Advertisement

Space Science Reviews

, 214:100 | Cite as

The Rotation and Interior Structure Experiment on the InSight Mission to Mars

  • William M. FolknerEmail author
  • Véronique Dehant
  • Sébastien Le Maistre
  • Marie Yseboodt
  • Attilio Rivoldini
  • Tim Van Hoolst
  • Sami W. Asmar
  • Matthew P. Golombek
Article
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

The Rotation and Interior Structure Experiment (RISE) on-board the InSight mission will use the lander’s X-band (8 GHz) radio system in combination with tracking stations of the NASA Deep Space Network (DSN) to determine the rotation of Mars. RISE will measure the nutation of the Martian spin axis, detecting for the first time the effect of the liquid core of Mars and providing in turn new constraints on the core radius and density. RISE will also measure changes in the rotation rate of Mars on seasonal time-scales thereby constraining the atmospheric angular momentum budget. Finally, RISE will provide a superb tie between the cartographic and inertial reference frames. This paper describes the RISE scientific objectives and measurements, and provides the expected results of the experiment.

Keywords

InSight Mars Physical properties Interior structure Radio science 

Notes

Acknowledgements

This research was carried out in part by the InSight Project at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration; and in part at the Royal Observatory of Belgium with financial support by the Belgian PRODEX program managed by the European Space Agency in collaboration with the Belgian Federal Science Policy Office. This is InSight Contribution Number 53.

