2 site. Geophys. Res. Lett. 6, 499–502 (1979) ADSCrossRefGoogle Scholar
  155. L.D.V. Neakrase, M.R. Balme, F. Esposito, T. Kelling, M. Klose, J.F. Kok, B. Marticorena, J. Merrison, M. Patel, G. Wurm, Particle lifting processes in dust devils. Space Sci. Rev. 203(1), 347–376 (2016) ADSCrossRefGoogle Scholar
  156. C.E. Newman, J. Gómez-Elvira, M. Marin, S. Navarro, J. Torres, M.I. Richardson, J.M. Battalio, S.D. Guzewich, R. Sullivan, M. de la Torre, A.R. Vasavada, N.T. Bridges, Winds measured by the rover environmental monitoring station (rems) during the mars science laboratory (msl) rover’s bagnold dunes campaign and comparison with numerical modeling using marswrf. Icarus 291(Suppl. C), 203–231 (2017) ADSCrossRefGoogle Scholar
  157. A.O. Nier, W.B. Hanson, A. Seiff, M.B. McElroy, N.W. Spencer, R.J. Duckett, T.C.D. Knight, W.S. Cook, Composition and structure of the Martian atmosphere—preliminary results from Viking 1. Science 193, 786–788 (1976) ADSCrossRefGoogle Scholar
  158. Y. Nishikawa, P. Lognonné, T. Kawamura, A. Spiga, T. Bertrand, F. Forget, K. Kurita, Estimation and detection of Mars’ background free oscillations for InSight mission. Space Sci. Rev. (2018 this issue) Google Scholar
  159. S. Nishizawa, M. Odaka, Y.O. Takahashi, K-i. Sugiyama, K. Nakajima, M. Ishiwatari, S-i. Takehiro, H. Yashiro, Y. Sato, H. Tomita, Y.-Y. Hayashi, Martian dust devil statistics from high-resolution large-eddy simulations. Geophys. Res. Lett. 43(9), 4180–4188 (2016). 2016GL068896 ADSCrossRefGoogle Scholar
  160. I. Ordonez-Etxeberria, R. Hueso, A. Sánchez-Lavega, A systematic search of sudden pressure drops on Gale crater during two Martian years derived from MSL/REMS data. Icarus 299, 308–330 (2018) ADSCrossRefGoogle Scholar
  161. A.A. Pankine, L.K. Tamppari, J.L. Bandfield, T.H. McConnochie, M.D. Smith, Retrievals of martian atmospheric opacities from MGS TES nighttime data. Icarus 226, 708–722 (2013) ADSCrossRefGoogle Scholar
  162. M.P. Panning, P. Lognonné, W. Bruce Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.-F. Blanchette-Guertin, E. Bozdağ, M. Drilleau, T. Gudkova, S. Hempel, A. Khan, V. Lekić, N. Murdoch, A.-C. Plesa, A. Rivoldini, N. Schmerr, Y. Ruan, O. Verhoeven, C. Gao, U. Christensen, J. Clinton, V. Dehant, D. Giardini, D. Mimoun, W. Thomas Pike, S. Smrekar, M. Wieczorek, M. Knapmeyer, J. Wookey, Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. 211, 611–650 (2017) ADSCrossRefGoogle Scholar
  163. M.D. Paton, A.-M. Harri, H. Savijärvi, Measurement of Martian boundary layer winds by the displacement of jettisoned lander hardware. Icarus 309, 345–362 (2018) ADSCrossRefGoogle Scholar
  164. A. Petculescu, R.M. Lueptow, Atmospheric acoustics of Titan, Mars, Venus, and Earth. Icarus 186(2), 413–419 (2007) ADSCrossRefGoogle Scholar
  165. A. Petrosyan, B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, P.L. Read, N. Renno, L.P.H.T. Rogberg, H. Savijärvi, T. Siili, A. Spiga, A. Toigo, L. Vázquez, The Martian atmospheric boundary layer. Rev. Geophys. 49, 3005 (2011) ADSCrossRefGoogle Scholar
  166. A.O. Pickersgill, G.E. Hunt, The formation of Martian lee waves generated by a crater. J. Geophys. Res. 84(B14), 8317–8331 (1979) ADSCrossRefGoogle Scholar
