Advertisement

Space Science Reviews

, 214:103 | Cite as

The DREAMS Experiment Onboard the Schiaparelli Module of the ExoMars 2016 Mission: Design, Performances and Expected Results

  • F. Esposito
  • S. Debei
  • C. Bettanini
  • C. Molfese
  • I. Arruego Rodríguez
  • G. Colombatti
  • A.-M. Harri
  • F. Montmessin
  • C. Wilson
  • A. Aboudan
  • P. Schipani
  • L. Marty
  • F. J. Álvarez
  • V. Apestigue
  • G. Bellucci
  • J.-J. Berthelier
  • J. R. Brucato
  • S. B. Calcutt
  • S. Chiodini
  • F. Cortecchia
  • F. Cozzolino
  • F. Cucciarrè
  • N. Deniskina
  • G. Déprez
  • G. Di Achille
  • F. Ferri
  • F. Forget
  • G. Franzese
  • E. Friso
  • M. Genzer
  • R. Hassen-Kodja
  • H. Haukka
  • M. Hieta
  • J. J. Jiménez
  • J.-L. Josset
  • H. Kahanpää
  • O. Karatekin
  • G. Landis
  • L. Lapauw
  • R. Lorenz
  • J. Martinez-Oter
  • V. Mennella
  • D. Möhlmann
  • D. Moirin
  • R. Molinaro
  • T. Nikkanen
  • E. Palomba
  • M. R. Patel
  • J.-P. Pommereau
  • C. I. Popa
  • S. Rafkin
  • P. Rannou
  • N. O. Renno
  • J. Rivas
  • W. Schmidt
  • E. Segato
  • S. Silvestro
  • A. Spiga
  • D. Toledo
  • R. Trautner
  • F. Valero
  • L. Vázquez
  • F. Vivat
  • O. Witasse
  • M. Yela
  • R. Mugnuolo
  • E. Marchetti
  • S. Pirrotta
Article
Part of the following topical collections:
  1. ExoMars-16

Abstract

The first of the two missions foreseen in the ExoMars program was successfully launched on 14th March 2016. It included the Trace Gas Orbiter and the Schiaparelli Entry descent and landing Demonstrator Module. Schiaparelli hosted the DREAMS instrument suite that was the only scientific payload designed to operate after the touchdown. DREAMS is a meteorological station with the capability of measuring the electric properties of the Martian atmosphere. It was a completely autonomous instrument, relying on its internal battery for the power supply. Even with low resources (mass, energy), DREAMS would be able to perform novel measurements on Mars (atmospheric electric field) and further our understanding of the Martian environment, including the dust cycle. DREAMS sensors were designed to operate in a very dusty environment, because the experiment was designed to operate on Mars during the dust storm season (October 2016 in Meridiani Planum). Unfortunately, the Schiaparelli module failed part of the descent and the landing and crashed onto the surface of Mars. Nevertheless, several seconds before the crash, the module central computer switched the DREAMS instrument on, and sent back housekeeping data indicating that the DREAMS sensors were performing nominally. This article describes the instrument in terms of scientific goals, design, working principle and performances, as well as the results of calibration and field tests. The spare model is mature and available to fly in a future mission.

Keywords

ExoMars Schiaparelli DREAMS Mars Atmospheric electric field Meteorological station Dust storm season 

Notes

Acknowledgements

This work was supported by the Italian Space Agency through the agreement I/018/12/0: “DREAMS EDM Payload ExoMars 2016.” The development of the DREAMS instrument was funded and coordinated by ASI.

DREAMS is the result of a cooperation of six European Countries (Italy, France, Spain, Netherlands, Finland, United Kingdom) led by Italy. DREAMS is built by UPD-CISAS with contribution from LATMOS/FMI/INTA/Oxford University/INAF-OAC, operated by INAF-OAC/UPD-CISAS and provided by ASI.

