Advertisement

Space Science Reviews

, 214:88 | Cite as

Venus Interior Structure and Dynamics

  • Suzanne E. Smrekar
  • Anne Davaille
  • Christophe Sotin
Article
Part of the following topical collections:
  1. Venus III

Abstract

No two rocky bodies offer a better laboratory for exploring the conditions controlling interior dynamics than Venus and Earth. Their similarities in size, density, distance from the sun, and young surfaces would suggest comparable interior dynamics. Although the two planets exhibit some of the same processes, Venus lacks Earth’s dominant process for losing heat and cycling volatiles between the interior and the surface and atmosphere: plate tectonics. One commonality is the size and number of mantle plume features which are inferred to be active today and arise at the core mantle boundary. Such mantle plumes require heat loss from the core, yet Venus lacks a measurable interior dynamo. There is evidence for plume-induced subduction on Venus, but no apparent mosaic of moving plates. Absent plate tectonics, one essential question for interior dynamics is how did Venus obtain its young resurfacing age? Via catastrophic or equilibrium processes? Related questions are how does it lose heat via past periods of plate tectonics, has it always had a stagnant lid, or might it have an entirely different mode of heat loss? Although there has been no mission dedicated to surface and interior processes since the Magellan mission in 1990, near infrared surface emissivity data that provides information on the iron content of the surface mineralogy was obtained fortuitously from Venus Express. These data imply both the presence of continental-like crust, and thus formation in the presence of water, and recent volcanism at mantle hotspots. In addition, the study of interior dynamics for both Earth and exoplanets has led to new insights on the conditions required to initiate subduction and develop plate tectonics, including the possible role of high temperature lithosphere, and a renewed drive to reveal why Venus and Earth differ. Here we review current data that constrains the interior dynamics of Venus, new insights into its interior dynamics, and the data needed to resolve key questions.

Keywords

Venus Crust Mantle Core Tectonics Plate tectonics Stagnant lid Mantle convection Hotspots Corona Subduction 

Notes

Acknowledgements

The manuscript was improved thanks to the detailed and constructive comments of Paul Tackley and Gerald Schubert. A portion of the work was supported by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. A.D was supported by the French Programme de Planétologie of CNRS-INSU/CNES.

References

  1. K. Altwegg et al., 67P/Churyumov-Gerasimenko, a Jupiter family comet with a high D/H ratio. Science 347, 1261952 (2015) Google Scholar
  2. F.S. Anderson, S.E. Smrekar, Tectonic effects of climate change on Venus. J. Geophys. Res., Planets 104(E12), 30743–30756 (1999) ADSGoogle Scholar
  3. F.S. Anderson, S.E. Smrekar, Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res., Planets 111(E8), E08006 (2006).  https://doi.org/10.1029/2004JE002395 ADSGoogle Scholar
  4. J.C. Andrews-Hanna, M.T. Zuber, W.B. Banerdt, The Borealis basin and the origin of the martian crustal dichotomy. Nature 453, 1212–1215 (2008).  https://doi.org/10.1038/nature07011 ADSGoogle Scholar
  5. J.C. Andrews-Hanna, S.E. Smrekar, E. Mazarico, Venus gravity gradiometry: plateaus, chasmata, coronae, and the need for a better global dataset, in 47th Lunar and Planetary Science Conference, The Woodlands, TX (2016). Abstract #1903 Google Scholar
  6. S. Androvandi, A. Davaille, A. Limare, A. Fouquier, C. Marais, At least three scales of convection in a mantle with strongly temperature-dependent viscosity. Phys. Earth Planet. Inter. 188, 132–141 (2011) ADSGoogle Scholar
  7. M. Armann, P.J. Tackley, Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J. Geophys. Res. 117, E12003 (2012).  https://doi.org/10.1029/2012JE004231 ADSGoogle Scholar
  8. S. Azuma, I. Katayama, T. Nakakuki, Rheological decoupling at the Moho and implication to Venusian tectonics. Sci. Rep. 4, 4403 (2014) ADSGoogle Scholar
  9. K.H. Baines et al., The atmospheres of the terrestrial planets: Clues to the origins and early evolution of Venus, Earth, and Mars, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell et al. (Univ. of Arizona, Tucson, 2013), pp. 137–160 Google Scholar
  10. W.B. Banerdt, M.P. Golombek, Deformational models of rifting and folding on Venus. J. Geophys. Res. 93, 4759–4772 (1988) ADSGoogle Scholar
