Advertisement

Space Science Reviews

, 214:105 | Cite as

The Color Cameras on the InSight Lander

  • J. N. MakiEmail author
  • M. Golombek
  • R. Deen
  • H. Abarca
  • C. Sorice
  • T. Goodsall
  • M. Schwochert
  • M. Lemmon
  • A. Trebi-Ollennu
  • W. B. Banerdt
Article
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

The NASA Mars InSight lander was successfully launched from Earth in May 2018 and is scheduled to land on Mars in November 2018. The key objective of the InSight mission is to investigate the interior structure and processes of Mars using a seismometer and heat flow probe that must first be placed onto the Martian surface by a robotic arm. The lander is equipped with two cameras to assist in this instrument deployment task. The Instrument Deployment Camera (IDC) is mounted to the lander robotic arm and will acquire images of the lander and surrounding terrain before, during, and after the instrument deployment activities. The IDC has a field of view (FOV) of \(45^{\circ} \times45^{\circ}\) and an angular resolution of 0.82 mrad/pixel at the center of the image. The Instrument Context Camera (ICC) is mounted to the lander and will acquire wide-angle views of the instrument deployment activities. The ICC has a FOV of \(124^{\circ} \times124^{\circ}\) and an angular FOV of 2.1 mrad/pixel at the center of the image. The IDC and ICC cameras are flight spare engineering cameras from the Mars Science Laboratory (MSL) mission. The InSight project upgraded the inherited cameras from single-channel greyscale to red/green/blue (RGB) color by replacing the detector with a Bayer-pattern version of the same \(1024~\mbox{pixel} \times1024~\mbox{pixel}\) detector. Stereo IDC image pairs, acquired by moving the arm between images, are critical for characterizing the topography of the instrument deployment workspace, a \(4~\mbox{meter} \times 6~\mbox{meter}\) area located in front of the lander. Images from the cameras are processed using software from previous Mars surface missions, with several new image products developed for InSight to support instrument placement activities. This paper provides a brief description of the IDC/ICC hardware and related image processing.

Keywords

Mars InSight Cameras Lander Robotic arm Remote sensing Color CCD Deployment NASA Mission Planetary exploration 

Notes

Acknowledgements

This work was performed by the InSight Project at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The authors thank the efforts of the entire InSight project, in particular Tom Hoffman, Henry Stone, David Thiessen, Angela Nguyen, Arsham Dingizian, Dan MacDonald, Justin Boland, Sam Cheng, Omair Khan, Philip Bailey, Khaled Ali, Ken Glazebrook, Kerry Klein, Brian Bone, Jason Willis, Lorn Miller, Mike Stevens, Pieter Kallemeyn, Chuck Rasbach, Emily Boster, Jessica Neilson, Molly Wolf, Jeanne Ladewig, Ali Pourangi, Brian Rak, Jonathan Grinblat, Cecilia Cheng, Galen Hollins, Payam Zamani, Valerie Duval, Ed Miller, Bruce Cameron, Carl Bruce, Mark Wallace, and Ramon DePaula. Mark Schwochert led the hardware development for the color detector upgrade, Justin Maki led the development of the MSL Navcam and Hazcams, and Jesse Grimes-York led the InSight camera calibration target manufacturing effort. This paper is InSight Contribution Number 52.