References

  1. M. Álvarez, C. Hernando, J.J. Jiménez, F.J. Álvarez, I. Martín, D. Escribano, TID results of optical materials and photodiodes for SIS instruments (DREAMS project), in Proc. of IEEE Nuclear and Space Radiation Effects Conference, Paris, France (2014) Google Scholar
  2. M. Álvarez, J.J. Jiménez, D. Escribano, P. Manzano, I. Arruego, V. Apéstigue, M. González-Guerrero, Low dose rate TID testing of ADXL327 accelerometer for a Mars mission, in Proc. of IEEE Nuclear and Space Radiation Effects Conference, Boston, Massachusetts (2015) Google Scholar
  3. V. Apéstigue, I. Arruego, J. Martínez, J.J. Jiménez, J. Rivas, M. González, J. Álvarez, J. Azcue, A. Martín-Ortega, J.R. de Mingo, M.T. Álvarez, L. Bastide, A. Carretero, A. Santiago, I. Martín, B. Martín, M.A. Alcacera, J. Manzano, T. Belenger, R. López, D. Escribano, P. Manzano, J. Boland, E. Cordoba, A. Sánchez-Lavega, S. Pérez, A. Sainz López, M. Lemmon, M. Smith, C.E. Newman, J. Gómez Elvira, N. Bridges, P. Conrad, M. de la Torre Juarez, R. Urqui, J.A. Rodríguez Manfredi, Radiation and Dust Sensor for MARS2020: technical design and development status overview, in Proc. of European Planetary Science Congress, vol. 10 (2015) Google Scholar
  4. K.L. Aplin, Atmospheric electrification in the Solar System. Surv. Geophys. 27(1), 63–108 (2006).  https://doi.org/10.1007/s10712-005-0642-9 ADSCrossRefGoogle Scholar
  5. I. Arruego, V. Apéstigue, J. Jiménez-Martín, J. Martínez-Oter, F.J. Álvarez-Ríos, M. González-Guerrero, J. Rivas, J. Azcue, I. Martín, D. Toledo, L. Gómez, M. Jiménez-Michavila, M. Yela, DREAMS-SIS: the Solar Irradiance Sensor on-board the ExoMars 2016 Lander. Adv. Space Res. 60, 103–120 (2017) ADSCrossRefGoogle Scholar
  6. S.K. Atreya, A.-S. Wong, N.O. Renno, W.M. Farrell, G.T. Delory, D.D. Sentman, S.A. Cummer, J.R. Marshall, S.C.R. Rafkin, D.C. Catling, Oxidant enhancement in Martian dust devils and storms: implications for life and habitability. Astrobiology 6(3), 439–450 (2006) ADSCrossRefGoogle Scholar
  7. J. Berthelier, R. Grard, H. Laakso, M. Parrot, ARES, atmospheric relaxation and electric field sensor, the electric field experiment on NETLANDER. Planet. Space Sci. 48, 1193–1200 (2000).  https://doi.org/10.1016/S0032-0633(00)00103-3 ADSCrossRefGoogle Scholar
  8. T. Bertrand, A. Spiga, S. Rafkin, A. Colaitis, F. Forget, E. Millour, An intercomparison of large-eddy simulations of the Martian daytime convective boundary layer. Geosci. Model Dev. Discuss. (2016).  https://doi.org/10.5194/gmd-2016-241 CrossRefGoogle Scholar
  9. N. Bridges, P. Geissler, S. Silvestro, M. Banks, Bedform migration on Mars: current results and future plans. Aeolian Res. 9, 133–151 (2013).  https://doi.org/10.1016/j.aeolia.2013.02.004 ADSCrossRefGoogle Scholar
  10. S. Chiodini, G. Colombatti, M. Pertile, S. Debei, Numerical study of lander effects on DREAMS scientific package measurements, in IEEE Metrology for Aerospace (MetroAeroSpace) (2014), pp. 433–438 Google Scholar