  167. J. Pla-Garcia, S.C.R. Rafkin, M. Kahre, J. Gomez-Elvira, V.E. Hamilton, S. Navarro, J. Torres, M. Marín, A.R. Vasavada, The meteorology of Gale crater as determined from rover environmental monitoring station observations and numerical modeling. Part I: Comparison of model simulations with observations. Icarus 280, 103–113 (2016) ADSCrossRefGoogle Scholar
  168. A.-C. Plesa, M. Grott, M.T. Lemmon, N. Müller, S. Piqueux, M.A. Siegler, S.E. Smrekar, T. Spohn, Interannual perturbations of the Martian surface heat flow by atmospheric dust opacity variations. J. Geophys. Res., Planets 121, 2166–2175 (2016) ADSCrossRefGoogle Scholar
  169. J.B. Pollack, M.E. Ockert-Bell, M.K. Shepard, Viking Lander image analysis of Martian atmospheric dust. J. Geophys. Res. 100, 5235–5250 (1995) ADSCrossRefGoogle Scholar
  170. A. Pottier, F. Forget, F. Montmessin, T. Navarro, A. Spiga, E. Millour, A. Szantai, J.-B. Madeleine, Unraveling the martian water cycle with high-resolution global climate simulations. Icarus (2017) Google Scholar
  171. S.C.R. Rafkin, J. Pla-Garcia, M. Kahre, J. Gomez-Elvira, V.E. Hamilton, M. Marín, S. Navarro, J. Torres, A. Vasavada, The meteorology of Gale Crater as determined from Rover Environmental Monitoring Station observations and numerical modeling, part II: interpretation. Icarus 280, 114–138 (2016) ADSCrossRefGoogle Scholar
  172. P.L. Read, S.R. Lewis, The Martian Climate Revisited: Atmosphere and Environment of a Desert Planet (Springer, New York, 2004) Google Scholar
  173. D. Reiss, R.D. Lorenz, Dust devil track survey at Elysium planitia, Mars: implications for the insight landing sites. Icarus 266, 315–330 (2016) ADSCrossRefGoogle Scholar
  174. D. Reiss, A. Spiga, G. Erkeling, The horizontal motion of dust devils on Mars derived from CRISM and CTX/HiRISE observations. Icarus 227, 8–20 (2014) ADSCrossRefGoogle Scholar
  175. T.J. Ringrose, M.C. Towner, J.C. Zarnecki, Convective vortices on Mars: a reanalysis of Viking Lander 2 meteorological data, sols 1-60. Icarus 163, 78–87 (2003) ADSCrossRefGoogle Scholar
  176. D.M. Rubin, R.E. Hunter, Bedform alignment in directionally varying flows. Science 237, 276–278 (1987) ADSCrossRefGoogle Scholar
  177. S.W. Ruff, P.R. Christensen, D.L. Blaney, W.H. Farrand, J.R. Johnson, J.R. Michalski, J.E. Moersch, S.P. Wright, S.W. Squyres, The rocks of Gusev Crater as viewed by the Mini-TES instrument. Journal of Geophysical Research (Planets) 111, E12S18 (2006) Google Scholar
  178. C. Russell, D. Banfield, W. Banerdt, co authors, The InSight magnetometer (2018). Submitted to this Space Science Reviews special issue Google Scholar
  179. J.A. Ryan, R.M. Henry, Mars atmospheric phenomena during major dust storms as measured at surface. J. Geophys. Res. 84, 2821–2829 (1979) ADSCrossRefGoogle Scholar
  180. J.A. Ryan, R.D. Sharman, Two major dust storms, one Mars year apart—comparison from Viking data. J. Geophys. Res. 86, 3247–3254 (1981) ADSCrossRefGoogle Scholar
  181. H. Savijärvi, Radiative fluxes on a dust free Mars. Contrib. Atmos. Phys. 2, 103–112 (1991) Google Scholar