References

  1. H. Abarca et al., Image and data processing for InSight lander operations and science. Space Sci. Rev. (2018 this issue, submitted) Google Scholar
  2. D.A. Alexander, R. Deen, P. Andres, P. Zamani, H. Mortensen, A. Chen, M. Cayanan, J. Hall, V. Klochko, O. Pariser, C. Stanley, C. Thompson, G. Yagi, Processing of Mars Exploration Rover imagery for science and operations planning. J. Geophys. Res. 111, E02S02 (2006).  https://doi.org/10.1029/2005JE002462 ADSCrossRefGoogle Scholar
  3. W.B. Banerdt et al., The InSight mission for 2018, LPSC XLVIII, abs. 1896, 2017 Google Scholar
  4. B.E. Bayer, Color Imaging Array, United States Patent #3,971,065 (1976) Google Scholar
  5. J.F. Bell III, S.W. Squyres, K.E. Herkenhoff, J.N. Maki, H.M. Arneson, D. Brown, S.A. Collins, A. Dingizian, S.T. Elliot, E.C. Hagerott, A.G. Hayes, M.J. Johnson, J.R. Johnson, J. Joseph, K. Kinch, M.T. Lemmon, R.V. Morris, L. Scherr, M. Schwochert, M.K. Shepard, G.H. Smith, J.N. Sohl-Dickstein, R. Sullivan, W.T. Sullivan, M. Wadsworth, Mars Exploration Rover Athena Panoramic Camera (Pancam) investigation. J. Geophys. Res. 108(E12), 8063 (2003).  https://doi.org/10.1029/2003JE002070 CrossRefGoogle Scholar
  6. J.F. Bell III, J. Joseph, J.N. Sohl-Dickstein, H.M. Arneson, M.J. Johnson, M.T. Lemmon, D. Savransky, In-flight calibration and performance of the Mars Exploration Rover Panoramic Camera (Pancam) instruments. J. Geophys. Res. 111, E02S03 (2006).  https://doi.org/10.1029/2005JE002444 ADSCrossRefGoogle Scholar
  7. C. Chang, S. Chatterjee, P.R. Kube, in Proceedings of 1st International Conference on Image Processing, 13–16 Nov. 1994, vol. 2, pp. 735–739.  https://doi.org/10.1109/ICIP.1994.413668
  8. D.S. Colburn, J.B. Pollack, R.M. Haberle, Diurnal variations in optical depth at Mars. Icarus 79, 159–189 (1989).  https://doi.org/10.1016/0019-1035(89)90114-0 ADSCrossRefGoogle Scholar
  9. R.G. Deen, Cost savings through Multimission code reuse for Mars image products. Paper presented at 5th International Symposium on Reducing the Cost of Spacecraft Ground Systems and Operations, Deep Space Commun. and Navig. Syst. Cent. of Excellence (DASCANSO) (Jet Propulsion Laboratory, Pasadena, CA, 2003) Google Scholar
  10. R.G. Deen, J.J. Lorre, Seeing in three dimensions: correlation and triangulation of Mars Exploration Rover imagery. Paper presented at 2005 International Conference on Systems, Man, and Cybernetics, Inst. of Electr. and Electron. Eng., Waikoloa, Hawaii, 2005 Google Scholar
  11. K.S. Edgett, R.A. Yingst, M.A. Ravine et al., Curiosity’s Mars Hand Lens Imager (MAHLI) investigation. Space Sci. Rev. 170, 259 (2012).  https://doi.org/10.1007/s11214-012-9910-4 ADSCrossRefGoogle Scholar
  12. W.M. Folkner et al., The rotation and interior structure experiment on the InSight mission to Mars. Space Sci. Rev. 214, 100 (2018) ADSCrossRefGoogle Scholar
  13. M.A. Gauvin, E.R. Freniere, Reducing Stray Light in Opto-Mechanical Systems (Lambda Research Corporation, Littleton, 2000) Google Scholar
  14. D.B. Gennery, Least-squares camera calibration including lens distortion and automatic editing of calibration points, in Calibration and Orientation of Cameras in Computer Vision, ed. by A. Grun, T. Huang (Springer, Berlin, 2001), pp. 123–136. Chap. 5. ISBN 3-540-65283-3 CrossRefGoogle Scholar
  15. D.B. Gennery, Generalized camera calibration including fish-eye lenses. Int. J. Comput. Vis. 68(3), 239–266 (2006).  https://doi.org/10.1007/s11263-006-5168-1 CrossRefGoogle Scholar
  16. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017).  https://doi.org/10.1007/s11214-016-0321-9 ADSCrossRefGoogle Scholar
  17. M. Golombek, M. Grott, G. Kargl, J. Andrade, J. Marshall, N. Warner, N.A. Teanby, H.E. Abarca, R.G. Deen, V. Ansan, E. Hauber, J. Voigt, R. Lichtenheldt, B. Knapmeyer-Endrun, A. Trebi-Ollennu, J. Singer, J. Maki, W.B. Banerdt et al., Geology and physical properties investigations by the InSight lander. Space Sci. Rev. 214, 84 (2018).  https://doi.org/10.1007/s11214-018-0512-7 ADSCrossRefGoogle Scholar
