Space Science Reviews

, 214:98 | Cite as

Dust Phenomena Relating to Airless Bodies

  • J. R. Szalay
  • A. R. Poppe
  • J. Agarwal
  • D. Britt
  • I. Belskaya
  • M. Horányi
  • T. Nakamura
  • M. Sachse
  • F. Spahn
Part of the following topical collections:
  1. Cosmic Dust from the Laboratory to the Stars


Airless bodies are directly exposed to ambient plasma and meteoroid fluxes, making them characteristically different from bodies whose dense atmospheres protect their surfaces from such fluxes. Direct exposure to plasma and meteoroids has important consequences for the formation and evolution of planetary surfaces, including altering chemical makeup and optical properties, generating neutral gas and/or dust exospheres, and leading to the generation of circumplanetary and interplanetary dust grain populations. In the past two decades, there have been many advancements in our understanding of airless bodies and their interaction with various dust populations. In this paper, we describe relevant dust phenomena on the surface and in the vicinity of airless bodies over a broad range of scale sizes from \(\sim10^{-3}~\mbox{km}\) to \(\sim10^{3}~\mbox{km}\), with a focus on recent developments in this field.


Dust Airless bodies Interplanetary dust 



The authors gratefully acknowledge the support of ISSI to produce this review paper. JRS was also supported by NASA’s Lunar Data Analysis Program, Grant 80NSSC17K0702. ARP acknowledges NASA Planetary Atmospheres grant #NNX13AG55G and the NASA SSERVI Institute, grant #NNX14AG16A. We thank two anonymous reviewers for their constructive comments evaluating this paper.


  1. J. Agarwal, M. Mommert, The nucleus of active asteroid 358P/Pan-STARRS (P/2012 T1). Astron. Astrophys. 549, 357–359 (2017). Google Scholar
  2. J. Agarwal, M. Müller, W.T. Reach, M.V. Sykes, H. Boehnhardt, E. Grün, The dust trail of Comet 67P/Churyumov-Gerasimenko between 2004 and 2006. Icarus 207, 992–1012 (2010). ADSGoogle Scholar
  3. J. Agarwal, D. Jewitt, H. Weaver, Dynamics of large fragments in the tail of active asteroid P/2010 A2. Astrophys. J. 769(1), 46 (2013) ADSGoogle Scholar
  4. J. Agarwal, D. Jewitt, H. Weaver, M. Mutchler, S. Larson, Hubble and Keck Telescope observations of active asteroid 288P/300163 (2006 VW139). Astron. J. 151(1), 12 (2015) ADSGoogle Scholar
  5. J. Agarwal, D.C. Jewitt, M. Mutchler, H. Weaver, S. Larson, A binary main-belt comet. Nature 549(7672), 357–359 (2017) ADSGoogle Scholar
  6. J.R. Arnold, A Monte Carlo model for the gardening of the lunar regolith. Moon 13, 159–172 (1975) ADSGoogle Scholar
  7. N. Asada, Fine fragments in high-velocity impact experiments. J. Geophys. Res. 90, 12445 (1985). ADSGoogle Scholar
  8. E. Asphaug, S.J. Ostro, R. Hudson, D.J. Scheeres, W. Benz, Disruption of kilometre-sized asteroids by energetic collisions. Nature 393(6684), 437 (1998) ADSGoogle Scholar
  9. F. Bagenal, M. Horányi, D.J. McComas, R.L. McNutt, H.A. Elliot, M.E. Hill, L.E. Brown, P.A. Delamere, P. Kollman, S.M. Krimigis, M. Kusterer, C.M. Lisse, D.G. Mitchell, M. Piquette, A.R. Poppe, D.F. Strobel, J.R. Szalay, P. Valek, J. Vandegriff, S. Weidner, E.J. Zirnstein, S.A. Stern, K. Ennico, C.B. Olkin, H.A. Weaver, L.A. Young, N.H.S. Team, Pluto’s interaction with its space environment: Solar wind, energetic particles, and dust. Science 351(6279), aad9045 (2016) ADSGoogle Scholar
  10. S. Barabash, R. Lundin, On a possible dust-plasma interaction at Mars. IEEE Trans. Plasma Sci. 22(2), 173–178 (1994) ADSGoogle Scholar
  11. I. Belskaya, S. Bagnulo, Transneptunian objects and centaurs, in Polarimetry of Stars and Planetary Systems, ed. by L. Kolokolova, J. Hough, A.-C. Levasseur-Regourd (2015), p. 405 Google Scholar
  12. I.N. Belskaya, S. Bagnulo, M.A. Barucci, K. Muinonen, G.P. Tozzi, S. Fornasier, L. Kolokolova, Polarimetry of centaurs (2060) Chiron, (5145) Pholus and (10199) Chariklo. Icarus 210(1), 472–479 (2010). ADSGoogle Scholar
  13. I. Belskaya, A. Cellino, R. Gil-Hutton, K. Muinonen, Y. Shkuratov, Asteroid polarimetry, in Asteroids IV, ed. by P. Michel, F.E. DeMeo, W.F. Bottke (2015), pp. 151–163 Google Scholar
  14. S.D. Benecchi, K.S. Noll, W.M. Grundy, H.F. Levison, (47171) 1999 TC36, a transneptunian triple. Icarus 207, 978–991 (2010) ADSGoogle Scholar
  15. A.A. Berezhnoy, E.A. Kozlova, M.P. Sinitsyn, A.A. Shangaraev, V.V. Shevchenko, Origin and stability of lunar polar volatiles. Adv. Space Res. 50, 1638–1646 (2012) ADSGoogle Scholar
  16. O.E. Berg, Lunar terminator configuration. Earth Planet. Sci. Lett. 39(3), 377–381 (1978) ADSGoogle Scholar
  17. O.E. Berg, H. Wolf, J. Rhee, Lunar soil movement registered by the Apollo 17 cosmic dust experiment, in Interplanetary Dust and Zodiacal Light, ed. by H. Elsaesser, H. Fechtig Lecture Notes in Physics, vol. 48 (Springer, Berlin, 1976), pp. 233–237 Google Scholar
  18. R. Berisch, W. Eckstein (eds.), Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies. Topics in Applied Physics, vol. 110 (Springer, Berlin, 2007) Google Scholar
  19. J.P. Biersack, W. Eckstein, Sputtering studies with the Monte Carlo program TRIM.SP. Appl. Phys. A 34, 73–94 (1984) ADSGoogle Scholar
  20. T. Birnstiel, H. Klahr, B. Ercolano, A simple model for the evolution of the dust population in protoplanetary disks. Astron. Astrophys. 539, 148 (2012) ADSzbMATHGoogle Scholar
  21. D. Bodewits, M. Kelley, J.-Y. Li, W. Landsman, S. Besse, M. A’Hearn, Collisional excavation of asteroid (596) Scheila. Astrophys. J. Lett. 733(1), 3 (2011) ADSGoogle Scholar
  22. D. Bodewits, J.-B. Vincent, M.S. Kelley, Scheila’s scar: direct evidence of impact surface alteration on a primitive asteroid. Icarus 229, 190–195 (2014) ADSGoogle Scholar
  23. P. Borin, G. Cremonese, F. Marzari, M. Bruno, S. Marchi, Statistical analysis of micrometeoroids flux on Mercury. Astron. Astrophys. 503, 259–264 (2009) ADSGoogle Scholar
  24. P. Borin, G. Cremonese, F. Marzari, Statistical analysis of the flux of micrometeoroids at Mercury from both cometary and asteroidal components. Astron. Astrophys. 585, A106 (2016) ADSGoogle Scholar
  25. W.F. Bottke, M.C. Nolan, R. Greenberg, R.A. Kolvoord, Velocity distributions among colliding asteroids. Icarus 107(2), 255–268 (1994) ADSGoogle Scholar
  26. W.F. Bottke, D. Vokrouhlicky, D.P. Rubincam, M. Broz, The effect of Yarkovsky thermal forces on the dynamical evolution of asteroids and meteoroids, in Asteroids III (2002), p. 395 Google Scholar
  27. W.F. Bottke, D.D. Durda, D. Nesvorný, R. Jedicke, A. Morbidelli, D. Vokrouhlický, H.F. Levison, Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179(1), 63–94 (2005) ADSGoogle Scholar
  28. D. Britt, C. Pieters, Darkening in black and gas-rich ordinary chondrites: The spectral effects of opaque morphology and distribution. Geochim. Cosmochim. Acta 58(18), 3905–3919 (1994) ADSGoogle Scholar
  29. M.E. Brown, W.M. Calvin, Evidence for crystalline water and ammonia ices on Pluto’s satellite Charon. Science 287, 107–109 (2000) ADSGoogle Scholar
  30. R. Brunetto, M.J. Loeffler, D. Nesvorný, S. Sasaki, G. Strazulla, Asteroid surface alteration by space weathering processes, in Asteroids IV (2015), pp. 597–616 Google Scholar
  31. E. Buhl, F. Sommer, M.H. Poelchau, G. Dresen, T. Kenkmann, Ejecta from experimental impact craters: particle size distribution and fragmentation energy. Icarus 237, 131–142 (2014). ADSGoogle Scholar
  32. J.A. Burns, M. Showalter, D.P. Hamilton, P.D. Nicholson, I. de Pater, M.E. Ockert-Bell, P.C. Thomas, The formation of Jupiter’s faint rings. Science 284, 1146–1150 (1999) ADSGoogle Scholar
  33. M.D. Campbell-Brown, High resolution radiant distribution and orbits of sporadic radar meteoroids. Icarus 196, 144–163 (2008). ADSGoogle Scholar
  34. P. Carrez, K. Demyk, P. Cordier, L. Gengembre, J. Grimblot, L. D’Hendecourt, A.P. Jones, H. Leroux, Low-energy helium ion irradiation-induced amorphization and chemical changes in olivine: insights for silicate dust evolution in the interstellar medium. Meteorit. Planet. Sci. 37(11), 1599–1614 (2002) ADSGoogle Scholar
  35. R. Christoffersen, D.S. McKay, L.P. Keller, Microstructure, chemistry, and origin of grain rims on ilmenite from the lunar soil finest fraction. Meteorit. Planet. Sci. 31(6), 835–848 (1996) ADSGoogle Scholar
  36. M.J. Cintala, Impact-induced thermal effects in the Lunar and Mercurian regoliths. J. Geophys. Res. 97(E1), 947–973 (1992) ADSGoogle Scholar
  37. F. Cipriani, O. Witasse, F. Leblanc, R. Modolo, R.E. Johnson, A model of interaction of Phobos’ surface with the Martian environment. Icarus 212, 643–648 (2011) ADSGoogle Scholar