  11. W.B. Banerdt, G.E. McGill, M.T. Zuber, Plains tectonics on Venus, in Venus II, ed. by S.W. Bouguer et al.(U. of Ariz. Press, Tucson, 1997), pp. 797–844 Google Scholar
  12. D. Bercovici, Y. Ricard, Plate tectonics, damage and inheritance. Nature 508, 513–516 (2014) ADSGoogle Scholar
  13. F. Bilotti, J. Suppe, The global distribution of wrinkle ridges on Venus. Icarus 139(1), 137–157 (1999) ADSGoogle Scholar
  14. D.L. Bindschadler, G. Schubert, W.M. Kaula, Coldspots and hotspots: global tectonics and mantle dynamics of Venus. J. Geophys. Res. 9, 13,495–13,532 (1992) ADSGoogle Scholar
  15. E. Bjonnes, V. Hansen, B. James, J. Swenson, Equilibrium resurfacing of Venus: results from new Monte Carlo modeling and implications for Venus surface histories. Icarus 217(2), 451–461 (2012).  https://doi.org/10.1016/j.icarus.2011.03.033 ADSGoogle Scholar
  16. W.F. Bottke, D. Vokrouhlicky, B. Ghent, S. Mazrouei, S. Robbins, S. Marchi, On Asteroid impacts, crater scaling laws, and proposed younger surface age for Venus, in XLVII Lunar and Planetary Sci. Conf. (2016). Abst. #2036 Google Scholar
  17. D. Breuer, S. Labrosse, T. Spohn, Thermal evolution and magnetic field generation in terrestrial planets and satellites. Space Sci. Rev. 152, 449–500 (2010) ADSGoogle Scholar
  18. C.D. Brown, R.E. Grimm, Lithospheric rheology and flexure at Artemis Chasma, Venus. J. Geophys. Res., Planets 101(E5), 12697–12708 (1996) ADSGoogle Scholar
  19. W.R. Buck, Global decoupling of crust and mantle: implications for topography, geoid and mantle viscosity on Venus. Geophys. Res. Lett. 19, 2111–2114 (1992) ADSGoogle Scholar
  20. H.P. Bunge, M.A. Richards, J.R. Baumgardner, A sensitivity study of 3-dimensional spherical mantle convection at 108 Rayleigh number—effects of depth-dependent viscosity, heating mode, and an endothermic phase change. J. Geophys. Res. 102(B6), 11991–12007 (1997) ADSGoogle Scholar
  21. E.B. Burov, A.B. Watts, The long-term strength of continental lithosphere: “jelly sandwich” or “crème Brûlée”? GSA Today 16(1), 60 (2006).  https://doi.org/10.1130/1052-5173 Google Scholar
  22. I.H. Campbell, S.R. Taylor, No water, no granites—no ocean, no continents. Geophys. Res. Lett. 10(11), 1061–1064 (1983) ADSGoogle Scholar
  23. B.A. Campbell, G.A. Morgan, J.L. Whitten, L.M. Carter, L.S. Glaze, D.B. Campbell, Pyroclastic flow deposits on Venus as indicators of renewed magmatic activity. J. Geophys. Res., Planets 122, 1580–1596 (2017).  https://doi.org/10.1002/2017JE005299 ADSGoogle Scholar
  24. S.C. Cande, D.R. Stegman, Indian and African plate motions driven by the push force of La Réunion plume head. Nature 475, 47–52 (2011) ADSGoogle Scholar
  25. J. Chantel, G. Manthilake, D. Andrault, D. Novella, T. Yu, Y. Wang, Experimental evidence supports mantle partial melting in the asthenosphere. Sci. Adv. 2, e1600246 (2016).  https://doi.org/10.1126/sciadv.1600246 ADSGoogle Scholar
  26. U.R. Christensen, J. Aubert, Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Int. 166(1), 97–114 (2006) ADSGoogle Scholar
  27. A.C. Correia, J. Laskar, Long-term evolution of the spin of Venus: II. Numerical simulations. Icarus 163(1), 24–45 (2003) ADSGoogle Scholar
  28. V. Courtillot, A. Davaille, J. Besse, J. Stock, Three distinct types of hot spots into the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003). 2003 ADSGoogle Scholar
  29. F.B. Crameri, J.P. Kaus, Parameters that control lithospheric—scale thermal localization on terrestrial planets. Geophys. Res. Lett. 37, L09308 (2010) ADSGoogle Scholar
  30. F. Crameri, P.J. Tackley, Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface. Prog. Earth Planet. Sci. 3, 30 (2016) ADSGoogle Scholar
  31. F. Crameri, P.J. Tackley, I. Meilick, T.V. Gerya, B.J.P. Kaus, A free plate surface and weak oceanic crust produce single-sided subduction on Earth. Geophys. Res. Lett. 39, L03306 (2012) ADSGoogle Scholar
  32. J. Cutts, The Keck Institute for Space Studies (KISS) Venus Seismology Study Team, Probing the Interior Structure of Venus (2015) Google Scholar
  33. A. Davaille, Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999) ADSGoogle Scholar
  34. A. Davaille, C. Jaupart, Transient high-Rayleigh number thermal convection with large viscosity variations. J. Fluid Mech. 253, 141–166 (1993) ADSGoogle Scholar
  35. A. Davaille, S.E. Smrekar, The importance of plumes to trigger subduction of a sluggish lid: examples from laboratory experiments and planets. Geophys. Res. Abstr. 16, EGU2014-11967-1 (2014) Google Scholar
  36. A. Davaille, E. Stutzmann, G. Silveira, J. Besse, V. Courtillot, Convective patterns under the Indo-Atlantic «box». Earth Planet. Sci. Lett. 239, 233–252 (2005) ADSGoogle Scholar