  11. S. Chiodini, G. Colombatti, E. Friso, M. Pertile, S. Debei, Multiphysics modelling of MarsTEM shield, in 2015 IEEE Metrology for Aerospace (MetroAeroSpace) (2015), pp. 271–276 CrossRefGoogle Scholar
  12. M. Chojnacki, A. Urso, L.K. Fenton, T.I. Michaels, Aeolian dune sediment flux heterogeneity in Meridiani Planum, Mars. Aeolian Res. 26 (2017) ADSCrossRefGoogle Scholar
  13. G. Colombatti, S. Chiodini, E. Friso, A. Aboudan, C. Bettanini, S. Debei, F. Esposito, MarsTEM: the temperature sensor of the DREAMS package onboard Exomars2016, in 2014 IEEE Metrology for Aerospace (MetroAeroSpace) (2014), pp. 249–254 Google Scholar
  14. G. Colombatti, S. Chiodini, E. Friso, A. Aboudan, C. Bettanini, M. Poli, S. Debei, F. Esposito, C. Molfese, P. Schipani, R. Mugnuolo, S. Pirrotta, E. Marchetti, Marstem field test in Mars analog environment, in 2015 IEEE Metrology for Aerospace (MetroAeroSpace) (2015) Google Scholar
  15. G. Déprez, Micro-ARES on ExoMars 2016. PhD thesis (2016, to be published) Google Scholar
  16. F. Esposito, R. Molinaro, C.I. Popa, C. Molfese, F. Cozzolino, L. Marty, K. Taj-Eddine, G. Di Achille, G. Franzese, S. Silvestro, G.G. Ori, The role of the atmospheric electric field in the dust-lifting process. Geophys. Res. Lett. 43 (2016).  https://doi.org/10.1002/2016GL068463 ADSCrossRefGoogle Scholar
  17. W.M. Farrell, J.L. McLain, M.R. Collier, J.W. Keller, T.J. Jackson, G.T. Delory, Is the electron avalanche process in a martian dust devil self-quenching? Icarus 254, 333–337 (2015).  https://doi.org/10.1016/j.icarus.2015.04.003 ADSCrossRefGoogle Scholar
  18. V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, M. Giuranna, Detection of methane in the atmosphere of Mars. Science 306(5702), 1758–1761 (2004) ADSCrossRefGoogle Scholar
  19. A.-M. Harri, M. Genzer, O. Kemppinen, H. Kahnapää, J. Gomez-Elvira, J.A. Rodriguez-Manfredi, R. Haberle, J. Polkko, W. Schmidt, H. Savijärvi, J. Kauhanen, E. Atlaskin, M. Richardson, T. Siili, M. Paton, M. de La TorreJuarez, C. Newman, S. Rafkin, M.T. Lemmon, M. Mischna, S. Merikallio, H. Haukka, J. Martin-Torres, M.-P. Zorzano, V. Peinado, R. Urqui, A. Lepinette, A. Scodary, T. Mäkinen, L. Vazquez, N. Rennó (the REMS/MSL Science Team), Pressure observations by the curiosity rover—initial results. J. Geophys. Res. 119, 82–92 (2014a) CrossRefGoogle Scholar
  20. A.-M. Harri, M. Genzer, O. Kemppinen, J. Gomez-Elvira, R. Haberle, J. Polkko, H. Savijärvi, N. Rennó, J.A. Rodriguez-Manfredi, W. Schmidt, M. Richardson, T. Siili, M. Paton, M. de la Torre-Juarez, T. Mäkinen, C. Newman, S. Rafkin, M. Mischna, S. Merikallio, H. Haukka, J. Martin-Torres, M. Komu, M.-P. Zorzano, V. Peinado, L. Vazquez, R. Urqui, Mars Science Laboratory relative humidity observations—initial results. J. Geophys. Res. 119, 2132–2147 (2014b) CrossRefGoogle Scholar