  38. R.N. Clark, J.M. Curchin, R. Jaumann, D.P. Cruikshank, R.H. Brown, T.M. Hoefen, K. Stephan, J.M. Moore, B.J. Buratti, K.H. Baines, P.D. Nicholson, R.M. Nelson, Compositional mapping of Saturn’s satellite Dione with Cassini VIMS and implications of dark material in the Saturn system. Icarus 193, 372–386 (2008) ADSGoogle Scholar
  39. R.N. Clark, D.P. Cruikshank, R. Jaumann, R.H. Brown, K. Stephan, C.M. Dalle Ore, K.E. Livo, N. Pearson, J.M. Curchin, T.M. Hoefen, B.J. Buratti, G. Filacchione, K.H. Baines, P.D. Nicholson, The surface composition of Iapetus: mapping results from Cassini VIMS. Icarus 218, 831–860 (2012) ADSGoogle Scholar
  40. A. Colaprete et al., Detection of water in the LCROSS ejecta plume. Science 330(6003), 463–468 (2010) ADSGoogle Scholar
  41. A. Colaprete, M. Sarantos, D.H. Wooden, T.J. Stubbs, A.M. Cook, M. Shirley, How surface composition and meteoroid impacts mediate sodium and potassium in the lunar exosphere. Science 351(6270), 249–252 (2016) ADSGoogle Scholar
  42. A. Collette, K. Drake, A. Mocker, Z. Sternovsky, T. Munsat, M. Horányi, Time-resolved temperature measurements in hypervelocity dust impacts. Planet. Space Sci. 89, 58–62 (2013) ADSGoogle Scholar
  43. A. Collette, Z. Sternovsky, M. Horányi, Production of neutral gas by micrometeoroid impacts. Icarus 227, 89–93 (2014) ADSGoogle Scholar
  44. G. Colombo, D.A. Lautman, I.I. Shapiro, The Earth’s Dust Belt: Fact or fiction?: 2. Gravitational focusing and Jacobi capture. J. Geophys. Res. 71, 5705–5717 (1966). ADSGoogle Scholar
  45. J.E. Colwell, A.A.S. Gulbis, M. Horányi, S. Robertson, Dust transport in photoelectron layers and the formation of dust ponds on Eros. Icarus 175, 159–169 (2005) ADSGoogle Scholar
  46. J.E. Colwell, M. Horányi, S. Robertson, X. Wang, A. Haugsjaa, P. Wheeler, Behavior of charged dust in plasma and photoelectron sheaths, in Dust in Planetary Systems. ESA SP, vol. 643 (2007a), pp. 171–175 Google Scholar
  47. J.E. Colwell, S. Robertson, M. Horányi, X. Wang, A. Poppe, P. Wheeler, Lunar dust levitation. J. Aerosp. Eng. 1, 2–9 (2009) Google Scholar
  48. J.C. Cook, S.J. Desch, T.L. Roush, C.A. Trujillo, T.R. Geballe, Near-infrared spectroscopy of Charon: possible evidence for cryovolcanism on Kuiper Belt Objects. Astrophys. J. 663, 1406–1419 (2007) ADSGoogle Scholar
  49. D. Crider, R.M. Killen, Burial rate of Mercury’s polar volatile deposits. Geophys. Res. Lett. 32, L12201 (2005) ADSGoogle Scholar
  50. D.H. Crider, R.R. Vondrak, Space weathering effects on lunar cold trap deposits. J. Geophys. Res. 108(E7), 5079 (2003) Google Scholar
  51. D.R. Criswell, B.R. De, Intense localized photoelectric charging in the Lunar sunset terminator region: 2. Supercharging at the progression of sunset. J. Geophys. Res. 82(7), 1005–1007 (1977) ADSGoogle Scholar
  52. D.P. Cruikshank, J.F. Bell, M.J. Gaffey, R.H. Brown, R. Howell, C. Beerman, M. Rognstad, The dark side of Iapetus. Icarus 53, 90–104 (1983) ADSGoogle Scholar
  53. C.M. Dalle Ore, D.P. Cruikshank, R.N. Clark, Infrared spectroscopic characterization of the low-albedo materials on Iapetus. Icarus 221, 735–743 (2012) ADSGoogle Scholar
  54. C.M. Dalle Ore, D.P. Cruikshank, R.M.E. Mastrapa, E. Lewis, O.L. White, Impact craters: an icy study on Rhea. Icarus 261, 80–90 (2015) ADSGoogle Scholar
  55. D.R. Davis, P. Farinella, Collisional evolution of Edgeworth-Kuiper belt objects. Icarus 125, 50–60 (1997) ADSGoogle Scholar
  56. G. de Elía, A. Brunini, Collisional and dynamical evolution of the \(L_{4}\) Trojan asteroids. Astron. Astrophys. 475(1), 375–389 (2007) ADSzbMATHGoogle Scholar
  57. I. de Pater, S.G. Gibbard, H.B. Hammel, Evolution of the dusty rings of Uranus. Icarus 180, 186–200 (2006a) ADSGoogle Scholar
  58. I. de Pater, H.B. Hammel, S.G. Gibbard, M.R. Showalter, New dust belts of Uranus: one ring, two ring, red ring, blue ring. Science 312, 92–94 (2006b) ADSGoogle Scholar
  59. B.R. De, D.R. Criswell, Intense localized photoelectric charging in the lunar sunset terminator region: 1. Development of potentials and fields. J. Geophys. Res. 82(7), 999–1004 (1977) ADSGoogle Scholar
  60. M. Delbo, G. Libourel, J. Wilkerson, N. Murdoch, P. Michel, K. Ramesh, C. Ganino, C. Verati, S. Marchi, Thermal fatigue as the origin of regolith on small asteroids. Nature 508(7495), 233–236 (2014) ADSGoogle Scholar
  61. M. Delbo, M. Mueller, J.P. Emery, B. Rozitis, M.T. Capria, Asteroid thermophysical modeling, in Asteroids IV (2015), p. 107 Google Scholar
  62. F. DeMeo, C. Alexander, K. Walsh, C. Chapman, R. Binzel, The compositional structure of the asteroid belt, in Asteroids IV (2015b), pp. 13–42 Google Scholar
  63. L. Denneau, R. Jedicke, A. Fitzsimmons, H. Hsieh, J. Kleyna, M. Granvik, M. Micheli, T. Spahr, P. Vereš, R. Wainscoat, et al., Observational constraints on the catastrophic disruption rate of small main belt asteroids. Icarus 245, 1–15 (2015) ADSGoogle Scholar
  64. S.J. Desch, M. Neveu, Differentiation and cryovolcanism on Charon: a view before and after New Horizons. Icarus 287, 175–186 (2017) ADSGoogle Scholar
  65. S.J. Desch, J.C. Cook, T.C. Doggett, S.B. Porter, Thermal evolution of Kuiper belt objects, with implications for cryovolcanism. Icarus 202, 694–714 (2009) ADSGoogle Scholar
  66. V. Dikarev, E. Grün, J. Baggaley, D. Galligan, M. Landgraf, R. Jehn, The new ESA meteoroid model. Adv. Space Res. 35(7), 1282–1289 (2005) ADSGoogle Scholar
  67. N. Divine, Five populations of interplanetary meteoroids. J. Geophys. Res. 98, 17029–17048 (1993). ADSGoogle Scholar
  68. A.V. Dmitriev, A.V. Suvorova, I.S. Veselovsky, Statistical Characteristics of the Heliospheric Plasma and Magnetic Field at Earth’s Orbit during Four Solar Cycles 20-23, in Handbook on Solar Wind: Effects, Dynamics, and Interactions, ed. by H.E. Johannson (NOVA Science Publishers, New York, 2011), pp. 81–144. Chap. 2 Google Scholar
  69. A.J. Dombard, O.S. Barnouin, L.M. Prockter, P.C. Thomas, Boulders and ponds on the Asteroid 433 Eros. Icarus 210(2), 713–721 (2010) ADSGoogle Scholar
  70. M. Drahus, W. Waniak, S. Tendulkar, J. Agarwal, D. Jewitt, S.S. Sheppard, Fast rotation and trailing fragments of the active asteroid P/2012 F5 (Gibbs). Astrophys. J. Lett. 802(1), 8 (2015) ADSGoogle Scholar
  71. E. Dubinin, R. Lundin, N.F. Pissarenko, S.V. Barabash, A.V. Zakharov, H. Koskinen, K. Schwingenschuh, Y.G. Yeroshenko, Indirect evidences for a gas/dust torus along the Phobos orbit. Geophys. Res. Lett. 17(6), 861–864 (1990) ADSGoogle Scholar
  72. E.M. Dubinin, N.F. Pissarenko, S.V. Barabash, A.V. Zakharov, R. Lundin, R. Pellinen, K. Schwingenschuh, Plasma and magnetic field effects associated with Phobos and Deimos tori. Planet. Space Sci. 39(1/2), 113–121 (1991) ADSGoogle Scholar
  73. D.D. Durda, S.A. Stern, Collision rates in the present-day Kuiper belt and Centaur regions: applications to surface activation and modification on comets, Kuiper belt objects, Centaurs, and Pluto-Charon. Icarus 145, 220–229 (2000) ADSGoogle Scholar
  74. R.C. Elphic, G.T. Delory, B.P. Hine, P. Mahaffy, M. Horanyi, A. Colaprete, M. Benna, S. Noble, The Lunar Atmosphere and Dust Environment Explorer Mission. Space Sci. Rev. 185, 3–25 (2014) ADSGoogle Scholar
  75. W.M. Farrell, T.J. Stubbs, R.R. Vondrak, G.T. Delory, J.S. Halekas, Complex electric fields near the lunar terminator: the near-surface wake and accelerated dust. Geophys. Res. Lett. 34, L14201 (2007) ADSGoogle Scholar
  76. W.M. Farrell, T.J. Stubbs, J.S. Halekas, G.T. Delory, M.R. Collier, R.R. Vondrak, R.P. Lin, Loss of solar wind plasma neutrality and affect on surface potentials near the lunar terminator and shadowed polar regions. Geophys. Res. Lett. 35, L05105 (2008) ADSGoogle Scholar
  77. P.D. Feldman, D.A. Glenar, T.J. Stubbs, K.D. Retherford, G. Randall Gladstone, P.F. Miles, T.K. Greathouse, D.E. Kaufmann, J.W. Parker, S. Alan Stern, Upper limits for a lunar dust exosphere from far-ultraviolet spectroscopy by LRO/LAMP. Icarus 233, 106–113 (2014) ADSGoogle Scholar
  78. M. Finson, R. Probstein, A theory of dust comets. I. Model and equations. Astrophys. J. 154, 327–352 (1968) ADSGoogle Scholar
  79. A. Fujiwara, J. Kawaguchi, D.K. Yeomans, M. Abe, T. Mukai, T. Okada, J. Saito, H. Yano, M. Yoshikawa, D.J. Scheeres, O. Barnouin-Jha, A.F. Cheng, H. Demura, R.W. Gaskell, N. Hirata, H. Ikeda, T. Kominato, H. Miyamoto, A.M. Nakamura, R. Nakamura, S. Sasaki, K. Uesugi, The rubble-pile asteroid Itokawa as observed by Hayabusa. Science 312, 1330–1334 (2006). ADSGoogle Scholar
  80. M. Fulle, L. Colangeli, J. Agarwal, A. Aronica, V. Della Corte, F. Esposito, E. Grün, M. Ishiguro, R. Ligustri, J.J. Lopez Moreno, E. Mazzotta Epifani, G. Milani, F. Moreno, P. Palumbo, J. Rodríguez Gómez, A. Rotundi, Comet 67P/Churyumov-Gerasimenko: the GIADA dust environment model of the Rosetta mission target. Astron. Astrophys. 522, 63 (2010). Google Scholar