  37. A. Davaille, S.E. Smrekar, S. Tomlinson, Experimental and observational evidence for plume-induced subduction on Venus. Nat. Geosci. 10, 349–355 (2017) ADSGoogle Scholar
  38. S. Demouchy, N. Bolfan-Casanova, Distribution and transport of hydrogen in the lithospheric mantle: a review. Lithos 240–243, 402–425 (2016) Google Scholar
  39. A.R. Dobrovolskis, A.P. Ingersoll, Atmospheric tides and the rotation of Venus. Icarus 41, 1 (1980) ADSGoogle Scholar
  40. T.M. Donahue, J.B. Pollack, Origin and evolution of the atmosphere of Venus, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (Univ. AZ Press, Tucson, 1983) Google Scholar
  41. P. Driscoll, D. Bercovici, Divergent evolution of Earth and Venus: influence of degassing, tectonics, and magnetic fields. Icarus 226, 1447–1464 (2013) ADSGoogle Scholar
  42. P. Driscoll, D. Bercovici, On the thermal and magnetic histories of Earth and Venus: influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter. 236, 36–51 (2014) ADSGoogle Scholar
  43. C. Dumoulin, G. Tobie, O. Verhoeven, P. Rosenblatt, N. Rambaux, Tidal constraints on the interior of Venus. J. Geophys. Res., Planets 122, 1338–1352 (2017) ADSGoogle Scholar
  44. D.J. Dunlop, O. Ozdemir, Rock Magnetism: Fundamentals and Frontiers (Cambridge University Press, Cambridge, 1997), p. 573 Google Scholar
  45. L. Dupeyrat, C. Sotin, The effect of the transformation of basalt to eclogite on the internal dynamics of Venus. Planet. Space Sci. 43, 909–921 (1995) ADSGoogle Scholar
  46. M.D. Dyar, J. Helbert, T. Boucher, D. Wendler, I. Walter, T. Widemann, E. Marcq, A. Maturilli, S. Ferrari, M. D’Amore, N. Müller, S. Smrekar, Mapping Venus mineralogy and chemistry in situ from orbit with six-window VNIR spectroscopy, in 15th Meeting of the Venus Exploration Analysis Group (2017). Abstract #8004 Google Scholar
  47. D. Dymkova, T. Gerya, Porous fluid flow enables oceanic subduction initiation on Earth. Geophys. Res. Lett. 40(21), 5671–5676 (2013) ADSGoogle Scholar
  48. L.T. Elkins-Tanton, S.E. Smrekar, P.C. Hess, E.M. Parmentier, Volcanism and volatile recycling on a one-plate planet: applications to Venus. J. Geophys. Res. 112, E04S06 (2007).  https://doi.org/10.1029/2006JE002793 Google Scholar
  49. B.J. Foley, P.E. Driscoll, Whole planet coupling between climate, mantle, and core: implications for rocky planet evolution. Geochem. Geophys. Geosyst. 17, 1885–1914 (2016) ADSGoogle Scholar
  50. D.W. Forsyth, Subsurface loading and estimates of the flexural rigidity of continental lithosphere. J. Geophys. Res. B, Solid Earth Planets 90(B14), 2623–2632 (1985) Google Scholar
  51. A.C. Fowler, S.B.G. O’Brien, A mechanism for episodic subduction on Venus. J. Geophys. Res. 101, 4755–4763 (1996) ADSGoogle Scholar
  52. S. Franck, A. Block, W. von Bloh, C. Bounama, H.J. Schellnhuber, Y. Svirezhev, Habitable zone for Earth-like planets in the solar system. Planet. Space Sci. 48(11), 1099–1105 (2000) ADSGoogle Scholar
  53. R. Garcia, P. Lognonné, X. Bonnin, Detecting atmospheric perturbations produced by Venus quakes. Geophys. Res. Lett. 32(16), 1944–8007 (2005) Google Scholar
  54. T.V. Gerya, Plume-induced crustal convection: 3D thermomechanical mode and implications for the origin of novae and coronae on Venus. Earth Planet. Sci. Lett. 391, 183192 (2014) Google Scholar
  55. T.V. Gerya, R.J. Stern, S.V. Sobolev, S.A. Whattam, Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015) ADSGoogle Scholar
  56. R. Ghail, Rheological and petrological implications for a stagnant lid regime on Venus. Planet. Space Sci. 113–114, 2–9 (2015).  https://doi.org/10.1016/j.pss.2015.02.005 Google Scholar
  57. R.C. Ghail et al., VenSAR on EnVision: taking Earth observation radar to Venus. Int. J Appl. Earth Obs. Geoinf. (2017).  https://doi.org/10.1016/j.jag.2017.02.00 Google Scholar
  58. E. Giannandrea, U.R. Christensen, Variable viscosity convection experiments with a stress-free upper boundary and implications for the heat transport in the Earth’s mantle. Phys. Earth Planet. Inter. 78, 139–152 (1993) ADSGoogle Scholar
  59. C. Gillmann, P. Tackley, Atmosphere/mantle coupling and feedbacks on Venus. J. Geophys. Res., Planets 119, 1189–1217 (2014) ADSGoogle Scholar
  60. C. Gillmann, E. Chassefiere, P. Lognonné, A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286(3–4), 503–513 (2009) ADSGoogle Scholar
  61. C. Gillmann, G.J. Golabek, P.J. Tackley, Effect of a single large impact on the coupled atmosphere-interior evolution of Venus. Icarus 268, 295–312 (2016) ADSGoogle Scholar