References

  1. B.A. Archinal, C.H. Acton, M.F. A’Hearn, A. Conrad et al., Report of the IAU working group on cartographic coordinates and rotational elements: 2015. Celest. Mech. Dyn. Astron. 130(3), 22 (2018).  https://doi.org/10.1007/s10569-017-9805-5 ADSMathSciNetCrossRefGoogle Scholar
  2. R.E. Arvidson, R.C. Anderson, P. Bartlett, J.F. Bell et al., Localization and physical properties experiments conducted by Spirit at Gusev crater. Science 305, 821–824 (2004a) ADSCrossRefGoogle Scholar
  3. R.E. Arvidson, R.C. Anderson, P. Bartlett, J.F. Bell et al., Localization and physical properties experiments conducted by opportunity at Meridiani Planum. Science 306, 1730–1733 (2004b) ADSCrossRefGoogle Scholar
  4. S.W. Asmar, J.W. Armstrong, L. Iess, P. Tortora, Spacecraft Doppler tracking: Noise budget and accuracy achievable in precision radio science observations. Radio Sci. 40, RS2001 (2005).  https://doi.org/10.1029/2004RS003101 ADSCrossRefGoogle Scholar
  5. W.B. Banerdt et al., The InSight mission. Space Sci. Rev. (2018), this issue Google Scholar
  6. Y.E. Bar-Sever, C.S. Jacobs, S. Keihm, G.E. Lanyi et al., Atmospheric media calibration for the deep space network. Proc. IEEE 95, 2180–2192 (2007) ADSCrossRefGoogle Scholar
  7. J.-P. Barriot, V. Dehant, J.-C. Cerisier, W. Folkner et al., NEIGE: NetLander ionosphere and geodesy experiment. Adv. Space Res. 28, 1237–1249 (2001).  https://doi.org/10.1016/S0273-1177(01)00295-2 ADSCrossRefGoogle Scholar
  8. N. Bergeot, O. Witasse, W. Kofman, C. Grima et al., Study of the total electron content in Mars ionosphere from MARSIS data set, in EGU General Assembly 2016, Vienna, Austria (2016) Google Scholar
  9. A. Cazenave, G. Balmino, Meteorological effects on the seasonal variations on the rotation of Mars. Geophys. Res. Lett. 8, 245–248 (1981) ADSCrossRefGoogle Scholar
  10. B.F. Chao, D.P. Rubincam, Variations of Mars’ gravitational field and rotation due to seasonal CO2 exchange. J. Geophys. Res. 95(B9), 14755–14760 (1990) ADSCrossRefGoogle Scholar
  11. S. Chapman, The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc. Phys. Soc. 43, 26–45 (1931) ADSCrossRefzbMATHGoogle Scholar
  12. J.A.D. Connolly, Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).  https://doi.org/10.1016/j.epsl.2005.04.033 ADSCrossRefGoogle Scholar
  13. F.A. Dahlen, J. Tromp, Theoretical Global Seismology (Princeton University Press, Princeton, 1998) Google Scholar
  14. P. Defraigne, O. de Viron, V. Dehant, T. Van Hoolst, F. Hourdin, Mars rotation variations induced by atmospheric CO2 and winds. J. Geophys. Res., Planets 105, 24563–24570 (2000).  https://doi.org/10.1029/1999JE001227 ADSCrossRefGoogle Scholar
  15. P. Defraigne, A. Rivoldini, T. Van Hoolst, V. Dehant, Mars nutation resonance due to free inner core nutation. J. Geophys. Res., Planets 108(E12), 5128 (2003).  https://doi.org/10.1029/2003JE002145 ADSCrossRefGoogle Scholar
  16. V. Dehant, P.M. Mathews, Precession, Nutation and Wobble of the Earth (Cambridge University Press, Cambridge, 2015) CrossRefGoogle Scholar
  17. V. Dehant, P. Defraigne, T. Van Hoolst, Computation of Mars’ transfer function for nutation tides and surface loading. Phys. Earth Planet. Inter. 117, 385–395 (2000a).  https://doi.org/10.1016/S0031-9201(99)00108-9 ADSCrossRefGoogle Scholar
  18. V. Dehant, T. Van Hoolst, P. Defraigne, Comparison between the nutations of the planet Mars and the nutations of the Earth. Geophys. Surv. 21, 89–110 (2000b) CrossRefGoogle Scholar
  19. V. Dehant, W. Folkner, E. Renotte, D. Orban et al., Lander radioscience for obtaining the rotation and orientation of Mars. Planet. Space Sci. 57, 1050–1067 (2009).  https://doi.org/10.1016/j.pss.2008.08.009 ADSCrossRefGoogle Scholar