  81. E. Füri, B. Marty, S.S. Assonov, Constraints on the flux of meteoritic and cometary water on the Moon from volatile element (N-Ar) analysis of single lunar soil grains, Luna 24 core. Icarus 218, 220–229 (2012) ADSGoogle Scholar
  82. D.E. Gault, F. Hörz, D.E. Brownlee, J.B. Hartung, Mixing of the lunar regolith, in Proc. 5th Lunar Conf., vol. 5 (1974) Google Scholar
  83. B. Gladman, P. Michel, C. Froeschlé, The near-Earth object population. Icarus 146(1), 176–189 (2000) ADSGoogle Scholar
  84. D.A. Glenar, T.J. Stubbs, J.E. McCoy, R.R. Vondrak, A reanalysis of the Apollo light scattering observations, and implications for lunar exospheric dust. Planet. Space Sci. 59, 1695–1707 (2011) ADSGoogle Scholar
  85. D.A. Glenar, T.J. Stubbs, M. Hahn, Y. Wang, Search for a high altitude lunar dust exosphere using Clementine navigational star tracker measurements. J. Geophys. Res. 119, 2548–2567 (2014) Google Scholar
  86. C.A. Goodrich, E.R. Scott, A.M. Fioretti, Ureilitic breccias: clues to the petrologic structure and impact disruption of the ureilite parent asteroid. Chem. Erde 64(4), 283–327 (2004) Google Scholar
  87. E. Grün, M. Horányi, A new look at Apollo 17 LEAM data: nighttime dust activity in 1976. Planet. Space Sci. 89, 2–14 (2013). ADSGoogle Scholar
  88. E. Grün, H. Fechtig, M.S. Hanner, J. Kissel, B.-A. Lindblad, D. Linkert, D. Maas, G.E. Morfill, H.A. Zook, The Galileo dust detector. Space Sci. Rev. 60, 317–340 (1992). ADSGoogle Scholar
  89. E. Grün, B. Gustafson, I. Mann, M. Baguhl, G.E. Morfill, P. Staubach, A. Taylor, H.A. Zook, Interstellar dust in the heliosphere. Astron. Astrophys. 286, 915–924 (1994) ADSGoogle Scholar
  90. W.M. Grundy, M.W. Buie, J.A. Stansberry, J.R. Spencer, B. Schmitt, Near-infrared spectra of icy outer Solar System surfaces: remote determination of H2O ice temperatures. Icarus 142, 536–549 (1999) ADSGoogle Scholar
  91. B. Gundlach, J. Blum, A new method to determine the grain size of planetary regolith. Icarus 223(1), 479–492 (2013) ADSGoogle Scholar
  92. D.A. Gurnett, J.A. Ansher, W.S. Kurth, L.J. Granroth, Micron-sized dust particles detected in the outer solar system by the Voyager 1 and 2 plasma wave instruments. Geophys. Res. Lett. 24(24), 3125–3128 (1997) ADSGoogle Scholar
  93. J.M. Hahn, H.A. Zook, B. Cooper, B. Sunkara, Clementine observations of the zodiacal light and the dust content of the inner solar system. Icarus 158, 360–378 (2002) ADSGoogle Scholar
  94. O. Hainaut, J. Kleyna, G. Sarid, B. Hermalyn, A. Zenn, K. Meech, P. Schultz, H. Hsieh, G. Trancho, J. Pittichová, et al., P/2010 A2 LINEAR-I. An impact in the asteroid main belt. Astron. Astrophys. 537, 69 (2012) ADSGoogle Scholar
  95. O. Hainaut, H. Boehnhardt, C. Snodgrass, K. Meech, J. Deller, M. Gillon, E. Jehin, E. Kuehrt, S. Lowry, J. Manfroid, et al., Continued activity in P/2013 P5 PANSTARRS—unexpected comet, rotational break-up, or rubbing binary asteroid? Astron. Astrophys. 563, 75 (2014) ADSGoogle Scholar
  96. D.P. Hamilton, J.A. Burns, Origin of Saturn’s E ring: self-sustained, naturally. Science 264, 550–553 (1994) ADSGoogle Scholar
  97. D.P. Hamilton, H. Krüger, The sculpting of Jupiter’s gossamer rings by its shadow. Nature 453, 72–75 (2008) ADSGoogle Scholar
  98. D.P. Hamilton, M.F. Skrutskie, A.J. Verbiscer, F.J. Masci, Small particles dominate Saturn’s Phoebe ring to surprisingly large distances. Nature 522, 185–187 (2015) ADSGoogle Scholar
  99. D. Han, A.R. Poppe, M. Piquette, E. Grün, M. Horányi, Constraints on dust production in the Edgeworth-Kuiper Belt from Pioneer 10 and New Horizons measurement. Geophys. Res. Lett. 38, L24102 (2011) ADSGoogle Scholar
  100. B. Hapke, Space weathering from Mercury to the asteroid belt. J. Geophys. Res. 106(E), 10039–10074 (2001) ADSGoogle Scholar
  101. J.K. Harmon, M.A. Slade, M.S. Rice, Radar imagery of Mercury’s putative polar ice: 1999–2005 Arecibo results. Icarus 211, 37–50 (2011) ADSGoogle Scholar
  102. W.K. Hartmann, Impact experiments. I—Ejecta velocity distributions and related results from regolith targets. Icarus 63, 69–98 (1985). ADSGoogle Scholar
  103. C.M. Hartzell, D.J. Scheeres, The role of cohesive forces in particle launching on the moon and asteroids. Planet. Space Sci. 59(14), 1758–1768 (2011). Lunar Dust, Atmosphere and Plasma: The Next Steps ADSGoogle Scholar
  104. C.M. Hartzell, D.J. Scheeres, Dynamics of levitating dust particles near asteroids and the moon. J. Geophys. Res., Planets 118(1), 116–125 (2013) ADSGoogle Scholar
  105. C.M. Hartzell, X. Wang, D.J. Scheeres, M. Horányi, Experimental demonstration of the role of cohesion in electrostatic dust lofting. Geophys. Res. Lett. 40(6), 1038–1042 (2013) ADSGoogle Scholar
  106. P.O. Hayne, A. Hendrix, E. Sefton-Nash, M.A. Siegler, P.G. Lucey, K.D. Retherford, J.-P. Williams, B.T. Greenhagen, D.A. Paige, Evidence for exposed water ice in the Moon’s south polar regions from Lunar Reconnaissance Orbiter ultraviolet albedo and temperature measurements. Icarus 255, 58–69 (2015) ADSGoogle Scholar
  107. M.M. Hedman, C.D. Murray, N.J. Cooper, M.S. Tiscareno, K. Beurle, M.W. Evans, J.A. Burns, Three tenuous rings/arcs for three tiny moons. Icarus 199, 378–386 (2009) ADSGoogle Scholar
  108. M. Hirabayashi, Failure modes and conditions of a cohesive, spherical body due to YORP spin-up. Mon. Not. R. Astron. Soc. 454(2), 2249–2257 (2015) ADSGoogle Scholar
  109. M. Hirabayashi, D.J. Scheeres, Analysis of asteroid (216) Kleopatra using dynamical and structural constraints. Astrophys. J. 780(2), 160 (2013) ADSGoogle Scholar
  110. N. Hirata, H. Miyamoto, Dust levitation as a major resurfacing process on the surface of a saturnian icy satellite, Atlas. Icarus 220, 106–113 (2012) ADSGoogle Scholar
  111. M. Horányi, J.A. Burns, M. Tatrallyay, J.G. Luhmann, Toward understanding the fate of dust lost from the martian satellites. Geophys. Res. Lett. 17(6), 853–856 (1990) ADSGoogle Scholar
  112. M. Horányi, M. Tatrallyay, A. Juhász, J.G. Luhmann, The dynamics of submicron-sized dust particles lost from Phobos. J. Geophys. Res. 96(A7), 11283–11290 (1991) ADSGoogle Scholar
  113. M. Horányi, Z. Sternovsky, M. Lankton, C. Dumont, S. Gagnard, D. Gathright, E. Grün, D. Hansen, D. James, S. Kempf, B. Lamprecht, J. Szalay, R. Srama, G. Wright, The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission. Space Sci. Rev. 185, 93–113 (2014) ADSGoogle Scholar
  114. M. Horányi, J.R. Szalay, S. Kempf, J. Schmidt, E. Grün, R. Srama, Z. Sternovsky, A permanent, asymmetric dust cloud around the Moon. Nature 522(7556), 324 (2015) ADSGoogle Scholar
  115. J. Horner, N. Evans, M. Bailey, Simulations of the population of centaurs—I. the bulk statistics. Mon. Not. R. Astron. Soc. 354(3), 798–810 (2004) ADSGoogle Scholar
  116. K.R. Housen, K.A. Holsapple, Ejecta from impact craters. Icarus 211(1), 856–875 (2011) ADSGoogle Scholar
  117. H.H. Hsieh, D. Jewitt, A population of comets in the main asteroid belt. Science 312(5773), 561–563 (2006) ADSGoogle Scholar
  118. H.H. Hsieh, D.C. Jewitt, Y.R. Fernández, The strange case of 133P/Elst-Pizarro: a comet among the asteroids. Astron. J. 127(5), 2997 (2004) ADSGoogle Scholar
  119. H.H. Hsieh, D. Jewitt, M. Ishiguro, Physical properties of main-belt comet P/2005 U1 (Read). Astron. J. 137(1), 157 (2008) ADSGoogle Scholar
  120. H.H. Hsieh, D. Jewitt, P. Lacerda, S.C. Lowry, C. Snodgrass, The return of activity in main-belt Comet 133P/Elst-Pizarro. Mon. Not. R. Astron. Soc. 403, 363–377 (2010). ADSGoogle Scholar
  121. H.H. Hsieh, M. Ishiguro, P. Lacerda, D. Jewitt, Physical properties of main-belt comet 176P/LINEAR. Astron. J. 142(1), 29 (2011) ADSGoogle Scholar
  122. H.H. Hsieh, O. Hainaut, B. Novaković, B. Bolin, L. Denneau, A. Fitzsimmons, N. Haghighipour, J. Kleyna, R. Kokotanekova, P. Lacerda, et al., Sublimation-driven activity in main-belt comet 313P/Gibbs. Astrophys. J. Lett. 800(1), 16 (2015) ADSGoogle Scholar
  123. A.L.H. Hughes, J.E. Colwell, A.W. Dewolfe, Electrostatic dust transport on Eros: 3-D simulations of pond formation. Icarus 195, 630–648 (2008) ADSGoogle Scholar
  124. M.-T. Hui, D. Jewitt, Non-gravitational acceleration of the active asteroids. Astron. J. 153(2), 80 (2017) ADSGoogle Scholar
  125. M.-T. Hui, D. Jewitt, X. Du, Split active asteroid P/2016 J1 (Panstarrs). Astron. J. 153(4), 141 (2017). ADSGoogle Scholar
  126. D.H. Humes, Results of Pioneer 10 and 11 meteoroid experiments: interplanetary and near-Saturn. J. Geophys. Res. 85(A11), 5841–5852 (1980) ADSGoogle Scholar
  127. D.M. Hunten, G. Cremonese, A.L. Sprague, R.E. Hill, S. Verani, R.W.H. Kozlowski, The Leonid meteor shower and the lunar sodium atmosphere. Icarus 136, 298–303 (1998) ADSGoogle Scholar