  62. M.S. Gilmore, N. Mueller, J. Helbert, VIRTIS emissivity of Alpha Regio, Venus, with implications for tessera composition. Icarus 254, 350–361 (2015).  https://doi.org/10.1016/j.icarus.2015.04.008 ADSGoogle Scholar
  63. M. Gilmore, A. Treiman, J. Helbert, S. Smrekar, Venus surface composition constrained by observation and experiment. Space Sci. Rev. (2017).  https://doi.org/10.1007/s11214-017-0370-8 Google Scholar
  64. L.S. Glaze, E.R. Stofan, S.E. Smrekar, S.M. Bologa, Insights into corona formation through statistical analyses. J. Geophys. Res. 107, E12 (2002).  https://doi.org/10.1029/2002JE001904 Google Scholar
  65. G.J. Golabek, T. Keller, T.V. Gerya, G. Zhu, P.J. Tackley, J.A.D. Connolly, Origin of the martian dichotomy and Tharsis from a giant impact causing massive magmatism. Icarus (USA) 215(1), 346–357 (2011) ADSGoogle Scholar
  66. S. Goossens, F.G. Lemoine, P. Rosenblatt, S. Lebonnois, E. Mazarico, Analysis of Magellan and Venus Express tracking data for Venus gravity field determination, in 15th Meeting of the Venus Exploration Analysis Group (2017). Abstract #8036 Google Scholar
  67. R.E. Grimm, R.J. Phillips, Gravity anomalies, compensation mechanisms, and the geodynamics of Western Ishtar Terra, Venus. J. Geophys. Res. 96, 8305–8324 (1991) ADSGoogle Scholar
  68. P.M. Grinrod, F. Nimmo, E.R. Stofan, J.E. Guest, Strain at radially fractured centers on Venus. J. Geophys. Res. 110, E12002 (2005).  https://doi.org/10.1029/2005JE002416 ADSGoogle Scholar
  69. L. Guillou, C. Jaupart, On the effect of continents on mantle convection. J. Geophys. Res. 100, 24217–24238 (1995) ADSGoogle Scholar
  70. K. Hamano, Y. Abe, H. Genda, Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497(7451), 607–610 (2013).  https://doi.org/10.1038/nature12163 ADSGoogle Scholar
  71. V.L. Hansen, R.J. Phillips, Tectonics and volcanism of eastern Aphrodite Terra, Venus—no subduction, no spreading. Science 260(5107), 526–530 (1993) ADSGoogle Scholar
  72. L.B. Harris, J.H. Bedard, Interactions between continent-like ‘drift’, rifting and mantle flow on Venus: gravity interpretations and Earth analogues, in Special Publications, vol. 401 (Geological Society, London, 2015), pp. 327–356 Google Scholar
  73. J. Helbert, N. Muller, P. Kostama et al., Surface brightness seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus. Geophys. Res. Lett. 35(11), L11201 (2008) ADSGoogle Scholar
  74. S. Hensley, S. Smrekar, M.D. Dyar, D. Perkovic, B. Campbell, M. Younis, Venus Interferometric Synthetic Aperture Radar (VISAR) for the Venus Origins Explorer, in 15th Meeting of the Venus Exploration Analysis Group (2017). Abstract #8020 Google Scholar
  75. R.R. Herrick, M.E. Rumpf, Postimpact modification by volcanic or tectonic processes as the rule, not the exception, for Venusian craters. J. Geophys. Res. 116, E02004 (2011).  https://doi.org/10.1029/2010JE003722 ADSGoogle Scholar
  76. R. Hide, The hydrodynamics of the Earth’s core. Phys. Chem. Earth 1, 94–137 (1956) Google Scholar
  77. N. Hilairet, B. Reynard, Y. Wang, I. Daniel, S. Merkel, N. Nishiyama, S. Petitgirard, High-pressure creep of serpentine, interseismic deformation, and initiation of subduction. Science 318(5858), 1910–1913 (2007) ADSGoogle Scholar
  78. D. Hoening, T. Spohn, Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth. Phys. Earth Planet. Inter. 255, 27–49 (2016).  https://doi.org/10.1016/j.pepi.2016.03.010 ADSGoogle Scholar
  79. T. Hoogenboom, G.A. Houseman, Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus 180, 292–307 (2006).  https://doi.org/10.1016/j.icarus.2005.11.001 ADSGoogle Scholar
  80. J. Huang, H. Yang, S. Zhong, Constraints of the topography, gravity and volcanism on Venusian mantle dynamics and generation of plate tectonics. Earth Planet. Sci. Lett. 362, 207–214 (2013) ADSGoogle Scholar
  81. M. Ivanov, J.W. Head, Lada Terra rise and Quetzalpetlatl Corona: a region of long-lived mantle upwelling and recent volcanic activity on Venus. Planet. Space Sci. 58, 1880–1894 (2010) ADSGoogle Scholar
  82. S.A. Jacobson, D.C. Rubie, J. Hernlund, A. Morbidelli, M. Nakajima, Formation, stratification, and mixing of the cores of Earth and Venus. Earth Planet. Sci. Lett. 474, 375–386 (2017) ADSGoogle Scholar
  83. P.B. James, M.T. Zuber, R.J. Phillips, Crustal thickness and support of topography on Venus. J. Geophys. Res. 118, 859–875 (2013).  https://doi.org/10.1029/2012JE004237 Google Scholar
  84. A.M. Jellinek, A. Lenardic, M. Manga, The influence of interior mantle temperature on the structure of plumes: heads for Venus, tails for the Earth. Geophys. Res. Lett. 29(11), 1532 (2002).  https://doi.org/10.1029/2001GL014624 ADSGoogle Scholar