  21. R.G. Harrison, E. Barth, F. Esposito, J. Merrison, F. Montmessin, K.L. Aplin, C. Borlina, J.J. Berthelier, G. Déprez, W. Farell, I.M.P. Houghton, N.O. Renno, K.A. Nicoll, S.N. Tripathi, M. Zimmerman, Applications of electrified dust and dust devil electrodynamics to Martian atmospheric electricity. Space Sci. Rev. (2016).  https://doi.org/10.1007/s11214-016-0241-8 CrossRefGoogle Scholar
  22. C. Holstein-Rathlou, J. Merrison, J.J. Iversen, A.B. Jakobsen, R. Nicolajsen, P. Nørnberg, K. Rasmussen, A. Merlone, G. Lopardo, T. Hudson, D. Banfield, G. Portyankina, An environmental wind tunnel facility for testing meteorological sensor systems. J. Atmos. Ocean. Technol. 31(2), 447–457 (2014) ADSCrossRefGoogle Scholar
  23. J.J. Jimenez, J.M. Oter, V. Apestigue, C. Hernando, S. Ibarmia, W. Hajdas, J. Sanchez-Paramo, M.T. Alvarez, I. Arruego, H. Guerrero, Proton monitor Las Dos Torres: first intercomparison of in-orbit results. IEEE Trans. Nucl. Sci. 59(4) (2012) ADSCrossRefGoogle Scholar
  24. J.J. Jiménez, F.J. Álvarez, M. Gonzalez-Guerrero, V. Apéstigue, I. Martín, J.M. Fernández, A.A. Fernán, I. Arruego, Calibration OGSE for a multichannel radiometer for Mars atmosphere studies, in Proc. of International Conference on Space Optics, ICSO, Biarritz, France (2016) Google Scholar
  25. M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, M.D. Smith, Strong release of methane on Mars in northern summer 2003. Science 323(5917), 1041 (2009) ADSCrossRefGoogle Scholar
  26. J. Murphy, K. Steakley, M. Balme, G. Deprez, F. Esposito, H. Kahanpää, M. Lemmon, R. Lorenz, N. Murdoch, L. Neakrase, M. Patel, P. Whelley, Field measurements of terrestrial and Martian dust devils. Space Sci. Rev. (2016).  https://doi.org/10.1007/s11214-016-0283-y CrossRefGoogle Scholar
  27. T. Nikkanen, W. Schmidt, A.-M. Harri, M. Genzer, M. Hieta, H. Haukka, O. Kemppinen, Space qualification of an automotive microcontroller for the DREAMS-P/H pressure and humidity instrument on board the ExoMars 2016 Schiaparelli lander, EPCS2015-465 (2015) Google Scholar
  28. P. Schipani, L. Marty, M. Mannetta, F. Esposito, C. Molfese, A. Aboudan, V. Apestigue-Palacio, I. Arruego-Rodríguez, C. Bettanini, G. Colombatti, S. Debei, M. Genzer, A.-M. Harri, E. Marchetti, F. Montmessin, R. Mugnuolo, S. Pirrotta, C. Wilson, The ExoMars DREAMS scientific data archive. Proc. SPIE 9913, 99134F (2016) ADSCrossRefGoogle Scholar
  29. A. Seiff, J.E. Tillman, J.R. Murphy, J.T. Schofield, D. Crisp, J.R. Barnes, C. LaBaw, C. Mahoney, J.D. Mihalov, G.R. Wilson, R. Haberle, The atmosphere structure and meteorology instrument on the Mars Pathfinder lander. J. Geophys. Res. 102(E2), 4045–4056 (1997) ADSCrossRefGoogle Scholar
  30. S. Silvestro, D.A. Vaz, L.K. Fenton, P.E. Geissler, Active aeolian processes on Mars: a regional study in Arabia and Meridiani Terrae. Geophys. Res. Lett., L20201 (2011).  https://doi.org/10.1029/2011GL048955 CrossRefGoogle Scholar