  128. D.M. Hurley, D.J. Lawrence, D.B.J. Bussey, R.R. Vondrak, R.C. Elphic, G.R. Gladstone, Two-dimensional distribution of volatiles in the lunar regolith from space weathering simulations. Geophys. Res. Lett. 39, L09203 (2012) ADSGoogle Scholar
  129. W.-H. Ip, M. Banaszkiewicz, On the dust/gas tori of Phobos and Deimos. Geophys. Res. Lett. 17(6), 857–860 (1990) ADSGoogle Scholar
  130. M. Ishiguro, H. Hanayama, S. Hasegawa, Y. Sarugaku, J.-i. Watanabe, H. Fujiwara, H. Terada, H.H. Hsieh, J.J. Vaubaillon, N. Kawai, et al., Interpretation of (596) Scheila’s triple dust tails. Astrophys. J. Lett. 741(1), 24 (2011a) ADSGoogle Scholar
  131. M. Ishiguro, H. Hanayama, S. Hasegawa, Y. Sarugaku, J.-I. Watanabe, H. Fujiwara, H. Terada, H.H. Hsieh, J.J. Vaubaillon, N. Kawai, et al., Observational evidence for an impact on the main-belt Asteroid (596) Scheila. Astrophys. J. Lett. 740(1), 11 (2011b) ADSGoogle Scholar
  132. H. Ishimoto, Formation of Phobos/Deimos dust rings. Icarus 122, 153–165 (1996) ADSGoogle Scholar
  133. J. Jackson, Glossary of geology. Technical report. American Geological Institute, Alexandria, VA (1997), 769 pp., ISBN 0-922152-34-9 Google Scholar
  134. D. Janches, J.D. Mathews, D.D. Meisel, V.S. Getman, Q.H. Zhou, Doppler studies of near-antapex UHF radar micrometeors. Icarus 143(2), 347–353 (2000) ADSGoogle Scholar
  135. D. Janches, P. Pokorný, M. Sarantos, J.R. Szalay, M. Horányi, D. Nesvorný, Constraining the ratio of micrometeoroids from short and long period comets at 1 AU from LADEE observations of the lunar dust cloud. Geophys. Res. Lett. (2018). Google Scholar
  136. P. Jenniskens, Meteoroid streams and the zodiacal cloud, in Asteroids IV (University of Arizona Press, Tucson, 2015), p. 281 Google Scholar
  137. P. Jenniskens, D.F. Blake, Crystallization of amorphous water ice in the Solar System. Astrophys. J. 473, 1104–1113 (1996) ADSGoogle Scholar
  138. D. Jewitt, The active asteroids. Astron. J. 143(3), 66 (2012) ADSGoogle Scholar
  139. D. Jewitt, J. Li, Activity in Geminid Parent (3200) Phaethon. Astron. J. 140(5), 1519 (2010) ADSGoogle Scholar
  140. D.C. Jewitt, J.X. Luu, Crystalline water ice on the Kuiper belt object (50000) Quaoar. Nature 432, 731–733 (2004) ADSGoogle Scholar
  141. D. Jewitt, B. Yang, N. Haghighipour, Main-belt comet P/2008 R1 (Garradd). Astron. J. 137(5), 4313 (2009) ADSGoogle Scholar
  142. D. Jewitt, H. Weaver, J. Agarwal, M. Mutchler, M. Drahus, A recent disruption of the main-belt asteroid P/2010 A2. Nature 467(7317), 817–819 (2010) ADSGoogle Scholar
  143. D. Jewitt, H. Weaver, M. Mutchler, S. Larson, J. Agarwal, Hubble Space Telescope observations of main-belt comet (596) Scheila. Astrophys. J. Lett. 733(1), 4 (2011) ADSGoogle Scholar
  144. D. Jewitt, J. Agarwal, H. Weaver, M. Mutchler, S. Larson, The extraordinary multi-tailed main-belt Comet P/2013 P5. Astrophys. J. Lett. 778(1), L21 (2013) ADSGoogle Scholar
  145. D. Jewitt, M. Ishiguro, J. Agarwal, Large particles in active asteroid P/2010 A2. Astrophys. J. Lett. 764(1), 5 (2013a) ADSGoogle Scholar
  146. D. Jewitt, J. Li, J. Agarwal, The dust tail of asteroid (3200) Phaethon. Astrophys. J. Lett. 771(2), 36 (2013b) ADSGoogle Scholar
  147. D. Jewitt, J. Agarwal, J. Li, H. Weaver, M. Mutchler, S. Larson, Disintegrating asteroid P/2013 R3. Astrophys. J. Lett. 784(1), 8 (2014a) ADSGoogle Scholar
  148. D. Jewitt, M. Ishiguro, H. Weaver, J. Agarwal, M. Mutchler, S. Larson, Hubble Space Telescope investigation of main-belt comet 133P/Elst-Pizarro. Astron. J. 147(5), 117 (2014b) ADSGoogle Scholar
  149. D. Jewitt, J. Agarwal, H. Weaver, M. Mutchler, S. Larson, Episodic ejection from active asteroid 311P/PANSTARRS. Astrophys. J. 798(2), 109 (2015a) ADSGoogle Scholar
  150. D. Jewitt, J. Agarwal, N. Peixinho, H. Weaver, M. Mutchler, M.-T. Hui, J. Li, S. Larson, New active asteroid 313P/Gibbs. Astron. J. 149(2), 81 (2015b) ADSGoogle Scholar
  151. D. Jewitt, J. Li, J. Agarwal, H. Weaver, M. Mutchler, S. Larson, Nucleus and mass loss from active asteroid 313P/Gibbs. Astron. J. 150(3), 76 (2015c) ADSGoogle Scholar
  152. D. Jewitt, H. Hsieh, J. Agarwal, et al., The active asteroids, in Asteroids IV (University of Arizona, Tucson, 2015d), pp. 221–241 Google Scholar
  153. J. Jones, P. Brown, Sporadic meteor radiant distributions—orbital survey results. Mon. Not. R. Astron. Soc. 265, 524 (1993) ADSGoogle Scholar
  154. A. Juhász, M. Horányi, Dust torus around Mars. J. Geophys. Res. 100(E2), 3277–3284 (1995) ADSGoogle Scholar
  155. A. Juhász, M. Tátrallyay, G. Gévai, M. Horányi, On the density of the dust halo around Mars. J. Geophys. Res. 98(E1), 1205–1211 (1993) ADSGoogle Scholar
  156. S. Kameda, I. Yoshikawa, M. Kagitani, S. Okano, Interplanetary dust distribution and temporal variability of Mercury’s atmospheric Na. Geophys. Res. Lett. 36, L15201 (2009) ADSGoogle Scholar
  157. L.P. Keller, E.L. Berger, A transmission electron microscope study of Itokawa regolith grains. Earth Planets Space 66(1), 71 (2014) ADSGoogle Scholar
  158. L.P. Keller, D.S. McKay, The nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Acta 61(11), 2331–2341 (1997) ADSGoogle Scholar
  159. S. Kempf, Interpretation of high rate dust measurements with the Cassini dust detector CDA. Planet. Space Sci. 56, 378–385 (2008). ADSGoogle Scholar
  160. K.V. Kholshevnikov, A.V. Krivov, L.L. Sokolov, V.B. Titov, The dust torus around Phobos orbit. Icarus 105, 351–362 (1993) ADSGoogle Scholar
  161. R.M. Killen, J.M. Hahn, Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus 250, 230–237 (2015) ADSGoogle Scholar
  162. R.M. Killen, W.-H. Ip, The surface-bounded atmosphere of Mercury and the Moon. Rev. Geophys. 37(3), 361–406 (1999) ADSGoogle Scholar
  163. Y. Kim, M. Ishiguro, M.G. Lee, New observational evidence of active asteroid P/2010 A2: slow rotation of the largest fragment. Astrophys. J. Lett. 842, 23 (2017a). ADSGoogle Scholar
  164. Y. Kim, M. Ishiguro, T. Michikami, A.M. Nakamura, Anisotropic ejection from active asteroid P/2010 A2: an implication of impact shattering on an asteroid. Astron. J. 153, 228 (2017b). ADSGoogle Scholar
  165. H. Kosai, Short-period comets and Apollo-Amor-Aten type asteroids in view of Tisserand invariant, in Dynamics and Evolution of Minor Bodies with Galactic and Geological Implications (Springer, Berlin, 1992), pp. 237–240 Google Scholar
  166. D. Koschny, E. Grün, Impacts into ice-silicate mixtures: crater morphologies, volumes, depth-to-diameter ratios, and yield. Icarus 154, 391–401 (2001a) ADSGoogle Scholar
  167. D. Koschny, E. Grün, Impacts into ice-silicate mixtures: ejecta mass and size distributions. Icarus 154, 402–411 (2001b). ADSGoogle Scholar
  168. L. Kresak, On the similarity of orbits of associated comets, asteroids and meteoroids. Bull. Astron. Inst. Czechoslov. 33, 104–110 (1982) ADSzbMATHGoogle Scholar
  169. A.V. Krivov, On the dust belts of Mars. Astron. Astrophys. 291, 657–663 (1994) ADSGoogle Scholar
  170. A.V. Krivov, D.P. Hamilton, Martian dust belts: waiting for discovery. Icarus 128, 335–353 (1997) ADSGoogle Scholar
  171. A. Krivov, A. Jurewicz, The ethereal dust envelopes of the Martian moons. Planet. Space Sci. 47, 45–56 (1998). ADSGoogle Scholar
  172. A.V. Krivov, H. Krüger, E. Grün, K.-U. Thiessenhusen, D.P. Hamilton, A tenuous dust ring of Jupiter formed by escaping ejecta from the Galilean satellites. J. Geophys. Res., Planets 107, 5002 (2002). ADSGoogle Scholar
  173. A.V. Krivov, M. Sremčević, F. Spahn, V.V. Dikarev, K.V. Kholshevnikov, Impact-generated dust clouds around planetary satellites: spherically symmetric case. Planet. Space Sci. 51, 251–269 (2003) ADSGoogle Scholar
  174. A.V. Krivov, A.G. Feofilov, V.V. Dikarev, Search for the putative dust belts of Mars: The late 2007 opportunity. Planet. Space Sci. 54, 871–878 (2006) ADSGoogle Scholar
  175. H. Krüger, E. Grün, Interstellar dust inside and outside the heliosphere. Space Sci. Rev. 143, 347–356 (2009) ADSGoogle Scholar
  176. H. Krüger, A.V. Krivov, D.P. Hamilton, E. Grün, Detection of an impact-generated dust cloud around Ganymede. Nature 399, 558–560 (1999). ADSGoogle Scholar
  177. H. Krüger, A.V. Krivov, E. Grün, A dust cloud of Ganymede maintained by hypervelocity impacts of interplanetary micrometeoroids. Planet. Space Sci. 48, 1457–1471 (2000). ADSGoogle Scholar
  178. H. Krüger, A.V. Krivov, M. Sremčević, E. Grün, Impact-generated dust clouds surrounding the Galilean moons. Icarus 164(1), 170–187 (2003) ADSGoogle Scholar
  179. H. Krüger et al., Interstellar dust in the solar system. Space Sci. Rev. 130(1–4), 401–408 (2007) ADSGoogle Scholar