  182. H. Sävijarvi, A model study of the atmospheric boundary layer in the Mars Pathfinder lander conditions. Q. J. R. Meteorol. Soc. 125(554), 483–493 (1999) ADSCrossRefGoogle Scholar
  183. M. Schimmel, Phase cross-correlations: Design, comparisons, and applications. Bull. Seismol. Soc. Am. 89(5), 1366–1378 (1999) Google Scholar
  184. M. Schimmel, E. Stutzmann, F. Ardhuin, J. Gallart, Polarized earth’s ambient microseismic noise. Geochem. Geophys. Geosyst. 12(7) (2011) CrossRefGoogle Scholar
  185. E.D. Schmitter, Brief communication “Modeling tornado dynamics and the generation of infrasound, electric and magnetic fields”. Nat. Hazards Earth Syst. Sci. 10(2), 295–298 (2010) ADSCrossRefGoogle Scholar
  186. J.T. Schofield, D. Crisp, J.R. Barnes, R.M. Haberle, J.A. Magalhaães, J.R. Murphy, A. Seiff, S. Larsen, G. Wilson, The Mars Pathfinder Atmospheric Structure Investigation/Meteorology (ASI/MET) experiment. Science 278, 1752–1757 (1997) ADSCrossRefGoogle Scholar
  187. E. Sefton-Nash, N. Teanby, L. Montabone, P. Irwin, J. Hurley, S. Calcutt, Climatology and first-order composition estimates of mesospheric clouds from Mars climate sounder limb spectra. Icarus 222(1), 342–356 (2013) ADSCrossRefGoogle Scholar
  188. E. Sefton-Nash, N.A. Teanby, C. Newman, R.A. Clancy, M.I. Richardson, Constraints on Mars’ recent equatorial wind regimes from layered deposits and comparison with general circulation model results. Icarus 230, 81–95 (2014) ADSCrossRefGoogle Scholar
  189. A. Seiff, D.B. Kirk, Structure of Mars’ atmosphere up to 100 kilometers from the entry measurements of Viking 2. Science 194, 1300–1303 (1976) ADSCrossRefGoogle Scholar
  190. A. Seiff, J.E. Tillman, J.R. Murphy, J.T. Schofield, D. Crisp, J.R. Barnes, C. LaBaw, C. Mahoney, J.D. Mihalov, G.R. Wilson, R. Haberle, The atmosphere structure and meteorology instrument on the Mars Pathfinder lander. J. Geophys. Res., Planets 102, 4045–4056 (1997) ADSCrossRefGoogle Scholar
  191. M.D. Smith, Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004) ADSCrossRefGoogle Scholar
  192. P.H. Smith, M. Lemmon, Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder. J. Geophys. Res., Planets 104, 8975–8986 (1999) ADSCrossRefGoogle Scholar
  193. M.D. Smith, M.J. Wolff, N. Spanovich, A. Ghosh, D. Banfield, P.R. Christensen, G.A. Landis, S.W. Squyres, One Martian year of atmospheric observations using MER Mini-TES. J. Geophys. Res., Planets 111(E10), 12 (2006) CrossRefGoogle Scholar
  194. G.G. Sorrells, A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field. Geophys. J. 26, 71–82 (1971) ADSCrossRefGoogle Scholar
  195. N. Spanovich, M.D. Smith, P.H. Smith, M.J. Wolff, P.R. Christensen, S.W. Squyres, Surface and near-surface atmospheric temperatures for the Mars Exploration Rover landing sites. Icarus 180, 314–320 (2006) ADSCrossRefGoogle Scholar
  196. A. Spiga, Comment on “Observing desert dust devils with a pressure logger” by Lorenz (2012)—insights on measured pressure fluctuations from large-eddy simulations. Geosci. Instrum. Method. Data Syst. 1(2), 151–154 (2012) ADSCrossRefGoogle Scholar
  197. A. Spiga, F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., Planets 114, E02009 (2009) ADSCrossRefGoogle Scholar