  85. A.M. Jellinek, H.M. Gonnermann, M.A. Richards, Plume capture by divergent plate motions: implications for the distribution of hotspots, geochemistry of mid-ocean ridge basalts, and heat flux at the core-mantle boundary. Earth Planet. Sci. Lett. 205, 367–378 (2003) ADSGoogle Scholar
  86. A. Jiménez-Díaz, J. Ruiz, J.F. Kirby, I. Romeo, R. Tejero, R. Capote, Lithospheric structure of Venus from gravity and topography. Icarus 260, 215–231 (2015) ADSGoogle Scholar
  87. C.L. Johnson, M.A. Richards, A conceptual model for the relationship between coronae and large-scale mantle dynamics on Venus. J. Geophys. Res. 108(E6), 5058 (2003).  https://doi.org/10.1029/2002JE001962 Google Scholar
  88. C.L. Johnson, D.T. Sandwell, Lithospheric flexure on Venus. Geophys. J. Int. 119(2), 627–647 (1994) ADSGoogle Scholar
  89. T.E. Johnson, M. Brown, B.J.P. Kaus, J.A. Van Tongeren, Delamination and recycling of Archean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014) ADSGoogle Scholar
  90. S. Karato, P. Wu, Rheology of the upper mantle: a synthesis. Science 260(5109), 771–778 (1993).  https://doi.org/10.1126/science.260.5109.771 ADSGoogle Scholar
  91. S. Karimi, A.J. Dombard, Studying lower crustal flow beneath Mead basin: implications for the thermal history and rheology of Venus. Icarus (USA) 282, 34–39 (2017) ADSGoogle Scholar
  92. J.F. Kasting, Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus. Icarus 74(3), 472–494 (1988) ADSGoogle Scholar
  93. T. Keller, P.J. Tackley, Towards self-consistent modelling of the Martian dichotomy: the influence of low-degree convection on crustal thickness distribution. Icarus 202(2), 429–443 (2009) ADSGoogle Scholar
  94. W.S. Kiefer, B.H. Hager, A mantle plume model for the equatorial highlands of Venus. J. Geophys. Res. 96, 20947–20966 (1991). 1991 ADSGoogle Scholar
  95. D.M. Koch, M. Manga, Neutrally buoyant diapirs: a model for Venus Coronae. Geophys. Res. Lett. 23, 225–228 (1996) ADSGoogle Scholar
  96. Z. Konopkova, R.S. McWilliams, N. Gomez-Perez, A.F. Goncharov, Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534, 99–101 (2016) ADSGoogle Scholar
  97. A.S. Konopliv, C.F. Yoder, Venusian k2 tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett. 23, 1857–1860 (1996) ADSGoogle Scholar
  98. A.S. Konopliv, W.B. Banerdt, W.L. Sjogren, Venus gravity: 180th degree and order model. Icarus 39(1), 3–18 (1999).  https://doi.org/10.1006/icar.1999.6086 ADSGoogle Scholar
  99. J. Korenaga, Thermal cracking and the deep hydration of oceanic lithosphere: a key to the generation of plate tectonics? J. Geophys. Res. 112, B05408 (2007) ADSGoogle Scholar
  100. A.S. Krassilnikov, J.W. Head, Novae on Venus: geology, classification, and evolution. J. Geophys. Res., Planets 108(E9), 5108 (2003).  https://doi.org/10.1029/2002je001983 ADSGoogle Scholar
  101. W. Landuyt, D. Bercovici, Variations in planetary convection via the effect of climate on damage. Earth Planet. Sci. Lett. 277, 29–37 (2009) ADSGoogle Scholar
  102. M. Le Bars, A. Davaille, Stability of thermal convection in two superimposed miscible viscous fluids. J. Fluid Mech. 471, 339–363 (2002) ADSMathSciNetzbMATHGoogle Scholar
  103. M. Le Bars, A. Davaille, Large interface deformation in two-layer thermal convection of miscible viscous fluids. J. Fluid Mech. 499, 75–110 (2004a) ADSzbMATHGoogle Scholar
  104. M. Le Bars, A. Davaille, Whole-layer convection in a heterogeneous planetary mantle. J. Geophys. Res. 109 (2004b).  https://doi.org/10.1029/2003JB002617
  105. M. Le Feuvre, M.A. Wieczorek, Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus 214, 1–20 (2011).  https://doi.org/10.1016/j.icarus.2011.03.010 ADSGoogle Scholar
  106. J. Leconte, H. Wu, K. Menou, K.N. Murray, Asynchronous rotation of Earth-mass planets in the habitable zone of lower-mass stars. Science 347, 632–635 (2015) ADSGoogle Scholar
  107. A. Lenardic, J.W. Crowley, On the notion of well-defined tectonic regimes for terrestrial planets in this solar system and others. Astrophys. J. 755(2), 132 (2012) ADSGoogle Scholar
  108. A. Lenardic, W.M. Kaula, D.L. Bindschadler, Some effects of a dry crustal flow law on numerical simulations of coupled crustal deformation and mantle convection on Venus. J. Geophys. Res. 100, 16,949–16,957 (1995) ADSGoogle Scholar
  109. A. Lenardic, A.M. Jellinek, L.-N. Moresi, A climate induced transition in the tectonic style of a terrestrial planet. Earth Planet. Sci. Lett. 271, 34–42 (2008) ADSGoogle Scholar
  110. G. Leone, P.J. Tackley, T.V. Gerya, D.A. May, G. Zhu, Three-dimensional simulations of the southern polar giant impact hypothesis for the origin of the Martian dichotomy. Geophys. Res. Lett. (USA) 41(24), 8736–8743 (2014) ADSGoogle Scholar