  180. H. Krüger, P. Strub, E. Grün, V.J. Sterken, Sixteen years of Ulysses interstellar dust measurements in the Solar System. I. Mass distribution and gas-to-dust mass ratio. Astrophys. J. 812(2), 1–16 (2015) Google Scholar
  181. M. Landgraf, J.-C. Liou, H.A. Zook, E. Grün, Origins of solar system dust beyond Jupiter. Astron. J. 123, 2857–2861 (2002) ADSGoogle Scholar
  182. D.S. Lauretta, A.E. Bartels, M.A. Barucci, E.B. Bierhaus, R.P. Binzel, W.F. Bottke, H. Campins, S.R. Chesley, B.C. Clark, B.E. Clark, E.A. Cloutis, H.C. Connolly, M.K. Crombie, M. Delbó, J.P. Dworkin, J.P. Emery, D.P. Glavin, V.E. Hamilton, C.W. Hergenrother, C.L. Johnson, L.P. Keller, P. Michel, M.C. Nolan, S.A. Sandford, D.J. Scheeres, A.A. Simon, B.M. Sutter, D. Vokrouhlický, K.J. Walsh, The OSIRIS-REx target asteroid (101955) Bennu: constraints on its physical, geological, and dynamical nature from astronomical observations. Meteorit. Planet. Sci. 50(4), 834–849 (2015). ADSGoogle Scholar
  183. P. Lee, Dust levitation on asteroids. Icarus 124, 181–194 (1996). ADSGoogle Scholar
  184. E. Lellouch, P. Santos-Sanz, P. Lacerda, M. Mommert, R. Duffard, J. Ortiz, T. Müller, S. Fornasier, J. Stansberry, C. Kiss, et al., “TNOs are Cool”: a survey of the trans-Neptunian region-IX. Thermal properties of Kuiper belt objects and Centaurs from combined Herschel and Spitzer observations. Astron. Astrophys. 557, 60 (2013) Google Scholar
  185. G. Leto, G.A. Baratta, Ly-\(\alpha\) photon induced amorphization of Ic water ice at 16 Kelvin. Astron. Astrophys. 397, 7–13 (2003) ADSGoogle Scholar
  186. H.F. Levison, E.M. Shoemaker, C.S. Shoemaker, Dynamical evolution of Jupiter’s Trojan asteroids. Nature 385(6611), 42 (1997) ADSGoogle Scholar
  187. H.F. Levison, A. Morbidelli, C. VanLaerhoven, R. Gomes, K. Tsiganis, Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus 196(1), 258–273 (2008) ADSGoogle Scholar
  188. H.F. Levison, K.A. Kretke, M.J. Duncan, Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524(7565), 322–324 (2015) ADSGoogle Scholar
  189. J. Li, D. Jewitt, Recurrent perihelion activity in (3200) Phaethon. Astron. J. 145(6), 154 (2013) ADSGoogle Scholar
  190. J. Licandro, F. Moreno, J. de León, G. Tozzi, L. Lara, A. Cabrera-Lavers, Exploring the nature of new main-belt comets with the 10.4 m GTC telescope: (300163) 2006 VW139. Astron. Astrophys. 550, A17 (2013) Google Scholar
  191. J.-C. Liou, H.A. Zook, Signatures of the giant planets imprinted on the Edgeworth-Kuiper Belt dust disk. Astron. J. 118, 580–590 (1999) ADSGoogle Scholar
  192. Y. Liu, L.A. Taylor, Characterization of lunar dust and a synopsis of available lunar simulants. Planet. Space Sci. 59(14), 1769–1783 (2011) ADSGoogle Scholar
  193. Y. Liu, J. Park, D. Schnare, E. Hill, L.A. Taylor, Characterization of lunar dust for toxicological studies. II: Texture and shape characteristics. J. Aerosp. Eng. 21(4), 272–279 (2008) Google Scholar
  194. P.G. Lucey, M.A. Riner, The optical effects of small iron particles that darken but do not redden: evidence of intense space weathering on Mercury. Icarus 212, 451–462 (2011) ADSGoogle Scholar
  195. E.M. MacLennan, H.H. Hsieh, The nucleus of main-belt comet 259P/Garradd. Astrophys. J. Lett. 758(1), L3 (2012) ADSGoogle Scholar
  196. M. Makuch, A.V. Krivov, F. Spahn, Long-term dynamical evolution of dusty ejecta from Deimos. Planet. Space Sci. 53, 357–369 (2005) ADSGoogle Scholar
  197. I. Mann, Interstellar dust in the solar system. Annu. Rev. Astron. Astrophys. 48, 173–203 (2010) ADSGoogle Scholar
  198. F. Marzari, P. Tricarico, H. Scholl, Stability of Jupiter Trojans investigated using frequency map analysis: the MATROS project. Mon. Not. R. Astron. Soc. 345(4), 1091–1100 (2003) ADSGoogle Scholar
  199. J.R. Masiero, A.K. Mainzer, J.M. Bauer, T. Grav, C.R. Nugent, R. Stevenson, Asteroid family identification using the hierarchical clustering method and WISE/NEOWISE physical properties. Astrophys. J. 770, 7 (2013). ADSGoogle Scholar
  200. R.M.E. Mastrapa, R.H. Brown, Ion irradiation of crystalline H2O-ice: Effect on the \(1.65\mbox{-}\upmu\mbox{m}\) band. Icarus 183, 207–214 (2006) ADSGoogle Scholar
  201. T. Matsumoto, A. Tsuchiyama, A. Miyake, T. Noguchi, M. Nakamura, K. Uesugi, A. Takeuchi, Y. Suzuki, T. Nakano, Surface and internal structures of a space-weathered rim of an Itokawa regolith particle. Icarus 257, 230–238 (2015) ADSGoogle Scholar
  202. M.K. McClure, C. Espaillat, N. Calvet, E. Bergin, P. D’Alessio, D.M. Watson, P. Manoj, B. Sargent, L.I. Cleeves, Detections of trans-neptunian ice in protoplanetary disks. Astrophys. J. 799, 162 (2015) ADSGoogle Scholar
  203. J.E. McCoy, Photometric studies of light scattering above the lunar terminator from Apollo solar corona photography, in Lunar and Planetary Science Conference Proceedings (1976), pp. 1087–1112 Google Scholar
  204. J.E. McCoy, D.R. Criswell, Evidence for a high altitude distribution of lunar dust. Proc. Lunar Planet. Sci. Conf. 5, 2991–3005 (1974) ADSGoogle Scholar
  205. H.J. Melosh, Impact ejection, spallation, and the origin of meteorites. Icarus 59, 234–260 (1984). ADSGoogle Scholar
  206. D.A. Mendis, W.I. Axford, Revisiting Iapetus following recent Cassini observations. J. Geophys. Res. 113, A11 (2008) Google Scholar
  207. F. Merlin, A. Guilbert, C. Dumas, M.A. Barucci, C. de Bergh, P. Vernazza, Properties of the icy surface of the TNO 136108 (2003 EL61). Astron. Astrophys. 466, 1185–1188 (2007) ADSGoogle Scholar
  208. P. Michel, W. Benz, D.C. Richardson, Disruption of fragmented parent bodies as the origin of asteroid families. Nature 421(6923), 608 (2003) ADSGoogle Scholar
  209. A. Morbidelli, H.F. Levison, R. Gomes, The dynamical structure of the Kuiper belt and its primordial origin, in The Solar System Beyond Neptune (2008), pp. 275–292 Google Scholar
  210. A. Morbidelli, R. Brasser, R. Gomes, H.F. Levison, K. Tsiganis, Evidence from the asteroid belt for a violent past evolution of Jupiter’s orbit. Astron. J. 140(5), 1391 (2010) ADSGoogle Scholar
  211. A. Morbidelli, K.J. Walsh, D.P. O’Brien, D.A. Minton, W.F. Bottke, The dynamical evolution of the Asteroid belt, in Asteroids IV, ed. by P. Michel, F.E. DeMeo, W.F. Bottke (2015), pp. 493–508 Google Scholar
  212. F. Moreno, L. Lara, J. Licandro, J. Ortiz, J. De Léon, V. Alí-Lagoa, B. Agís-González, A. Molina, The dust environment of main-belt comet P/2010 R2 (La Sagra). Astrophys. J. Lett. 738(1), 16 (2011a) ADSGoogle Scholar
  213. F. Moreno, J. Licandro, J.L. Ortiz, L.M. Lara, V. Alí-Lagoa, O. Vaduvescu, N. Morales, A. Molina, Z.-Y. Lin, (596) Scheila in outburst: a probable collision event in the Main Asteroid Belt. Astrophys. J. 738(2), 130 (2011b) ADSGoogle Scholar
  214. F. Moreno, J. Licandro, A. Cabrera-Lavers, A short-duration event as the cause of dust ejection from main-belt comet P/2012 F5 (Gibbs). Astrophys. J. Lett. 761(1), 12 (2012) ADSGoogle Scholar
  215. F. Moreno, A. Cabrera-Lavers, O. Vaduvescu, J. Licandro, F. Pozuelos, The dust environment of main-belt comet P/2012 T1 (PANSTARRS). Astrophys. J. Lett. 770(2), 30 (2013) ADSGoogle Scholar
  216. F. Moreno, J. Licandro, C. Álvarez-Iglesias, A. Cabrera-Lavers, F. Pozuelos, Intermittent dust mass loss from activated asteroid P/2013 P5 (PANSTARRS). Astrophys. J. 781(2), 118 (2014) ADSGoogle Scholar
  217. F. Moreno, J. Licandro, A. Cabrera-Lavers, F.J. Pozuelos, Dust loss from activated asteroid P/2015 X6. Astrophys. J. 826(2), 137 (2016a) ADSGoogle Scholar
  218. F. Moreno, J. Licandro, A. Cabrera-Lavers, F.J. Pozuelos, Early evolution of disrupted asteroid P/2016 G1 (PANSTARRS). Astrophys. J. Lett. 826, L22 (2016b) ADSGoogle Scholar
  219. F. Moreno, F.J. Pozuelos, B. Novaković, J. Licandro, A. Cabrera-Lavers, B. Bolin, R. Jedicke, B.J. Gladman, M.T. Bannister, S.D.J. Gwyn, P. Vereš, K. Chambers, S. Chastel, L. Denneau, H. Flewelling, M. Huber, E. Schunová-Lilly, E. Magnier, R. Wainscoat, C. Waters, R. Weryk, D. Farnocchia, M. Micheli, The splitting of double-component active asteroid P/2016 J1 (PANSTARRS). Astrophys. J. Lett. 837, 3 (2017). ADSGoogle Scholar
  220. T.H. Morgan, R.M. Killen, Production mechanisms for faint by possibly detectable coronae about asteroids. Planet. Space Sci. 46(8), 843–850 (1998) ADSGoogle Scholar
  221. R.V. Morris, In situ reworking (gardening) of the lunar surface: evidence from the Apollo cores, in Proc. 9th Lunar Planet. Sci. Conf. (1978), pp. 1801–1811 Google Scholar
  222. N. Murdoch, P. Sánchez, S.R. Schwartz, H. Miyamoto, Asteroid surface geophysics, in Asteroids IV, ed. by P. Michel, F.E. DeMeo, W.F. Bottke (2015), pp. 767–792 Google Scholar