  18. A.W. Gruen, E.P. Baltsavias, Geometrically constrained multiphoto matching. Photogramm. Eng. Remote Sens. 54(5), 633–641 (1988) Google Scholar
  19. K.E. Herkenhoff, S.W. Squyres, J.F. Bell III, J.N. Maki et al., Athena Microscopic Imager investigation. J. Geophys. Res. 108(E12), 8065 (2003).  https://doi.org/10.1029/2003JE002076 CrossRefGoogle Scholar
  20. Independent JPEG Group. http://ijg.org/
  21. International Telecommunication Union Radiocommunication Sector, Recommendation ITU-R BT.709-6, Parameter values for the HDTV standards for production and international programme exchange, June 2015, BT Series, Broadcasting Service, Television, Electronic Publication Geneva, 2015. http://www.itu.int/rec/R-REC-BT.709-6-201506-I/en
  22. J. Janesick, K.P. Klaasen, T. Elliott, Charge-coupled-device charge-collection efficiency and the photon-transfer technique. Opt. Eng. 26(10), 261072 (1987).  https://doi.org/10.1117/12.7974183 CrossRefGoogle Scholar
  23. S.K. LaVoie, W.B. Green, A.J. Runkle, D.A. Alexander, P.A. Andres, E.M. DeJong, E.D. Duxbury, D.J. Freda, Z. Gorjian, J.R. Hall, F.R. Hartman, S.R. Levoe, J.L. Lorre, J.M. McAuley, S. Suzuki, P.J. Woncik, J.R. Wright, Processing and analysis of Mars Pathfinder science data at the Jet Propulsion Laboratory’s Science Data Processing Systems Section. J. Geophys. Res. 104(E4), 8831 (1999) ADSCrossRefGoogle Scholar
  24. M.T. Lemmon, Martian cirrus-like hazes at the Phoenix landing site, in 41st Lunar and Planetary Science Conference (Lunar and Planetary Science XLI), March 1–5, 2010, The Woodlands, TX (2010), LPI Contribution No. 1533 Google Scholar
  25. M.T. Lemmon, The Mars Science Laboratory optical depth record, in Eighth International Conference on Mars, July 14–18, 2014, Pasadena, CA, p. 1338 (2014). LPI Contribution No. 1791 Google Scholar
  26. M. Lemmon, P. Smith, C. Shinohara, R. Tanner, P. Woida, A. Shaw, J. Hughes, R. Reynolds, R. Woida, J. Penegor, C. Oquest, S.F. Hviid, M. Madsen, M. Olsen, K. Leer, L. Drube, R.V. Morris, D. Britt, The Phoenix Surface Stereo Imager (SSI) Investigation, Lunar and Planetary Science XXXIX (2008). https://www.lpi.usra.edu/meetings/lpsc2008/pdf/2156.pdf
  27. M.T. Lemmon, M.J. Wolff, J.F. Bell III., M.D. Smith, B. Cantor, P.H. Smith, Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015).  https://doi.org/10.1016/j.icarus.2014.03.029 ADSCrossRefGoogle Scholar
  28. P. Lognonné et al., SEIS: The Seismic Experiment for Internal Structure of InSight. Space Sci. Rev. (2018 this issue, submitted) Google Scholar
  29. J.N. Maki, J.J. Lorre, P.H. Smith, R.D. Brandt, D.J. Steinwand, The color of Mars: measurements from the Pathfinder landing site. J. Geophys. Res., Planets 104(E4), 8781–8794 (1999).  https://doi.org/10.1029/98JE01767 ADSCrossRefGoogle Scholar
  30. J.N. Maki, J.F. Bell III, K.E. Herkenhoff, S.W. Squyres, A. Kiely, M. Klimesh, M. Schwochert, T. Litwin, R. Willson, A. Johnson, M. Maimone, E. Baumgartner, A. Collins, M. Wadsworth, S.T. Elliott, A. Dingizian, D. Brown, E.C. Hagerott, L. Scherr, R. Deen, D. Alexander, J. Lorre, Mars Exploration Rover engineering cameras. J. Geophys. Res. 108(E12), 8071 (2003).  https://doi.org/10.1029/2003JE002077 CrossRefGoogle Scholar
  31. J. Maki, D. Thiessen, A. Pourangi, P. Kobzeff, T. Litwin, L. Scherr, S. Elliott, A. Dingizian, M. Maimone, The Mars Science Laboratory engineering cameras. Space Sci. Rev. 170, 77–93 (2012).  https://doi.org/10.1007/s11214-012-9882-4 ADSCrossRefGoogle Scholar
  32. M.C. Malin, M. Ravine, M. Caplinger, T. Ghaemi, J. Schaffner, J. Maki et al., The Mars Science Laboratory (MSL) mast cameras and descent imager: investigation and instrument descriptions. Earth Space Sci. 4, 506–539 (2017).  https://doi.org/10.1002/2016EA000252 ADSCrossRefGoogle Scholar
  33. H.S. Malvar, L. He, R. Cutler, High-quality linear interpolation for demosaicing of Bayer-patterned color images, in 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3 (2004), pp. iii–485.  https://doi.org/10.1109/ICASSP.2004.1326587 CrossRefGoogle Scholar