  31. S. Silvestro, D.A. Vaz, G. Di Achille, I.C. Popa, F. Esposito, Evidence for different episodes of aeolian construction and a new type of wind streak in the 2016 ESA ExoMars landing ellipse in Meridiani Planum, Mars. J. Geophys. Res., Planets 120(4), 760–774 (2015).  https://doi.org/10.1002/2014JE004756 ADSCrossRefGoogle Scholar
  32. M.D. Smith, M.-P. Zorzano, M. Lemmon, J. Martín-Torres, T. Mendaza de Cal, Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes. Icarus 280, 234–248 (2016) ADSCrossRefGoogle Scholar
  33. D. Toledo, I. Arruego, V. Apéstigue, J.J. Jiménez, L. Gómez, M. Yela, P. Rannou, J.-P. Pommereau, Measurement of dust optical depth using the solar irradiance sensor (SIS) onboard the ExoMars 2016 EDM. Planet. Space Sci. 138, 33–43 (2017) ADSCrossRefGoogle Scholar
  34. M.C. Towner, M.R. Patel, T.J. Ringrose, J.C. Zarnecki, D. Pullan, M.R. Sims, S. Haapanala, A.M. Harri, J. Polkko, C.F. Wilson, A.P. Zent, R.C. Quinn, F.J. Grunthaner, M.H. Hecht, J.R.C. Garry, The Beagle 2 environmental sensors: science goals and instrument description. Planet. Space Sci. 52, 1141–1156 (2004) ADSCrossRefGoogle Scholar
  35. J. Vago, O. Witasse, H. Svedhem, P. Baglioni, A. Haldemann, G. Gianfiglio, T. Blancquaert, D. McCoy, R. de Groot, ESA ExoMars program: the next step in exploring Mars. Sol. Syst. Res. 49(7), 518–528 (2015) ADSCrossRefGoogle Scholar
  36. I. Vidali, MarsTEM, un termometro per la misura della temperatura atmosferica marziana: progettazione, prototipazione e studio degli effetti dovuti all’autoriscaldamento. Bachalor Thesis, Padova Univ. (2012) Google Scholar
  37. C.R. Webster, P.R. Mahaffy, S.K. Atreya, G.J. Flesch, M.A. Mischna, P.-Y. Meslin, K.A. Farley, P.G. Conrad, L.E. Christensen, A.A. Pavlov, J. Martín-Torres, M.-P. Zorzano, T.H. McConnochie, T. Owen, J.L. Eigenbrode, D.P. Glavin, A. Steele, C.A. Malespin, P.D. Archer, B. Sutter Jr., P. Coll, C. Freissinet, C.P. McKay, J.E. Moores, S.P. Schwenzer, J.C. Bridges, R. Navarro-Gonzalez, R. Gellert, M.T. Lemmon (the MSL Science Team), Mars methane detection and variability at Gale crater. Science 347(6220), 415–417 (2015) ADSCrossRefGoogle Scholar
  38. C.F. Wilson, Measurement of wind on the surface of Mars. DPhil thesis (2003) Google Scholar
  39. C.F. Wilson, S.B. Calcutt, T.V. Jones, The Beagle 2 wind sensor, EGS–AGU–EUG Joint Assembly, abstract #691 (2003) Google Scholar
  40. C.F. Wilson, A.L. Camilletti, S.B. Calcutt, P.M. Ligrani, A wind tunnel for the calibration of Mars wind sensors. Planet. Space Sci. 56(11), 1532–1541 (2008).  https://doi.org/10.1016/j.pss.2008.05.011 ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • F. Esposito
    • 1
  • S. Debei
    • 2
  • C. Bettanini
    • 2
  • C. Molfese
    • 1
  • I. Arruego Rodríguez
    • 3
  • G. Colombatti
    • 2
  • A.-M. Harri
    • 4
  • F. Montmessin