  20. V. Dehant, S. Le Maistre, A. Rivoldini, M. Yseboodt et al., Revealing Mars’ deep interior: Future geodesy missions using radio links between landers, orbiters, and the Earth. Planet. Space Sci. 57, 1069–1081 (2011).  https://doi.org/10.1016/j.pss.2010.03.014 ADSCrossRefGoogle Scholar
  21. G. Dreibus, H. Wanke, Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985) ADSGoogle Scholar
  22. R. Fergason, R.L. Kirk, G. Cushing, D.M. Galuzska et al., Analysis of local slopes at the InSight landing site on Mars. Space Sci. Rev. 211, 109–133 (2017).  https://doi.org/10.1007/s11214-016-0292-x ADSCrossRefGoogle Scholar
  23. W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R.A. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278, 1749–1752 (1997) ADSCrossRefGoogle Scholar
  24. A. Genova, S. Goossens, F.G. Lemoine, E. Mazarico et al., Seasonal and static gravity field of Mars from MGS, Mars Odyssey and MRO radio science. Icarus 272, 228–245 (2016).  https://doi.org/10.1016/j.icarus.2016.02.050 ADSCrossRefGoogle Scholar
  25. M.P. Golombek, R.A. Cook, T. Economou, W. Folkner et al., Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science 278, 1743–1748 (1997) ADSCrossRefGoogle Scholar
  26. M.P. Golombek, R.C. Anderson, J.R. Barnes, J.F. Bell et al., Overview of the Mars Pathfinder mission: Launch through landing, surface operations, data sets, and science results. J. Geophys. Res. 104, 8523–8553 (1999a) ADSCrossRefGoogle Scholar
  27. M.P. Golombek, H.J. Moore, A.F.C. Haldemann, T.J. Parker, J.T. Schofield, Assessment of Mars Pathfinder landing site predictions. J. Geophys. Res. 104, 8585–8594 (1999b) ADSCrossRefGoogle Scholar
  28. M.P. Golombek, D. Kipp, N. Warner, I.J. Daubar et al., Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017).  https://doi.org/10.1007/s11214-016-0321-9 ADSCrossRefGoogle Scholar
  29. M.P. Golombek, M. Grott, G. Kargl, J. Andrade et al., Geology and physical properties investigations by the InSight lander. Space Sci. Rev. (2018), this issue.  https://doi.org/10.1007/s11214-018-0512-7 Google Scholar
  30. K. Gwinner, F. Scholten, F. Preusker, S. Elgner et al., Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance. Earth Planet. Sci. Lett. 294, 506–519 (2010).  https://doi.org/10.1016/j.epsl.2009.11.007 ADSCrossRefGoogle Scholar
  31. Ö. Karatekin, T. Van Hoolst, J. Tastet, O. de Viron, V. Dehant, The effects of seasonal mass redistribution and interior structure on length-of-day variations of Mars. Adv. Space Res. 38, 739–744 (2006).  https://doi.org/10.1016/j.asr.2005.03.117 ADSCrossRefGoogle Scholar
  32. Ö. Karatekin, O. de Viron, S. Lambert, P. Rosenblatt et al., Atmospheric angular momentum variations of Earth, Mars and Venus at seasonal time scales. Planet. Space Sci. 59, 923–933 (2011).  https://doi.org/10.1016/j.pss.2010.09.010 ADSCrossRefGoogle Scholar
  33. S.J. Keihm, A. Tanner, H. Rosenberger, Measurements and calibration of tropospheric delay at Goldstone from the Cassini media calibration system, in Interplanetary Network Progress Report 42-158 (2004) Google Scholar
  34. A. Khan, C. Liebske, A. Rozel, A. Rivoldini et al., A geophysical perspective on the bulk composition of Mars. J. Geophys. Res. 123(2), 575–611 (2018).  https://doi.org/10.1002/2017JE005371 CrossRefGoogle Scholar
  35. A.S. Konopliv, C.F. Yoder, E.M. Standish, D.N. Yuan, W.L. Sjogren, A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris. Icarus 182, 23–50 (2006) ADSCrossRefGoogle Scholar
  36. A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin et al., Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011) ADSCrossRefGoogle Scholar
  37. A.S. Konopliv, R.S. Park, W.M. Folkner, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260 (2016).  https://doi.org/10.1016/j.icarus.2016.02.052 ADSCrossRefGoogle Scholar