  34. S. Maurice, R.C. Wiens et al., The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: science objectives and mast unit description. Space Sci. Rev. 170, 95–166 (2012).  https://doi.org/10.1007/s11214-012-9912-2 ADSCrossRefGoogle Scholar
  35. L. Montabone, F. Forget, E. Millour, R.J. Wilson, S.R. Lewis, D. Kass, A. Kleinboehl, M.T. Lemmon, M.D. Smith, M.J. Wolff, Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015).  https://doi.org/10.1016/j.icarus.2014.12.034 ADSCrossRefGoogle Scholar
  36. R.J. Reid et al., Imager for Mars Pathfinder (IMP) image calibration. J. Geophys. Res. 104(E4), 8907–8925 (1999).  https://doi.org/10.1029/1998JE900011 ADSCrossRefGoogle Scholar
  37. J.A. Rodriguez-Manfredi et al., MEDA, the Environmental Dynamics Analyzer for Mars 2020, in 3rd International Workshop for Planetary Missions, Pasadena, CA (2016) Google Scholar
  38. P.H. Smith et al., The Imager for Mars Pathfinder experiment. J. Geophys. Res. 102(E2), 4003–4025 (1997) ADSCrossRefGoogle Scholar
  39. G.H. Smith, E.C. Hagerott, L.M. Scherr, K.E. Herkenhoff, J.F. Bell III, Optical designs for the Mars ’03 Rover cameras, in Current Developments in Lens Design and Optical Engineering II, ed. by R.E. Fischer, R.B. Johnson, W.J. Smith. Proc. SPIE, vol. 4441 (2001), p. 118 Google Scholar
  40. A. Spiga et al., Atmospheric science with InSight. Space Sci. Rev. (2018 this issue, submitted) Google Scholar
  41. T. Spohn, M. Grott, S.E. Smrekar, J. Knollenberg, T.L. Hudson, C. Krause, N. Müller, J. Jänchen, A. Börner, T. Wippermann, O. Krömer, R. Lichtenheldt, L. Wisniewski, J. Grygorczuk, M. Fittock, S. Rheershemius, T. Spröwitz, E. Kopp, I. Walter, A.C. Plesa, D. Breuer, P. Morgan, W.B. Banerdt, Space Sci. Rev. 214, 96 (2018).  https://doi.org/10.1007/s11214-018-0531-4 ADSCrossRefGoogle Scholar
  42. K. Stamnes, S-C. Tsay, W. Wiscombe, K. Jayaweera, Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 27, 2502–2509 (1988) ADSCrossRefGoogle Scholar
  43. M.G. Tomasko, L.R. Doose, M. Lemmon, P.H. Smith, E. Wegryn, Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder. J. Geophys. Res. 104(E4), 8987–9007 (1999).  https://doi.org/10.1029/1998JE900016 ADSCrossRefGoogle Scholar
  44. A. Trebi-Ollennu, W. Kim, K. Ali et al., Space Sci. Rev. 214, 93 (2018).  https://doi.org/10.1007/s11214-018-0520-7 ADSCrossRefGoogle Scholar
  45. B. Triggs, P. McLauchlan, R. Hartley, A. Fitzgibbon, Bundle adjustment—a modern synthesis, in ICCV ’99: Proceedings of the International Workshop on Vision Algorithms (Springer, Berlin, 1999), pp. 298–372 Google Scholar
  46. VICAR, Video Image Communication And Retrieval image processing software system, Open Source Release 2, 2016. http://www-mipl.jpl.nasa.gov/vicar_open.html
  47. R.C. Wiens, S. Maurice, B. Barraclough et al., The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: body unit and combined system tests. Space Sci. Rev. 170, 167 (2012).  https://doi.org/10.1007/s11214-012-9902-4 ADSCrossRefGoogle Scholar
  48. C.A. Wolfe, Using engineering cameras on Mars rovers and landers to retrieve atmospheric dust loading. Master’s thesis, Texas A & M University (2016). Available electronically from: http://oaktrust.library.tamu.edu/handle/1969.1/158130
  49. G. Wyszecki, W.S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd edn. (Wiley, New York, 1982) Google Scholar
  50. Y. Yakimovsky, R. Cunningham, A system for extracting three-dimensional measurements from a stereo pair of TV cameras. Comput. Graph. Image Process. 7, 195–210 (1978) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • J. N. Maki
    • 1
    Email author
  • M. Golombek
    • 1
  • R. Deen
    • 1
  • H. Abarca
    • 1
  • C. Sorice
    • 1
  • T. Goodsall
    • 1
  • M. Schwochert
    • 1
  • M. Lemmon
    • 2
  • A. Trebi-Ollennu
    • 1
  • W. B. Banerdt
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Texas A&M UniversityCollege StationUSA

Personalised recommendations