  111. A. Limare, K. Vilella, E. Di Giuseppe, C.G. Farnetani, E. Kaminski, E. Surducan, V. Surducan, C. Neamtu, L. Fourel, C. Jaupart, Microwave-heating laboratory experiments for planetary mantle convection. J. Fluid Mech. 777, 50–67 (2015) ADSGoogle Scholar
  112. C. Lithgow-Bertelloni, M.A. Richards, C.P. Conrad, R.W. Griffiths, Plume generation in natural thermal convection at high Rayleigh and Prandtl numbers. J. Fluid Mech. 434, 1–21 (2001) ADSzbMATHGoogle Scholar
  113. A. Loddoch, C. Stein, U. Hansen, Temporal variations in the convective style of planetary mantles. Earth Planet. Sci. Lett. 251, 79–89 (2006) ADSGoogle Scholar
  114. R.D. Lorenz, E.P. Turtle, B. Stiles, A. Le Gall, A. Hayes, O. Aharson, C.A. Wood, E. Stofan, R. Kirk, Hypsometry of Titan. Icarus 211, 699–706 (2011).  https://doi.org/10.1016/j.icarus.2010.10.002 ADSGoogle Scholar
  115. J.G. Luhmann, Y.J. Ma, M.N. Villarreal, H.Y. Wei, T.L. Zhang, The Venus–Solar wind interaction: is it purely ionospheric? Planet. Space Sci. 119, 36–42 (2015).  https://doi.org/10.1016/j.pss.2015.09.012 ADSGoogle Scholar
  116. P. Machetel, P. Weber, Intermittent layered convection in a model mantle with an endothermic phase-change at 670 km. Nature 350(6313), 55–57 (1991) ADSGoogle Scholar
  117. S.J. Mackwell, M.E. Zimmerman, D.L. Kohlstedt, High-temperature deformation of dry diabase with applications to tectonics on Venus. J. Geophys. Res. 103, 975–984 (1998) ADSGoogle Scholar
  118. M. Manga, D. Weeraratne, S.J.S. Morris, Boundary-layer thickness and instabilities in Bénard convection of a liquid with a temperature-dependent viscosity. Phys. Fluids 13, 802–805 (2001) ADSzbMATHGoogle Scholar
  119. E. Marcq, J.-L. Bertaux, F. Montmessin, D. Belyaev, Variations of sulfur dioxide at the cloud top of Venus’s dynamic atmosphere. Nat. Geosci. 6, 25–28 (2013).  https://doi.org/10.1038/ngeo1650 ADSGoogle Scholar
  120. B. Marty et al., Xenon isotopes in 67P/Churyumov–Gerasimenko show that comets contributed to Earth’s atmosphere. Science 356(6342), 1069–1072 (2017).  https://doi.org/10.1126/science.aal3496 ADSGoogle Scholar
  121. E. Mazarico, L. Iess, F. de Marchi, J.C. Andrews-Hanna, S.E. Smrekar, Advancing Venus geophysics with the NF4 Venus Origins Explorer (VOX) gravity investigation, in 15th Meeting of the Venus Exploration Analysis Group (2017). Abstract. #8003 Google Scholar
  122. G.E. McGill, Hotspot evolution and Venusian tectonic style. J. Geophys. Res. 99, 23,149–23,161 (1994) ADSGoogle Scholar
  123. G.E. McGill, E.R. Stofan, S.E. Smrekar, Venus tectonics, in Planetary Tectonics, ed. by T.A. Watters, R.S. Schultz (Cambridge University Press, Cambridge, 2009), p. 585 Google Scholar
  124. D. McKenzie et al., Features on Venus generated by plate boundary processes. J. Geophys. Res. 97, 13533–13544 (1992) ADSGoogle Scholar
  125. W.B. McKinnon, K.J. Zhanle, B.D. Ivanov, J.H. Melosh, Cratering on Venus: models and observations, in Venus II, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips (Arizona Univ. Press, Tucson, 1997), pp. 969–1014 Google Scholar
  126. G.J. Montesi, Fabric development as the key for forming ductile shear zones and enabling plate tectonics. J. Struct. Geol. 50, 254–266 (2013) ADSGoogle Scholar
  127. J. Monteux, N. Coltice, F. Dubuffet, Y. Ricard, Thermo-mechanical adjustment after impacts during planetary growth. Geophys. Res. Lett. 34, 24201 (2007).  https://doi.org/10.1029/2007GL031635 ADSGoogle Scholar
  128. W.B. Moore, A.A.G. Webb, Heat-pipe Earth. Nature 501, 501–505 (2013) ADSGoogle Scholar
  129. W.B. Moore, J.I. Simon, A. Alexander, G. Webb, Heat-pipe planets. Earth Planet. Sci. Lett. 474, 13–19 (2017) ADSGoogle Scholar
  130. L.N. Moresi, V.S. Solomatov, Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids 7(9), 2154–2162 (1995) ADSzbMATHGoogle Scholar
  131. L. Moresi, V. Solomatov, Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int. 133(3), 669–682 (1998) ADSGoogle Scholar
  132. N. Mueller, J. Helbert, G.L. Hashimoto, C.C.C. Tsang, S. Erard, G. Piccolini, P. Drossart, Venus surface thermal emission at 1 mm in VIRTIS imaging observations: evidence for variation of crust and mantle differentiation conditions. J. Geophys. Res. 113, E00B17 (2008).  https://doi.org/10.1029/2008JE003118 Google Scholar
  133. N. Mueller, J. Helbert, S. Erard, G. Piccioni, D. Drossart, Rotation period of Venus estimated from Venus Express VIRTIS images and Magellan altimetry. Icarus 217, 474–483 (2012).  https://doi.org/10.1016/j.icarus.2011.09.026 ADSGoogle Scholar