  198. A. Spiga, F. Forget, B. Dolla, S. Vinatier, R. Melchiorri, P. Drossart, A. Gendrin, J.-P. Bibring, Y. Langevin, B. Gondet, Remote sensing of surface pressure on Mars with the Mars Express/OMEGA spectrometer, 2: meteorological maps. J. Geophys. Res., Planets 112(E11), 8 (2007) Google Scholar
  199. A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010) ADSCrossRefGoogle Scholar
  200. A. Spiga, F. González-Galindo, M-Á. López-Valverde, F. Forget, Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere. Geophys. Res. Lett. 39, 2201 (2012) ADSCrossRefGoogle Scholar
  201. A. Spiga, J. Faure, J.-B. Madeleine, A. Määttänen, F. Forget, Rocket dust storms and detached dust layers in the Martian atmosphere. J. Geophys. Res., Planets 118, 746–767 (2013) ADSCrossRefGoogle Scholar
  202. A. Spiga, E. Barth, Z. Gu, F. Hoffmann, J. Ito, B. Jemmett-Smith, M. Klose, S. Nishizawa, S. Raasch, S. Rafkin, T. Takemi, D. Tyler, W. Wei, Large-eddy simulations of dust devils and convective vortices. Space Sci. Rev. 203, 245–275 (2016) ADSCrossRefGoogle Scholar
  203. T. Spohn, M. Grott, S.E. Smrekar, J. Knollenberg, T.L. Hudson, C. Krause, N. Müller, J. Jänchen, A. Börner, T. Wippermann, O. Krömer, R. Lichtenheldt, L. Wisniewski, J. Grygorczuk, M. Fittock, S. Rheershemius, T. Spröwitz, E. Kopp, I. Walter, A.C. Plesa, D. Breuer, P. Morgan, W.B. Banerdt, The heat flow and physical properties package (HP3) for the InSight mission. Space. Sci. Rev. 214(5), 96 (2018).  https://doi.org/10.1007/s11214-018-0531-4 ADSCrossRefGoogle Scholar
  204. T. Statella, P. Pina, E.A. da Silva, Image processing algorithm for the identification of Martian dust devil tracks in MOC and HiRISE images. Planet. Space Sci. 70, 46–58 (2012) ADSCrossRefGoogle Scholar
  205. L.J. Steele, M.R. Balme, S.R. Lewis, A. Spiga, The water cycle and regolith-atmosphere interaction at Gale crater, Mars. Icarus 289, 56–79 (2017) ADSCrossRefGoogle Scholar
  206. J. Stevanović, N.A. Teanby, J. Wookey, N. Selby, I.J. Daubar, J. Vaubaillon, R. Garcia, Bolide airbursts as a seismic source for the 2018 mars insight mission. Space Sci. Rev. 211(1), 525–545 (2017) ADSCrossRefGoogle Scholar
  207. N. Suda, K. Nawa, Y. Fukao, Earth’s background free oscillations. Science 279, 2089 (1998) ADSCrossRefGoogle Scholar
  208. R. Sullivan, R. Greeley, M. Kraft, G. Wilson, M. Golombek, K. Herkenhoff, J. Murphy, P. Smith, Results of the Imager for Mars Pathfinder windsock experiment. J. Geophys. Res. 105, 24547–24562 (2000) ADSCrossRefGoogle Scholar
  209. J.L. Sutton, C.B. Leovy, J.E. Tillman, Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking lander sites. J. Atmos. Sci. 35, 2346–2355 (1978) ADSCrossRefGoogle Scholar
  210. P.A. Taylor, D.C. Catling, M. Daly, C.S. Dickinson, H.P. Gunnlaugsson, A.-M. Harri, C.F. Lange, Temperature, pressure, and wind instrumentation in the Phoenix meteorological package. J. Geophys. Res., Planets 113, E00A10 (2008) ADSCrossRefGoogle Scholar
  211. N.A. Teanby, J. Stevanović, J. Wookey, N. Murdoch, J. Hurley, R. Myhill, N.E. Bowles, S.B. Calcutt, W.T. Pike, Seismic coupling of short-period wind noise through Mars’ regolith for NASA’s InSight Lander. Space Sci. Rev. 211, 485–500 (2017) ADSCrossRefGoogle Scholar