  223. K. Nagao, R. Okazaki, T. Nakamura, Y.N. Miura, T. Osawa, K.-i. Bajo, S. Matsuda, M. Ebihara, T.R. Ireland, F. Kitajima, H. Naraoka, T. Noguchi, A. Tsuchiyama, H. Yurimoto, M.E. Zolensky, M. Uesugi, K. Shirai, M. Abe, T. Yada, Y. Ishibashi, A. Fujimura, T. Mukai, M. Ueno, T. Okada, M. Yoshikawa, J. Kawaguchi, Irradiation history of Itokawa regolith material deduced from noble gases in the Hayabusa samples. Science 333, 1128 (2011). ADSGoogle Scholar
  224. A.M. Nakamura, A. Fujiwara, T. Kadono, Velocity of finer fragments from impact. Planet. Space Sci. 42, 1043–1052 (1994). ADSGoogle Scholar
  225. T. Nakamura, T. Noguchi, M. Tanaka, M.E. Zolensky, M. Kimura, A. Tsuchiyama, A. Nakato, T. Ogami, H. Ishida, M. Uesugi, T. Yada, K. Shirai, A. Fujimura, R. Okazaki, S.A. Sandford, Y. Ishibashi, M. Abe, T. Okada, M. Ueno, T. Mukai, M. Yoshikawa, J. Kawaguchi, Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113 (2011). ADSGoogle Scholar
  226. E. Nakamura, A. Makishima, T. Moriguti, K. Kobayashi, R. Tanaka, T. Kunihiro, T. Tsujimori, C. Sakaguchi, H. Kitagawa, T. Ota, et al., Space environment of an asteroid preserved on micrograins returned by the Hayabusa spacecraft. Proc. Natl. Acad. Sci. 109(11), 624–629 (2012) Google Scholar
  227. M. Nayak, F. Nimmo, B. Udrea, Effects of mass transfer between Martian satellites on surface geology. Icarus 267, 220–231 (2016) ADSGoogle Scholar
  228. D. Nesvorný, P. Jenniskens, H.F. Levison, W.F. Bottke, D. Vokrouhlický, M. Gounelle, Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713(2), 816 (2010) ADSGoogle Scholar
  229. D. Nesvorný, D. Janches, D. Vokrouhlický, P. Pokorný, W.F. Bottke, P. Jenniskens, Dynamical model for the zodiacal cloud and sporadic meteors. Astrophys. J. 743, 129 (2011a) ADSGoogle Scholar
  230. D. Nesvorný, D. Vokrouhlický, P. Pokorný, D. Janches, Dynamics of dust particles released from Oort Cloud Comets and their contribution to radar meteors. Astrophys. J. 743, 37 (2011b) ADSGoogle Scholar
  231. D. Nesvorný, D. Vokrouhlický, R. Deienno, Capture of irregular satellites at Jupiter. Astrophys. J. 784(1), 22 (2014) ADSGoogle Scholar
  232. D. Nesvorný, M. Brož, V. Carruba et al., Identification and dynamical properties of asteroid families, in Asteroids IV (2015), pp. 297–321 Google Scholar
  233. G.A. Neumann, J.F. Cavanaugh, X. Sun, E.M. Mazarico, D.E. Smith, M.T. Zuber, D. Mao, D.A. Paige, S.C. Solomon, C.M. Ernst, O.S. Barnouin, Bright and dark polar deposits on Mercury: evidence for surface volatiles. Science 339, 296–300 (2013) ADSGoogle Scholar
  234. T. Nitter, O. Havnes, Dynamics of dust in a plasma sheath and injection of dust into the plasma sheath above Moon and asteroidal surfaces. Earth Moon Planets 56, 7–34 (1992) ADSGoogle Scholar
  235. T. Nitter, T.K. Aslaksen, F. Melandsø, O. Havnes, Levitation and dynamics of a collection of dust particles in a fully ionized plasma sheath. IEEE Trans. Plasma Sci. 22(2), 159–172 (1994) ADSGoogle Scholar
  236. T. Nitter, O. Havnes, F. Melandsø, Levitation and dynamics of charged dust in the photoelectron sheath above surfaces in space. J. Geophys. Res. 103(A4), 6605–6620 (1998) ADSGoogle Scholar
  237. S.K. Noble, C.M. Pieters, L.P. Keller, An experimental approach to understanding the optical effects of space weathering. Icarus 192, 629–642 (2007) ADSGoogle Scholar
  238. K. Nogami, M. Fujii, H. Ohashi, Y. Miyachi, S. Sasaki, S. Hasegawa, H. Yano, H. Shibata, T. Iwai, S. Minami, S. Takechi, E. Grün, R. Srama, Development of the Mercury Dust Monitor (MDM) onboard the BepiColombo mission. Planet. Space Sci. 58, 108–115 (2010) ADSGoogle Scholar
  239. T. Noguchi, T. Nakamura, M. Kimura, M.E. Zolensky, M. Tanaka, T. Hashimoto, M. Konno, A. Nakato, T. Ogami, A. Fujimura, M. Abe, T. Yada, T. Mukai, M. Ueno, T. Okada, K. Shirai, Y. Ishibashi, R. Okazaki, Incipient space weathering observed on the surface of Itokawa dust particles. Science 333, 1121 (2011). ADSGoogle Scholar
  240. K.S. Noll, W.M. Grundy, E.I. Chiang, J.-L. Margot, S.D. Kern, Binaries in the Kuiper Belt, in The Solar System Beyond Neptune, ed. by M.A. Barucci, H. Boehnhardt, D.P. Cruikshank, A. Morbidelli (University of Arizona Press, Tucson, 2008) Google Scholar
  241. M. Øieroset, D.A. Brain, E. Simpson, D.L. Mitchell, T.D. Phan, J.S. Halekas, R.P. Lin, M.H. Acuña, Search for Phobos and Deimos gas/dust tori using in situ observations from Mars Global Surveyor MAG/ER. Icarus 206, 189–198 (2010) ADSGoogle Scholar
  242. N. Onose, A. Fujiwara, Mass-velocity distributions of fragments in oblique impact cratering on gypsum. Meteorit. Planet. Sci. 39, 321–331 (2004). ADSGoogle Scholar
  243. J. Park, Y. Liu, K.D. Kihm, L.A. Taylor, Characterization of lunar dust for toxicological studies. I: Particle size distribution. J. Aerosp. Eng. 21(4), 266–271 (2008) Google Scholar
  244. J. Park, B.D. Turrin, G.F. Herzog, F.N. Lindsay, J.S. Delaney, C.C. Swisher, M. Uesugi, Y. Karouji, T. Yada, M. Abe, et al., \({}^{40}\mbox{Ar}/{}^{39}\mbox{Ar}\) age of material returned from asteroid 25143 Itokawa. Meteorit. Planet. Sci. 50(12), 2087–2098 (2015) ADSGoogle Scholar
  245. M.A. Pelizzari, D.R. Criswell, Lunar dust transport by photoelectric charging at sunset, in Proc. 9th Lunar Sci. Conf. (1978), pp. 3225–3237 Google Scholar
  246. V. Perera, A.P. Jackson, E. Asphaug, R.-L. Ballouz, The spherical Brazil Nut Effect and its significance to asteroids. Icarus 278(C), 194–203 (2016) ADSGoogle Scholar
  247. C.M. Pieters, S.K. Noble, Space weathering on airless bodies. J. Geophys. Res., Planets 121(1), 1865–1884 (2016) ADSGoogle Scholar
  248. C.M. Pieters, E.M. Fischer, O. Rode, A. Basu, Optical effects of space weathering: the role of the finest fraction. J. Geophys. Res. 98(E11), 20817–20824 (1993) ADSGoogle Scholar
  249. C.M. Pieters, O. Rode, E.M. Fischer, A. Basu, Lunar space weathering and the optical properties of lunar regolith. Astron. Vestn. 28, 109–119 (1994) ADSGoogle Scholar
  250. M. Piquette, M. Horányi, The effect of asymmetric surface topography on dust dynamics on airless bodies. Icarus 291, 65–74 (2017) ADSGoogle Scholar
  251. P.M. Pires dos Santos, S.M.G. Winter, R. Sfair, D.C. Mourão, Small particles in Pluto’s environment: effects of the solar radiation pressure. Mon. Not. R. Astron. Soc. 430(4), 2761–2767 (2013) ADSGoogle Scholar
  252. T. Platz, A. Nathues, N. Schorghofer, F. Preusker, E. Mazarico, S.E. Schröder, S. Byrne, T. Kneissl, N. Schmedemann, J.-P. Combe, M. Schäfer, G.S. Thangjam, M. Hoffman, P. Guitierrez-Marques, M.E. Landis, W. Dietrich, J. Ripken, K.-D. Matz, C.T. Russell, Surface water-ice deposits in the northern shadowed regions of Ceres. Nat. Astron. 1, 7 (2016) Google Scholar
  253. P. Pokorný, D. Vokrouhlický, D. Nesvorný, M. Campbell-Brown, P. Brown, Dynamical model for the toroidal sporadic meteors. Astrophys. J. 789, 25 (2014) ADSGoogle Scholar
  254. P. Pokorný, M. Sarantos, D. Janches, Reconciling the Dawn-Dusk Asymmetry in Mercury’s Exosphere with the Micrometeoroid Impact Directionality. Astrophys. J. Lett. 842, 17 (2017). ADSGoogle Scholar
  255. A.R. Poppe, Interplanetary dust influx to the Pluto-Charon system. Icarus 246, 352–359 (2015) ADSGoogle Scholar
  256. A.R. Poppe, An improved model for interplanetary dust fluxes in the outer Solar System. Icarus 264, 369–386 (2016) ADSGoogle Scholar
  257. A. Poppe, M. Horányi, Simulations of the photoelectron sheath and dust levitation on the Lunar surface. J. Geophys. Res. 115, A08106 (2010) ADSGoogle Scholar
  258. A. Poppe, M. Horányi, The effect of Nix and Hydra on the putative Pluto-Charon dust cloud. Planet. Space Sci. 59, 1647–1653 (2011) ADSGoogle Scholar
  259. A. Poppe, D. James, B. Jacobsmeyer, M. Horányi, First results from the Venetia Burney Student Dust Counter on the New Horizons mission. Geophys. Res. Lett. 37, L11101 (2010) ADSGoogle Scholar
  260. A.R. Poppe, M. Piquette, A. Likhanskii, M. Horányi, The effect of surface topography on the lunar photoelectron sheath and electrostatic dust transport. Icarus 221, 135–146 (2012) ADSGoogle Scholar
  261. A.R. Poppe, S.M. Curry, S. Fatemi, The Phobos neutral and ionized torus. J. Geophys. Res., Planets 121(5), 770–783 (2016) ADSGoogle Scholar
  262. A. Poppe, W. Farrell, J. Halekas, Formation timescales of amorphous rims on lunar grains derived from Artemis observations. J. Geophys. Res., Planets 123, 37–46 (2018) ADSGoogle Scholar
  263. C.C. Porco, et al., Cassini observes the active south pole of Enceladus. Science 311, 1393–1401 (2006) ADSGoogle Scholar
  264. S.B. Porter, W.M. Grundy, Ejecta transfer in the Pluto system. Icarus 246, 360–368 (2015) ADSGoogle Scholar
  265. S.B. Porter, S.J. Desch, J.C. Cook, Micrometeorite impact annealing of ice in the outer Solar System. Icarus 208, 492–498 (2010) ADSGoogle Scholar