  134. T. Nakagawa, P.J. Tackley, Influence of magmatism on mantle cooling, surface heat flow and Urey ratio. Earth Planet. Sci. Lett. 329–330, 1–10 (2012) Google Scholar
  135. H.C. Nataf, F.M. Richter, Convection experiments in fluids with highly temperature-dependent viscosity and the thermal evolution of the planets. Phys. Earth Planet. Inter. 29, 320–329 (1982) ADSGoogle Scholar
  136. F. Nimmo, D. Stevenson, Influence of early plate tectonics on the thermal evolution and magnetic field of Mars. J. Geophys. Res. 105, 11,969–11,979 (2000) ADSGoogle Scholar
  137. L. Noack, D. Breuer, T. Spohn, Coupling the atmosphere with interior dynamics: implications for the resurfacing of Venus. Icarus 217, 484–498 (2012) ADSGoogle Scholar
  138. M. Ogawa, Numerical models of magmatism in convecting mantle with temperature-dependent viscosity and their implications for Venus and Earth. J. Geophys. Res. 105(E3), 6997–7012 (2000) ADSGoogle Scholar
  139. M. Ogawa, T. Yanagisawa, Mantle evolution in Venus due to magmatism and phase transitions: from punctuated layered convection to whole-mantle convection. J. Geophys. Res., Planets 119, 867–883 (2014) ADSGoogle Scholar
  140. M. Ogawa, G. Schubert, A. Zebib, Numerical simulations of three-dimensional thermal convection in a fluid with strongly temperature-dependent viscosity. J. Fluid Mech. 233, 299–328 (1991) ADSzbMATHGoogle Scholar
  141. K. Ohta, Y. Kuwayama, K. Hirose, K. Shimizu, Y. Ohishi, Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature 534, 95–98 (2016) ADSGoogle Scholar
  142. C. O’Neill, S. Marchi, S. Zhang, W. Bottke, Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017) ADSGoogle Scholar
  143. T.C. O’Reilly, G.F. Davies, Magma transport of heat on Io: a mechanism allowing a thick lithosphere. Geophys. Res. Lett. 8, 313–316 (1981) ADSGoogle Scholar
  144. J.G. O’Rourke, J. Korenaga, Thermal evolution of Venus with argon degassing. Icarus 260, 128–140 (2014) Google Scholar
  145. J.G. O’Rourke, S.E. Smrekar, Signatures of lithospheric flexure and elevated heat flow in stereo topography at coronae on Venus. J. Geophys. Res. (2018).  https://doi.org/10.1002/2017JE005358 Google Scholar
  146. J.G. O’Rourke, A.S. Wolf, B.L. Ehlmann, Venus: interpreting the spatial distribution of volcanically modified craters. Geophys. Res. Lett. 41, 8252–8260 (2014) ADSGoogle Scholar
  147. C.P. Orth, V.S. Solomatov, The isostatic stagnant lid approximation and global variations in the Venusian lithospheric thickness. Geochem. Geophys. Geosyst. 12, Q07018 (2011).  https://doi.org/10.1029/2011GC003582 ADSGoogle Scholar
  148. M. Palot, S.D. Jacobsen, J.P. Townsend, F. Nestola, K. Marquardt, N. Miyajima, J.W. Harris, T. Stachel, C.A. McCammon, D.G. Pearson, Evidence for H2O-bearing fluids in the lower mantle from diamond inclusion. Lithos 265, 237–243 (2016).  https://doi.org/10.1016/j.lithos.2016.06.023 ADSGoogle Scholar
  149. M. Panning, E. Beucler, M. Drilleau, A. Moquet, P. Lognonné, B. Banerdt, Verifying single station seismic approaches using Earth-based data. Preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015) ADSGoogle Scholar
  150. A.M. Papuc, G.F. Davies, Transient mantle layering and the episodic behavior of Venus due to the ‘basalt barrier’ mechanism. Icarus 217(2), 499–509 (2012) ADSGoogle Scholar
  151. E.M. Parmentier, P.C. Hess, Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys. Res. Lett. 19, 2015–2018 (1992) ADSGoogle Scholar
  152. M. Pauer, K. Fleming, O. Cǎdek, Modeling the dynamic component of the geoid and topography of Venus. J. Geophys. Res. 111, E11012 (2006).  https://doi.org/10.1029/2005JE002511 ADSGoogle Scholar
  153. G.H. Pettengill, P.G. Ford, R.J. Wilt, Venus surface radiothermal emission. J. Geophys. Res. 97, 13,091–13,102 (1992) ADSGoogle Scholar
  154. R.J. Phillips, V.L. Hansen, Tectonic and magmatic evolution of Venus. Annu. Rev. Earth Planet. Sci. 22, 597 (1994) ADSGoogle Scholar
  155. R.J. Phillips, N.R. Izenberg, Ejecta correlations with spatial crater density and Venus resurfacing history. Geophys. Res. Lett. 22, 1517–1520 (1995) ADSGoogle Scholar
  156. R.J. Phillips, M.C. Malin, The interior of Venus and tectonic implications, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (Univ. of Arizona Press, Tucson, 1983), pp. 159–214 Google Scholar
  157. J.L. Phillips, C.T. Russell, Upper limit on the intrinsic magnetic field of Venus. J. Geophys. Res. 92, 2253–2263 (1987) ADSGoogle Scholar
  158. R.J. Phillips, R.F. Raubertas, R.E. Arvidson, I.C. Sarkar, R.R. Herrick, N. Izenberg, R.E. Grimm, Impact craters and Venus resurfacing history. J. Geophys. Res. 97, 15,923–15,948 (1992) ADSGoogle Scholar