  212. P.C. Thomas, P.B. James, W.M. Calvin, R. Haberle, M.C. Malin, Residual south polar cap of Mars: stratigraphy, history, and implications of recent changes. Icarus 203, 352–375 (2009) ADSCrossRefGoogle Scholar
  213. N. Thomas, G. Cremonese, R. Ziethe, M. Gerber, M. Brändli, G. Bruno, M. Erismann, L. Gambicorti, T. Gerber, K. Ghose, M. Gruber, P. Gubler, H. Mischler, J. Jost, D. Piazza, A. Pommerol, M. Rieder, V. Roloff, A. Servonet, W. Trottmann, T. Uthaicharoenpong, C. Zimmermann, D. Vernani, M. Johnson, E. Pelò, T. Weigel, J. Viertl, N. De Roux, P. Lochmatter, G. Sutter, A. Casciello, T. Hausner, I. Ficai Veltroni, V. Da Deppo, P. Orleanski, W. Nowosielski, T. Zawistowski, S. Szalai, B. Sodor, S. Tulyakov, G. Troznai, M. Banaskiewicz, J. Bridges, S. Byrne, S. Debei, M. El-Maarry, E. Hauber, C. Hansen, A. Ivanov, L. Keszthelyi, R. Kirk, R. Kuzmin, N. Mangold, L. Marinangeli, W. Markiewicz, M. Massironi, A. McEwen, C. Okubo, L. Tornabene, P. Wajer, J. Wray, The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev., 1897–1944 (2017) ADSCrossRefGoogle Scholar
  214. J.E. Tillman, R.M. Henry, S.L. Hess, Frontal systems during passage of the Martian north polar hood over thet Viking lander 2 site prior to the first 1977 dust storm. J. Geophys. Res. 84(B6), 2947–2955 (1979) ADSCrossRefGoogle Scholar
  215. J.E. Tillman, L. Landberg, S.E. Larsen, The boundary layer of Mars: fluxes stability, turbulent spectra and growth of the mixed layer. J. Atmos. Sci. 51(12), 1709–1727 (1994) ADSCrossRefGoogle Scholar
  216. M.G. Tomasko, L.R. Doose, M. Lemmon, P.H. Smith, E. Wegryn, Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder. J. Geophys. Res. 104, 8987–9008 (1999) ADSCrossRefGoogle Scholar
  217. A. Trebi-Ollennu, W. Kim, K. Ali, O. Khan, C. Sorice, P. Bailey, J. Umland, R. Bonitz, C. Ciarleglio, J. Knight, N. Haddad, K. Klein, S. Nowak, D. Klein, N. Onufer, K. Glazebrook, B. Kobeissi, E. Baez, F. Sarkissian, M. Badalian, H. Abarca, R.G. Deen, J. Yen, S. Myint, J. Maki, A. Pourangi, J. Grinblat, B. Bone, N. Warner, J. Singer, J. Ervin, J. Lin, InSight Mars lander robotics instrument deployment system. Space Sci. Rev. 214(5), 93 (2018).  https://doi.org/10.1007/s11214-018-0520-7 ADSCrossRefGoogle Scholar
  218. D. Tyler, J.R. Barnes, Convergent crater circulations on Mars: influence on the surface pressure cycle and the depth of the convective boundary layer. Geophys. Res. Lett. 42, 2015GL064957 (2015) CrossRefGoogle Scholar
  219. D. Tyler, J.R. Barnes, E.D. Skyllingstad, Mesoscale and large-eddy simulation model studies of the Martian atmosphere in support of Phoenix. J. Geophys. Res., Planets 113(E12) (2008) Google Scholar
  220. A. Ullán, M.-P. Zorzano, F. Javier Martín-Torres, P. Valentín-Serrano, H. Kahanpää, A.-M. Harri, J. Gómez-Elvira, S. Navarro, Analysis of wind-induced dynamic pressure fluctuations during one and a half Martian years at Gale Crater. Icarus 288, 78–87 (2017) ADSCrossRefGoogle Scholar
  221. G.K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (Cambridge Univ. Press, London, 2006) zbMATHCrossRefGoogle Scholar