  38. P. Kuchynka, W.M. Folkner, A.S. Konopliv, R.S. Park, S. Le Maistre, V. Dehant, New constraints on Mars rotation determined from radiometric tracking of the opportunity Mars exploration rover. Icarus 229, 340–347 (2014).  https://doi.org/10.1016/j.icarus.2013.11.015 ADSCrossRefGoogle Scholar
  39. S. Le Maistre, InSight coordinates determination from direct-to-Earth radio-tracking and Mars topography model. Planet. Space Sci. 121, 1–9 (2016).  https://doi.org/10.1016/j.pss.2015.11.003 ADSCrossRefGoogle Scholar
  40. S. Le Maistre, P. Rosenblatt, A. Rivoldini, V. Dehant et al., Lander radio science experiment with a direct link between Mars and the Earth. Planet. Space Sci. 68, 105–122 (2012).  https://doi.org/10.1016/j.pss.2011.12.020 ADSCrossRefGoogle Scholar
  41. R.J. Lillis, D.A. Brain, S.L. England, P. Withers et al., Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux. J. Geophys. Res. Space Phys. 115, A11314 (2010).  https://doi.org/10.1029/2010JA015698 ADSCrossRefGoogle Scholar
  42. K. Lodders, B. Fegley, An oxygen isotope model for the composition of Mars. Icarus 126, 373–394 (1997).  https://doi.org/10.1006/icar.1996.5653 ADSCrossRefGoogle Scholar
  43. P. Lognonne, W.B. Banerdt, D. Giardini, W.T. Pike et al., SEIS: The seismic experiment for internal structure on InSight. Space Sci. Rev. (2018), this issue Google Scholar
  44. A.J. Mannucci, B.D. Wilson, D.N. Yuan, C.H. Ho et al., A global mapping technique for GPS-derived ionospheric total electron content. Radio Sci. 33, 565–582 (1998) ADSCrossRefGoogle Scholar
  45. P.M. Mathews, B.A. Buffett, T.A. Herring, I.I. Shapiro, Forced nutations of the Earth: Influence of inner core dynamics: 1. Theory. J. Geophys. Res., Solid Earth 96(B5), 8219–8242 (1991a) CrossRefGoogle Scholar
  46. P.M. Mathews, B.A. Buffett, T.A. Herring, I.I. Shapiro, Forced nutations of the Earth: Influence of inner core dynamics, 2. Numerical results and comparisons. J. Geophys. Res., Solid Earth 96(B5), 8243–8257 (1991b).  https://doi.org/10.1029/90JB01956 CrossRefGoogle Scholar
  47. R.K. Mohapatra, S.V.S. Murty, Precursors of Mars: Constraints from nitrogen and oxygen isotopic compositions of Martian meteorites. Meteorit. Planet. Sci. 38(2), 225–241 (2003).  https://doi.org/10.1111/j.1945-5100.2003.tb00261.x ADSCrossRefGoogle Scholar
  48. J.W. Morgan, E. Anders, Chemical composition of Mars. Geochim. Cosmochim. Acta 43(10), 1601–1610 (1979).  https://doi.org/10.1016/0016-7037(79)90180-7 ADSCrossRefGoogle Scholar
  49. P. Morgan, S.E. Smrekar, R. Lorenz, M. Grott, O. Kroemer, O. Müller, Potential effects of surface temperature variations and disturbances and thermal convection on the Mars InSight HP3 heat-flow determination. Space Sci. Rev. 211, 277 (2017).  https://doi.org/10.1007/s11214-017-0388-y ADSCrossRefGoogle Scholar
  50. M.P. Panning, P. Lognonne, W.B. Banerdt, R. Garcia et al., Planned products of the Mars structure service for the InSight mission to Mars. Space Sci. Rev. 211, 611–650 (2017).  https://doi.org/10.1007/s11214-016-0317-5 ADSCrossRefGoogle Scholar
  51. T.J. Parker, F.J. Calef, M.P. Golombek, T.M. Hare, High-resolution basemaps for localization, mission planning, and geologic mapping at Meridiani Planum and Gale crater, in The 43rd Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2012). Abstract #2535 Google Scholar
  52. T.J. Parker, M.C. Malin, F.J. Calef, R.G. Deen et al., Localization and ‘contextualization’ of Curiosity in Gale crater, and other landed Mars missions, in The 44th Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2013). Abstract #2534 Google Scholar
  53. A.C. Plesa, M. Grott, N. Tosi, D. Breuer et al., How large are present-day heat flux variations across the surface of Mars? J. Geophys. Res., Planets 121, 2386–2403 (2016).  https://doi.org/10.1002/2016JE005126 ADSCrossRefGoogle Scholar
  54. A. Rivoldini, T. Van Hoolst, The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury. Earth Planet. Sci. Lett. 377, 62–72 (2013).  https://doi.org/10.1016/j.epsl.2013.07.021 ADSCrossRefGoogle Scholar