  266. F.J. Pozuelos, A. Cabrera-Lavers, J. Licandro, F. Moreno, On the dust environment of Main-Belt comet 313 P/Gibbs. Astrophys. J. 806, 102 (2015) ADSGoogle Scholar
  267. P. Pravec, D. Vokrouhlický, D. Polishook, D.J. Scheeres, A.W. Harris, A. Galád, O. Vaduvescu, F. Pozo, A. Barr, P. Longa, F. Vachier, F. Colas, D.P. Pray, J. Pollock, D. Reichart, K. Ivarsen, J. Haislip, A. LaCluyze, P. Kušnirák, T. Henych, F. Marchis, B. Macomber, S.A. Jacobson, Y.N. Krugly, A.V. Sergeev, A. Leroy, Formation of asteroid pairs by rotational fission. Nature 466(7), 1085–1088 (2010) ADSGoogle Scholar
  268. D. Prialnik, E.D. Rosenberg, Can ice survive in main-belt comets? Long-term evolution models of comet 133P/Elst-Pizarro. Mon. Not. R. Astron. Soc. Lett. 399(1), 79–83 (2009) ADSGoogle Scholar
  269. J.J. Rennilson, D.R. Criswell, Surveyor observations of lunar horizon-glow. Moon 10, 121–142 (1974). ADSGoogle Scholar
  270. J.E. Richardson, H.J. Melosh, R.J. Greenberg, D.P. O’Brien, The global effects of impact-induced seismic activity on fractured asteroid surface morphology. Icarus 179(2), 325–349 (2005) ADSGoogle Scholar
  271. D.P. Rubincam, Radiative spin-up and spin-down of small asteroids. Icarus 148(1), 2–11 (2000) ADSGoogle Scholar
  272. G.O. Ryabova, The mass of the Geminid meteoroid stream. Planet. Space Sci. 143, 125–131 (2017) ADSGoogle Scholar
  273. M. Sachse, J. Schmidt, S. Kempf, F. Spahn, Correlation between speed and size for ejecta from hypervelocity impacts. J. Geophys. Res., Planets 120, 1847–1858 (2015). ADSGoogle Scholar
  274. M. Sarantos, R.M. Killen, D.A. Glenar, M. Benna, T.J. Stubbs, Metallic species, oxygen and silicon in the lunar exosphere: upper limits and prospects for LADEE measurements. J. Geophys. Res. 117, A03103 (2012) ADSGoogle Scholar
  275. K. Sauer, K. Baumgärtel, U. Motschmann, Phobos events as precursors of solar wind-dust interaction. Geophys. Res. Lett. 20(2), 165–168 (1993) ADSGoogle Scholar
  276. B. Schläppi, K. Altwegg, P. Wurz, Asteroid exosphere: a simulation for the ROSETTA flyby targets (2867) Steins and (21) Lutetia. Icarus 195, 674–685 (2008) ADSGoogle Scholar
  277. J. Schmidt, N. Brilliantov, F. Spahn, S. Kempf, Slow dust in Enceladus’ plume from condensation and wall collisions in tiger stripe fractures. Nature 451, 685–688 (2008). ADSGoogle Scholar
  278. N. Schorghofer, The lifetime of ice on main belt asteroids. Astrophys. J. 682(1), 697 (2008) ADSGoogle Scholar
  279. N. Schorghofer, Predictions of depth-to-ice on asteroids based on an asynchronous model of temperature, impact stirring, and ice loss. Icarus 276, 88–95 (2016) ADSGoogle Scholar
  280. J. Schwan, X. Wang, H.W. Hsu, E. Grün, M. Horanyi, The charge state of electrostatically transported dust on regolith surfaces. Geophys. Res. Lett. 44(7), 3059–3065 (2017) ADSGoogle Scholar
  281. F. Scipioni, F. Tosi, K. Stephan, G. Filacchione, M. Ciarniello, F. Capaccioni, P. Cerroni (The VIMS Team), Spectroscopic classification of icy satellites of Saturn I: identification of terrain units on Dione. Icarus 226, 1331–1349 (2013) ADSGoogle Scholar
  282. F. Scipioni, F. Tosi, K. Stephan, G. Filacchione, M. Ciarniello, F. Capaccioni, P. Cerroni (The VIMS Team), Spectroscopic classification of icy satellites of Saturn II: identification of terrain units on Rhea. Icarus 234, 1–16 (2014) ADSGoogle Scholar
  283. A.B. Severny, E.I. Terez, A.M. Zvereva, The measurements of sky brightness on Lunokhod-2. Earth Moon Planets 14(1), 123–128 (1975) Google Scholar
  284. R. Sfair, S.M.G. Winter, Orbital evolution of the \(\mu\) and \(\nu\) dust ring particles of Uranus. Astron. Astrophys. 505, 845–852 (2009) ADSzbMATHGoogle Scholar
  285. S.S. Sheppard, C. Trujillo, Discovery and characteristics of the rapidly rotating active asteroid (62412) 2000 SY178 in the main belt. Astron. J. 149(2), 44 (2015) ADSGoogle Scholar
  286. Y. Shkuratov, V. Kaydash, V. Korokhin, Y. Velikodsky, N. Opanasenko, G. Videen, Optical measurements of the Moon as a tool to study its surface. Planet. Space Sci. 59(13), 1326–1371 (2011) ADSGoogle Scholar
  287. M.R. Showalter, D.P. Hamilton, P.D. Nicholson, A deep search for martian dust rings and inner moons using the Hubble Space Telescope. Planet. Space Sci. 54, 844–854 (2006) ADSGoogle Scholar
  288. A.P. Showman, R. Malhotra, The Galilean satellites. Science 296, 77–84 (1999) ADSGoogle Scholar
  289. A. Shu, A. Collette, K. Drake, E. Grün, M. Horanyi, S. Kempf, A. Mocker, T. Munsat, P. Northway, R. Srama, Z. Sternovsky, E. Thomas, 3 MV hypervelocity dust accelerator at the Colorado Center for Lunar Dust and Atmospheric Studies. Rev. Sci. Instrum. 83(7), 075108 (2012) ADSGoogle Scholar
  290. M. Siegler, R.S. Miller, J.T. Keane, M. Laneuville, D.A. Paige, I. Matsuyama, D.J. Lawrence, A. Crotts, M.J. Poston, Lunar true polar wander inferred from polar hydrogen. Nature 531(7), 480–484 (2016) ADSGoogle Scholar
  291. B.A. Smith, et al., The Galilean satellites and Jupiter: Voyager 2 imaging science results. Science 206, 927–950 (1979a) ADSGoogle Scholar
  292. B.A. Smith, et al., The Jupiter system through the eyes of Voyager 1. Science 204, 951–972 (1979b) ADSGoogle Scholar
  293. B.A. Smith, et al., Voyager 2 in the Uranian system: imaging science results. Science 233(4759), 43–64 (1986) ADSGoogle Scholar
  294. S.M. Smith, J.K. Wilson, J. Baumgardner, M. Mendillo, Discovery of the distant lunar sodium tail and its enhancement following the Leonid meteor shower of 1998. Geophys. Res. Lett. 26(12), 1649–1652 (1999) ADSGoogle Scholar
  295. C. Snodgrass, C. Tubiana, J.-B. Vincent, H. Sierks, S. Hviid, R. Moissl, H. Boehnhardt, C. Barbieri, D. Koschny, P. Lamy, et al., A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2. Nature 467(7317), 814–816 (2010) ADSGoogle Scholar
  296. C. Snodgrass, G.H. Jones, H. Boehnhardt, A. Gibbings, M. Homeister, N. Andre, P. Beck, M.S. Bentley, I. Bertini, N. Bowles, M.T. Capria, C. Carr, M. Ceriotti, A.J. Coates, V.D. Corte, K.L.D. Hanna, A. Fitzsimmons, P.J. Gutierrez, O.R. Hainaut, A. Herique, M. Hilchenbach, H.H. Hsieh, E. Jehin, O. Karatekin, W. Kofman, L.M. Lara, K. Laudan, J. Licandro, S.C. Lowry, F. Marzari, A. Masters, K.J. Meech, F. Moreno, A. Morse, R. Orosei, A. Pack, D. Plettemeier, D. Prialnik, A. Rotundi, M. Rubin, J.P. Sanchez, S. Sheridan, M. Trieloff, A. Winterboer, The Castalia mission to main belt comet 133p/Elst-Pizarro. Adv. Space Res. (2017). Google Scholar
  297. S. Soter, The dust belts of Mars. Cornell Center Radiophys. Space Phys. Rept. 472 (1971) Google Scholar
  298. F. Spahn, et al., Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311, 1416–1418 (2006) ADSGoogle Scholar
  299. F. Spahn, J. Schmidt, N. Albers, M. Hörning, M. Makuch, M. Seiß, S. Kempf, R. Srama, V. Dikarev, S. Helfert, G. Moragas-Klostermeyer, A.V. Krivov, M. Sremčević, A.J. Tuzzolino, T. Economou, E. Grün, Cassini dust measurements at Enceladus and implications for the origin of the E ring. Science 311, 1416–1418 (2006a). ADSGoogle Scholar
  300. F. Spahn, N. Albers, M. Hörning, S. Kempf, A.V. Krivov, M. Makuch, J. Schmidt, M. Seiß, M. Sremčević, E ring dust sources: implications from Cassini’s dust measurements. Planet. Space Sci. 54, 1024–1032 (2006b). ADSGoogle Scholar
  301. E.J. Speyerer, R.Z. Povilaitis, M.S. Robinson, P.C. Thomas, R.V. Wagner, Quantifying crater production and regolith overturn on the Moon with temporal imaging. Nature Publishing Group 538(7624), 215–218 (2016) ADSGoogle Scholar
  302. M. Sremčević, A.V. Krivov, F. Spahn, Impact-generated dust clouds around planetary satellites: asymmetry effects. Planet. Space Sci. 51, 455–471 (2003) ADSGoogle Scholar
  303. M. Sremčević, A.V. Krivov, H. Krüger, F. Spahn, Impact-generated dust clouds around planetary satellites: model versus Galileo data. Planet. Space Sci. 53, 625–641 (2005). ADSGoogle Scholar
  304. A.J. Steffl, S.A. Stern, First constraints on rings in the Pluto system. Astron. J. 133, 1485–1489 (2007) ADSGoogle Scholar
  305. V.J. Sterken, N. Altobelli, S. Kempf, G. Schwehm, R. Srama, E. Grün, The flow of interstellar dust into the solar system. Astron. Astrophys. 538, A102 (2012) ADSGoogle Scholar
  306. V.J. Sterken, P. Strub, H. Krüger, R. von Steiger, P.C. Frisch, Sixteen years of Ulysses interstellar dust measurements in the Solar System. III. Simulations and data unveil new insights into local interstellar dust. Astrophys. J. 812(2), 1–24 (2015) Google Scholar
  307. S.A. Stern, Collisional time scales in the Kuiper Disk and their implications. Astron. J. 110(2), 856 (1995) ADSGoogle Scholar
  308. S.A. Stern, Signatures of collisions in the Kuiper Disk. Astron. Astrophys. 310, 999–1010 (1996) ADSGoogle Scholar
  309. S.A. Stern, The Lunar atmosphere: history, status, current problems, and context. Rev. Geophys. 37(4), 453–491 (1999) ADSGoogle Scholar