  222. B. Van Hove, ö. Karatekin, Observing the martian atmosphere using entry probe flight instrumentation, in Mars Atmosphere: Modelling and Observation, 5th International Workshop, ed. by F. Forget, M. Millour (2014), p. 4401 Google Scholar
  223. A.R. Vasavada, A. Chen, J.R. Barnes, P.D. Burkhart, B.A. Cantor, A.M. Dwyer-Cianciolo, R.L. Fergason, D.P. Hinson, H.L. Justh, D.M. Kass, S.R. Lewis, M.A. Mischna, J.R. Murphy, S.C.R. Rafkin, D. Tyler, P.G. Withers, Assessment of environments for mars science laboratory entry, descent, and surface operations. Space Sci. Rev., 55 (2012) Google Scholar
  224. C.A. Verba, P.E. Geissler, T.N. Titus, D. Waller, Observations from the High Resolution Imaging Science Experiment (HiRISE): Martian dust devils in Gusev and Russell craters. J. Geophys. Res., Planets 115, E09002 (2010) ADSCrossRefGoogle Scholar
  225. M. Vincendon, J. Audouard, F. Altieri, A. Ody, Mars Express measurements of surface albedo changes over 2004–2010. Icarus 251, 145–163 (2015) ADSCrossRefGoogle Scholar
  226. H. Wang, M.I. Richardson, The origin, evolution, and trajectory of large dust storms on Mars during Mars years 24–30 (1999–2011). Icarus 251, 112–127 (2015) ADSCrossRefGoogle Scholar
  227. H. Wang, M.I. Richardson, R.J. Wilson, A.P. Ingersoll, A.D. Toigo, R.W. Zurek, Cyclones, tides, and the origin of a cross-equatorial dust storm on Mars. Geophys. Res. Lett. 30, 1488 (2003) ADSCrossRefGoogle Scholar
  228. R.J. Warburton, J.M. Goodkind, The influence of barometric pressure variations on gravity. Geophys. J. R. Astron. Soc. 48, 281–292 (1977) ADSCrossRefGoogle Scholar
  229. R.W. Wilson, K. Hamilton, Comprehensive model simulation of thermal tides in the Martian atmosphere. J. Atmos. Sci. 53, 1290–1326 (1996) ADSCrossRefGoogle Scholar
  230. R.J. Wilson, J.M. Murphy, D. Tyler, Assessing atmospheric thermal forcing from surface pressure data: separating thermal tides and local topographic influence, in The Mars Atmosphere: Modelling and observation, ed. by F. Forget, M. Millour (2017), p. 1111 Google Scholar
  231. P. Withers, D.C. Catling, Observations of atmospheric tides on Mars at the season and latitude of the Phoenix atmospheric entry. Geophys. Res. Lett. 37 (2010) CrossRefGoogle Scholar
  232. P. Withers, M.D. Smith, Atmospheric entry profiles from the Mars exploration rovers spirit and opportunity. Icarus 185, 133–142 (2006) ADSCrossRefGoogle Scholar
  233. C. Wolfe, Using engineering cameras on mars rovers and landers to retrieve atmospheric dust loading. Master’s thesis, Texas A & M University (2016). http://oaktrust.library.tamu.edu/handle/1969.1/158130
  234. M.J. Wolff, R.T. Clancy, Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. J. Geophys. Res., Planets 108, 5097 (2003) ADSCrossRefGoogle Scholar
  235. M.J. Wolff, R.T. Clancy, B. Cantor, R.M. Haberle, The MARCI water ice cloud optical depth (public) database, in Mars Atmosphere: Modelling and Observation, 5th International Workshop, ed. by F. Forget, M. Millour (2014), p. 2302 Google Scholar
  236. P. Wolkenberg, M.D. Smith, V. Formisano, G. Sindoni, Comparison of PFS and TES observations of temperature and water vapor in the martian atmosphere. Icarus 215, 628–638 (2011) ADSCrossRefGoogle Scholar