    • 5
  • C. Wilson
    • 6
  • A. Aboudan
    • 2
  • P. Schipani
    • 1
  • L. Marty
    • 1
  • F. J. Álvarez
    • 3
  • V. Apestigue
    • 3
  • G. Bellucci
    • 7
  • J.-J. Berthelier
    • 5
  • J. R. Brucato
    • 8
  • S. B. Calcutt
    • 6
  • S. Chiodini
    • 2
  • F. Cortecchia
    • 20
  • F. Cozzolino
    • 1
  • F. Cucciarrè
    • 2
  • N. Deniskina
    • 1
  • G. Déprez
    • 5
  • G. Di Achille
    • 24
  • F. Ferri
    • 2
  • F. Forget
    • 9
  • G. Franzese
    • 1
    • 10
  • E. Friso
    • 2
  • M. Genzer
    • 4
  • R. Hassen-Kodja
    • 5
  • H. Haukka
    • 4
  • M. Hieta
    • 4
  • J. J. Jiménez
    • 3
  • J.-L. Josset
    • 11
  • H. Kahanpää
    • 4
  • O. Karatekin
    • 12
  • G. Landis
    • 13
  • L. Lapauw
    • 5
  • R. Lorenz
    • 14
  • J. Martinez-Oter
    • 3
  • V. Mennella
    • 1
  • D. Möhlmann
    • 15
  • D. Moirin
    • 5
  • R. Molinaro
    • 1
  • T. Nikkanen
    • 4
  • E. Palomba
    • 7
  • M. R. Patel
    • 16
  • J.-P. Pommereau
    • 5
  • C. I. Popa
    • 1
  • S. Rafkin
    • 17
  • P. Rannou
    • 18
  • N. O. Renno
    • 19
  • J. Rivas
    • 3
  • W. Schmidt
    • 4
  • E. Segato
    • 2
  • S. Silvestro
    • 1
  • A. Spiga
    • 9
  • D. Toledo
    • 25
  • R. Trautner
    • 22
  • F. Valero
    • 21
  • L. Vázquez
    • 21
  • F. Vivat
    • 5
  • O. Witasse
    • 22
  • M. Yela
    • 3
  • R. Mugnuolo
    • 23
  • E. Marchetti
    • 23
  • S. Pirrotta
    • 23
  1. 1.Osservatorio Astronomico di CapodimonteINAFNaplesItaly
  2. 2.CISASUniversità degli Studi di PadovaPadovaItaly
  3. 3.INTAMadridSpain
  4. 4.Finnish Meteorological Institute (FMI)HelsinkiFinland
  5. 5.LATMOSCNRS/UVSQ/IPSLParisFrance
  6. 6.Oxford UniversityOxfordUK
  7. 7.Istituto di Astrofisica e Planetologia Spaziali (IAPS)INAFRomeItaly
  8. 8.Osservatorio Astrofisico di ArcetriINAFFirenzeItaly
  9. 9.Laboratoire de Météorologie Dynamique, UMR CNRS 8539, Institut Pierre-Simon Laplace, Sorbonne Universités, UPMC Univ Paris 06Centre National de la Recherche ScientifiqueParisFrance
  10. 10.Department of physicsUniversity of Naples “Federico II”NaplesItaly
  11. 11.Space Exploration InstituteNeuchâtelSwitzerland
  12. 12.Royal Observatory of BelgiumUccleBelgium
  13. 13.GRCNASAClevelandUSA
  14. 14.JHU Applied Physics Lab (JHU-APL)LaurelUSA
  15. 15.DLR PF LeitungsbereichBerlinGermany
  16. 16.Open UniversityMilton KeynesUK
  17. 17.Southwest Research InstituteSan AntonioUSA
  18. 18.GSMAParisFrance
  19. 19.University of MichiganAnn ArborUSA
  20. 20.Osservatorio di Astrofisica e Scienza dello Spazio di Bologna (OAS)INAFBolognaItaly
  21. 21.Universidad Complutense de Madrid (UCM)MadridSpain
  22. 22.ESA-ESTECNoordwijkThe Netherlands
  23. 23.Italian Space AgencyRomeItaly
  24. 24.Osservatorio Astronomico di TeramoINAFTeramoItaly
  25. 25.Reims Champagne-Ardenne UniversityReimsFrance

Personalised recommendations