  55. A. Rivoldini, T. Van Hoolst, O. Verhoeven, A. Mocquet, V. Dehant, Geodesy constraints on the interior structure and composition of Mars. Icarus 213, 451–472 (2011).  https://doi.org/10.1016/j.icarus.2011.03.024 ADSCrossRefGoogle Scholar
  56. F. Roosbeek, Analytical developments of rigid Mars nutation and tide generating potential series. Celest. Mech. Dyn. Astron. 75, 287–300 (1999) ADSCrossRefzbMATHGoogle Scholar
  57. C. Sanloup, A. Jambon, P. Gillet, A simple chondritic model of Mars. Phys. Earth Planet. Inter. 112, 43–54 (1999).  https://doi.org/10.1016/S0031-9201(98)00175-7 ADSCrossRefGoogle Scholar
  58. T. Sasao, S. Okubo, M. Saito, A simple theory on the dynamical effects of a stratified fluid core upon nutational motion of the Earth, in Symposium-International Astronomical Union, vol. 78 (Cambridge University Press, Cambridge, 1980), pp. 165–183 Google Scholar
  59. D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin et al., Mars Orbiter Laser Altimeter (MOLA): Experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23689–23722 (2001) ADSCrossRefGoogle Scholar
  60. A. Spiga, N. Teanby, A. Lucas, B. Kenda et al., Atmospheric science with InSight. Space Sci. Rev. (2018), this issue Google Scholar
  61. T. Spohn, M. Grott et al., The heat flow and physical properties package (HP3) for the InSight mission. Space Sci. Rev. (2018), this issue.  https://doi.org/10.1007/s11214-018-0531-4 Google Scholar
  62. G.J. Taylor, The bulk composition of Mars. Chem. Erde 73, 401–420 (2013).  https://doi.org/10.1016/j.chemer.2013.09.006 CrossRefGoogle Scholar
  63. E. Van den Acker, T. Van Hoolst, O. de Viron, P. Defraigne et al., Influence of the winds and of the CO2 mass exchange between the atmosphere and the polar ice caps on Mars’ rotation. J. Geophys. Res. 107(E7), 5055 (2002).  https://doi.org/10.1029/2000JE001539 CrossRefGoogle Scholar
  64. T. Van Hoolst, V. Dehant, Influence of triaxiality and second-order terms in flattenings on the rotation of terrestrial planets: I. Formalism and rotational normal modes. Phys. Earth Planet. Inter. 134, 17–33 (2002) ADSCrossRefGoogle Scholar
  65. T. Van Hoolst, V. Dehant, P. Defraigne, Sensitivity of the free core nutation and the Chandler Wobble to changes in the interior structure of Mars. Phys. Earth Planet. Inter. 117, 397–405 (2000a) ADSCrossRefGoogle Scholar
  66. T. Van Hoolst, V. Dehant, P. Defraigne, Chandler Wobble and free core nutation for Mars. Planet. Space Sci. 48, 1145–1151 (2000b) ADSCrossRefGoogle Scholar
  67. T. Van Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161, 281–296 (2003).  https://doi.org/10.1016/S0019-1035(02)00045-3 ADSCrossRefGoogle Scholar
  68. M.A. Wieczorek, M.T. Zuber, Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. J. Geophys. Res. 109, E1 (2014).  https://doi.org/10.1029/2003JE002153 Google Scholar
  69. R. Woo, F.-C. Yang, K.W. Yip, W.B. Kendall, Measurements of large-scale density fluctuations in the solar wind using dual-frequency phase scintillations. Astrophys. J. 210, 568–574 (1976) ADSCrossRefGoogle Scholar
  70. C.F. Yoder, E.M. Standish, Martian precession and rotation from Viking lander range data. J. Geophys. Res. 102(E2), 4065–4080 (1997) ADSCrossRefGoogle Scholar
  71. C.F. Yoder, A.S. Konopliv, D.N. Yuan, E.M. Standish, W.M. Folkner, Fluid core size of Mars from detection of the solar tide. Science 300, 299–303 (2003).  https://doi.org/10.1126/science.1079645 ADSCrossRefGoogle Scholar
  72. M. Yseboodt, V. Dehant, M.J. Péters, Signatures of the Martian rotation parameters in the Doppler and range observables. Planet. Space Sci. 144, 74–88 (2017) ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Royal Observatory of BelgiumBrusselsBelgium

Personalised recommendations