  237. A.P. Zent, M.H. Hecht, D.R. Cobos, S.E. Wood, T.L. Hudson, S.M. Milkovich, L.P. DeFlores, M.T. Mellon, Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix. J. Geophys. Res., Planets 115, E00E14 (2010) ADSCrossRefGoogle Scholar
  238. R.W. Zurek, Martian great dust storm, an update. Icarus 50, 288–310 (1982) ADSCrossRefGoogle Scholar
  239. W. Zürn, R. Widmer, On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophys. Res. Lett. 22, 3537–3540 (1995) ADSCrossRefGoogle Scholar
  240. W. Zürn, J. Exß, H. Steffen, C. Kroner, T. Jahr, M. Westerhaus, On reduction of long-period horizontal seismic noise using local barometric pressure. Geophys. J. Int. 171, 780–796 (2007) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Aymeric Spiga
    • 12
    • 9
  • Don Banfield
    • 2
  • Nicholas A. Teanby
    • 17
  • François Forget
    • 9
  • Antoine Lucas
    • 10
  • Balthasar Kenda
    • 10
  • Jose Antonio Rodriguez Manfredi
    • 14
  • Rudolf Widmer-Schnidrig
    • 18
  • Naomi Murdoch
    • 6
  • Mark T. Lemmon
    • 11
  • Raphaël F. Garcia
    • 6
  • Léo Martire
    • 6
  • Özgür Karatekin
    • 8
  • Sébastien Le Maistre
    • 8
  • Bart Van Hove
    • 8
  • Véronique Dehant
    • 8
  • Philippe Lognonné
    • 10
    • 12
  • Nils Mueller
    • 1
    • 16
  • Ralph Lorenz
    • 13
  • David Mimoun
    • 6
  • Sébastien Rodriguez
    • 10
    • 12
  • Éric Beucler
    • 4
  • Ingrid Daubar
    • 1
  • Matthew P. Golombek
    • 1
  • Tanguy Bertrand
    • 3
  • Yasuhiro Nishikawa
    • 10
  • Ehouarn Millour
    • 9
  • Lucie Rolland
    • 15
  • Quentin Brissaud
    • 5
  • Taichi Kawamura
    • 10
  • Antoine Mocquet
    • 4
  • Roland Martin
    • 19
  • John Clinton
    • 7
  • Éléonore Stutzmann
    • 10
  • Tilman Spohn
    • 16
  • Suzanne Smrekar
    • 1
  • William B. Banerdt
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Cornell Center for Astrophysics and Planetary ScienceCornell UniversityIthacaUSA
  3. 3.NASA Ames Research CenterMountain ViewUSA
  4. 4.Laboratoire de Planétologie et GéodynamiqueUniversité de NantesNantesFrance
  5. 5.Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaUSA
  6. 6.Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)Université de ToulouseToulouseFrance
  7. 7.ETHZurichSwitzerland
  8. 8.Royal Observatory of BelgiumBrusselsBelgium
  9. 9.Laboratoire de Météorologie Dynamique (LMD/IPSL)Sorbonne Université, Centre National de la Recherche Scientifique, École Polytechnique, École Normale SupérieureParisFrance
  10. 10.Institut de Physique du Globe de ParisUniversité Paris DiderotParisFrance
  11. 11.Texas A&M universityCollege StationUSA
  12. 12.Institut Universitaire de FranceParisFrance
  13. 13.Applied Physics LaboratoryJohns Hopkins UniversityLaurelUSA
  14. 14.CABMadridSpain
  15. 15.Geoazur, Université Côte d’AzurObservatoire de la Côte d’AzurNiceFrance
  16. 16.DLR, German Aerospace CenterInstitute of Planetary ResearchBerlinGermany
  17. 17.School of Earth SciencesUniversity of BristolBristolUK
  18. 18.Institut für GeophysikUniversität StuttgartStuttgartGermany
  19. 19.Géoscience Environnement Toulouse, Observatoire midi-PyrénéesUniversité de ToulouseToulouseFrance

Personalised recommendations