  310. S.A. Stern, Ejecta exchange and satellite color evolution in the Pluto system, with implications for KBOs and asteroids with satellites. Icarus 199, 571–573 (2009) ADSGoogle Scholar
  311. S.A. Stern, J.E. Colwell, Collisional erosion in the primordial Edgeworth-Kuiper Belt and the generation of the 3050 AU Kuiper Gap. Astrophys. J. 490, 879–882 (1997) ADSGoogle Scholar
  312. P. Strub, H. Krüger, V.J. Sterken, Sixteen years of Ulysses interstellar dust measurements in the Solar System. II. Fluctuations in the dust flow from the data. Astrophys. J. 812(2), 140 (2015) ADSGoogle Scholar
  313. K.-L. Sun, M. Seiß, M.M. Hedman, F. Spahn, Dust in the arcs of Methone and Anthe. Icarus 284, 206–215 (2017) ADSGoogle Scholar
  314. J.R. Szalay, M. Horányi, Annual variation and synodic modulation of the sporadic meteoroid flux to the Moon. Geophys. Res. Lett. 42(24), 10580–10584 (2015a). ADSGoogle Scholar
  315. J.R. Szalay, M. Horányi, The search for electrostatically lofted grains above the Moon with the Lunar Dust Experiment. Geophys. Res. Lett. 42(13), 5141–5146 (2015b). ADSGoogle Scholar
  316. J.R. Szalay, M. Horányi, Detecting meteoroid streams with an in-situ dust detector above an airless body. Icarus 275, 221–231 (2016a). ADSGoogle Scholar
  317. J.R. Szalay, M. Horányi, Lunar meteoritic gardening rate derived from in situ LADEE/LDEX measurements. Geophys. Res. Lett. 43(10), 4893–4898 (2016b). ADSGoogle Scholar
  318. J.R. Szalay, M. Horányi, The impact ejecta environment of near Earth asteroids. Astrophys. J. Lett. 830(2), 29 (2016c). ADSGoogle Scholar
  319. J.R. Szalay, M. Piquette, M. Horányi, The Student Dust Counter: status report at 23 AU. Earth Planets Space 65, 1145–1149 (2013). ADSGoogle Scholar
  320. J.R. Szalay, M. Horányi, A. Colaprete, M. Sarantos, Meteoritic influence on sodium and potassium abundance in the lunar exosphere measured by LADEE. Geophys. Res. Lett. (2016). Google Scholar
  321. J.R. Szalay, P. Pokorný, P. Jenniskens, M. Horanyi, Activity of the 2013 Geminid meteoroid stream at the Moon. Mon. Not. R. Astron. Soc. 474(3), 4225–4231 (2018) ADSGoogle Scholar
  322. S. Takasawa, A.M. Nakamura, T. Kadono, M. Arakawa, K. Dohi, S. Ohno, Y. Seto, M. Maeda, K. Shigemori, Y. Hironaka, T. Sakaiya, S. Fujioka, T. Sano, K. Otani, T. Watari, K. Sangen, M. Setoh, N. Machii, T. Takeuchi, Silicate dust size distribution from hypervelocity collisions: implications for dust production in debris disks. Astrophys. J. Lett. 733, 39 (2011). ADSGoogle Scholar
  323. D. Tamayo, J.A. Burns, D.P. Hamilton, M.M. Hedman, Finding the trigger to Iapetus’ odd global albedo patter: dynamics of dust from Saturn’s irregular satellites. Icarus 215, 260–278 (2011) ADSGoogle Scholar
  324. M. Tátrallyay, M. Horányi, A. Juhász, J.G. Luhmann, Submicron-sized dust grains in the Martian environment. Adv. Space Res. 12(9), 927–930 (1992) Google Scholar
  325. S.R. Taylor, Planetary Science: A Lunar Perspective (Lunar and Planetary Institute, Houston, 1982) Google Scholar
  326. L.A. Taylor, C.M. Pieters, L.P. Keller, R.V. Morris, D.S. McKay, Lunar mare soils: space weathering and the major effects of surface-correlated nanophase Fe. J. Geophys. Res. 106(E), 27985–28000 (2001) ADSGoogle Scholar
  327. L.A. Taylor, C. Pieters, A. Patchen, D.-H.S. Taylor, R.V. Morris, L.P. Keller, D.S. McKay, Mineralogical and chemical characterization of lunar highland soils: insights into the space weathering of soils on airless bodies. J. Geophys. Res. 115(E), 02002 (2010) Google Scholar
  328. T. Terai, Y. Itoh, Y. Oasa, R. Furusho, J. Watanabe, Photometric measurements of H2O ice crystallinity on trans-neptunian objects. Astrophys. J. 827, 65 (2016) ADSGoogle Scholar
  329. K.-U. Thiessenhusen, A.V. Krivov, H. Krüger, E. Grün, A dust cloud around Pluto and Charon. Planet. Space Sci. 50, 79–87 (2002) ADSGoogle Scholar
  330. N. Thomas et al., The morphological diversity of comet 67P/Churyumov-Gerasimenko. Science 347, 6220 (2015) Google Scholar
  331. H.B. Throop, R.G. French, K. Shoemaker, C.B. Olkin, T.R. Ruhland, L.A. Young, Limits on Pluto’s ring system from the June 12 2006 stellar occultation and implications for the New Horizons impact hazard. Icarus 246, 345–351 (2015) ADSGoogle Scholar
  332. C.A. Trujillo, M.E. Brown, K.M. Barkume, E.L. Schaller, D.L. Rabinowitz, The surface of 2003 EL61 in the near infrared. Astrophys. J. 655, 1172–1178 (2007) ADSGoogle Scholar
  333. A. Tsuchiyama, M. Uesugi, T. Matsushima, T. Michikami, T. Kadono, T. Nakamura, K. Uesugi, T. Nakano, S.A. Sandford, R. Noguchi, et al., Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith. Science 333(6046), 1125–1128 (2011) ADSGoogle Scholar
  334. D. Veras, S.A. Jacobson, B.T. Gänsicke, Post-main-sequence debris from rotation-induced YORP break-up of small bodies. Mon. Not. R. Astron. Soc. 445(3), 2794–2799 (2014). ADSGoogle Scholar
  335. A.J. Verbiscer, M.F. Skrutskie, D.P. Hamilton, Saturn’s largest ring. Nature 461, 1098–1100 (2009) ADSGoogle Scholar
  336. J. Veverka et al., Imaging of small-scale features on 433 Eros from NEAR: evidence for a complex regolith. Science 292, 484 (2001) ADSGoogle Scholar
  337. C. Vitense, A.V. Krivov, H. Kobayashi, T. Löhne, An improved model of the Edgeworth-Kuiper debris disk. Astron. Astrophys. 540, A30 (2012) ADSGoogle Scholar
  338. X. Wang, M. Horányi, S. Robertson, Experiments on dust transport in plasma to investigate the origin of the lunar horizon glow. J. Geophys. Res. 114, A05103 (2009) ADSGoogle Scholar
  339. X. Wang, M. Horányi, S. Robertson, Investigation of dust transport on the lunar surface in a laboratory plasma with an electron beam. J. Geophys. Res. 115, A11102 (2010) ADSGoogle Scholar
  340. X. Wang, M. Horányi, S. Robertson, Dust transport near electron beam impact and shadow boundaries. Planet. Space Sci. 59, 1791–1794 (2011) ADSGoogle Scholar
  341. X. Wang, J. Schwan, H.-W. Hsu, E. Grün, M. Horányi, Dust charging and transport on airless planetary bodies. Geophys. Res. Lett. 43, 6103–6110 (2016) ADSGoogle Scholar
  342. B.D. Warner, A.W. Harris, P. Pravec, The asteroid lightcurve database. Icarus 202(1), 134–146 (2009) ADSGoogle Scholar
  343. H.A. Weaver, S.A. Stern, M.J. Mutchler, A.J. Steffl, M.W. Buie, W.J. Merline, J.R. Spencer, E.F. Young, L.A. Young, Discovery of two new satellites of Pluto. Nature 439, 943–945 (2006) ADSGoogle Scholar
  344. F. Whipple, 1983 TB and the Geminid meteors. International Astronomical Union Circular, No. 3881 (1983) Google Scholar
  345. P. Wiegert, J. Vaubaillon, M. Campbell-Brown, A dynamical model of the sporadic meteoroid complex. Icarus 201, 295–310 (2009) ADSGoogle Scholar
  346. S. Yamamoto, T. Mukai, Dust production by impacts of interstellar dust on Edgeworth-Kuiper Belt objects. Astron. Astrophys. 329, 785–791 (1998) ADSGoogle Scholar
  347. H. Yano, T. Kubota, H. Miyamoto, T. Okada, D. Scheeres, Y. Takagi, K. Yoshida, M. Abe, S. Abe, O. Barnouin-Jha, et al., Touchdown of the Hayabusa spacecraft at the Muses sea on Itokawa. Science 312(5778), 1350–1353 (2006) ADSGoogle Scholar
  348. F. Yoshida, T. Nakamura, Size distribution of faint Jovian l4 Trojan asteroids. Astron. J. 130(6), 2900 (2005) ADSGoogle Scholar
  349. M. Yoshikawa, et al., Outline of the next asteroid sample return mission of Japan-Hayabusa-2, in 28th International Symposium on Space Technology and Science (2011) Google Scholar
  350. M.I. Zimmerman, W.M. Farrell, A. Poppe, Grid-free 2D plasma simulations of the complex interaction between the solar wind and small, near-Earth asteroids. Icarus 238, 77–85 (2014) ADSGoogle Scholar
  351. M.I. Zimmerman, W.M. Farrell, C.M. Hartzell, X. Wang, M. Horányi, D.M. Hurley, K. Hibbits, Grain-scale supercharging and breakdown on airless regoliths. J. Geophys. Res., Planets 121, 2150–2165 (2016) ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • J. R. Szalay
    • 1
  • A. R. Poppe
    • 2
  • J. Agarwal
    • 3
  • D. Britt
    • 4
  • I. Belskaya
    • 5
  • M. Horányi
    • 6
  • T. Nakamura
    • 7
  • M. Sachse
    • 8
  • F. Spahn
    • 8
  1. 1.Department of Astrophysical SciencesPrinceton UniversityPrincetonUSA
  2. 2.Space Sciences LaboratoryU.C. BerkeleyBerkeleyUSA
  3. 3.Max Planck Institute for Solar System ResearchGöttingenGermany
  4. 4.University of Central FloridaOrlandoUSA
  5. 5.Institute of AstronomyV.N. Karazin Kharkiv National UniversityKharkivUkraine
  6. 6.Department of PhysicsUniversity of Colorado BoulderBoulderUSA
  7. 7.Division of Earth and Planetary Materials ScienceTohoku UniversityMiyagiJapan
  8. 8.Institut für Physik und AstronomieUniversität PotsdamPotsdamGermany

Personalised recommendations