  159. D. Piskorz, L.T. Elkins-Tanton, S.E. Smrekar, Coronae formation on Venus via extension and lithospheric instability. J. Geophys. Res., Planets 119, 2568–2582 (2014).  https://doi.org/10.1002/2014JE004636 ADSGoogle Scholar
  160. J.T. Ratcliff, G. Schubert, A. Zebib, Three-dimensional variable viscosity convection of an infinite Prandtl number Boussinesq fluid in a spherical shell. Geophys. Res. Lett. 22(16), 2227–2230 (1996) ADSGoogle Scholar
  161. J.T. Ratcliff, P.J. Tackley, G. Schubert, A. Zebib, Transitions in thermal convection with strongly variable viscosity. Phys. Earth Planet. Inter. 102, 201–212 (1997) ADSGoogle Scholar
  162. S.N. Raymond et al., Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013) ADSGoogle Scholar
  163. C.C. Reese, V.S. Solomatov, Fluid dynamics of local Martian magma oceans. Icarus (USA) 184(1), 102–120 (2006) ADSGoogle Scholar
  164. C.C. Reese, V.S. Solomatov, L.-N. Moresi, Heat transport efficiency for stagnant lid convection with dislocation viscosity: application to Mars and Venus. J. Geophys. Res. 103(E6), 13,643–13,657 (1998) ADSGoogle Scholar
  165. F.M. Richter, H.-C. Nataf, S.F. Daly, Heat transfer and horizontally averaged temperature of convection with large viscosity variations. J. Fluid Mech. 129, 173–192 (1983) ADSGoogle Scholar
  166. A.E. Ringwood, Phase-transformations and their bearing on the constitution and dynamics of the mantle. Geochim. Cosmochim. Acta 55(8), 2083–2110 (1991) ADSGoogle Scholar
  167. J.H. Roberts, S. Zhong, Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. 111, E06013 (2006).  https://doi.org/10.1029/2005JE002668 ADSGoogle Scholar
  168. I. Romeo, D.L. Turcotte, Resurfacing on Venus. Planet. Space Sci. 58(10), 1374–1380 (2010) ADSGoogle Scholar
  169. A. Rozel, Impact of grain size on the convection of terrestrial planets. Geochem. Geophys. Geosyst. (2012).  https://doi.org/10.1029/2012GC004282 Google Scholar
  170. A. Salvador, H. Massol, A. Davaille, E. Marcq, P. Sarda, E. Chassefière, The relative influence of H2O and CO2 on the primitive surface conditions and evolution of rocky planets. J. Geophys. Res., Planets 122(7), 1458–1486 (2017) ADSGoogle Scholar
  171. D.T. Sandwell, G. Schubert, Evidence for retrograde lithospheric subduction on Venus. Science 257, 766–770 (1992a) ADSGoogle Scholar
  172. D.T. Sandwell, G. Schubert, Flexural ridges, trenches, and outer rises around coronae on Venus. J. Geophys. Res. 97(E10), 16,069–16,083 (1992b) ADSGoogle Scholar
  173. D.T. Sandwell, C.L. Johnson, F. Bilotti et al., Driving forces for limited tectonics on Venus. Icarus 129, 232–244 (1997) ADSGoogle Scholar
  174. N. Schaeffer, M. Manga, Interaction of rising and sinking mantle plumes. Geophys. Res. Lett. 21, 765–768 (2001) Google Scholar
  175. G. Schubert, D.T. Sandwell, A global survey of possible subduction sites on Venus. Icarus 117, 173–196 (1995) ADSGoogle Scholar
  176. G. Schubert, K.M. Soderlund, Planetary magnetic fields: observations and models. Phys. Earth Planet. Inter. 187, 92–108 (2011) ADSGoogle Scholar
  177. E.V. Shalygin, A.T. Basilevsky, W.J. Markiewicz, D.V. Titov, M.A. Kreslavsky, Th. Roatsch, Search for ongoing volcanic activity on Venus: case study of Maat Mons, Sapas Mons and Ozza Mons volcanoes. Planet. Space Sci. 73, 294–301 (2012).  https://doi.org/10.1016/j.pss.2012.08.018 ADSGoogle Scholar
  178. D. Sifre, E. Gardes, M. Massuyeau, L. Hashim, S. Hier-Majurnder, F. Gaillard, Electrical conductivity during incipient melting in the oceanic low-velocity zone. Nature 509, 81–85 (2014).  https://doi.org/10.1038/nature13245 ADSGoogle Scholar
  179. M. Simons, S.C. Solomon, B.H. Hager, Localization of gravity and topography: constraints on the tectonics and mantle dynamics of Venus. Geophys. J. Int. 131, 24–44 (1997) ADSGoogle Scholar
  180. S.E. Smrekar, E.M. Parmentier, Interactions of mantle plumes with thermal and chemical boundary layers: application to hotspots on Venus. J. Geophys. Res. 101, 5397–5410 (1996) ADSGoogle Scholar
  181. S. Smrekar, R.J. Phillips, Venusian highlands: geoid to topography ratios and their implications. Earth Planet. Sci. Lett. 107, 582–597 (1991) ADSGoogle Scholar
  182. S.E. Smrekar, C. Sotin, Constraints on mantle plumes on Venus: implications for volatile history. Icarus 217, 510–523 (2012) ADSGoogle Scholar
  183. S.E. Smrekar, E.R. Stofan, Coupled upwelling and delamination: a new mechanism for coronae formation and heat loss on Venus. Science 277, 1289–1294 (1997) ADSGoogle Scholar
  184. S.E. Smrekar, E.R. Stofan, Origin of corona-dominated topographic rises on Venus. Icarus 139, 100–116 (1999) ADSGoogle Scholar
  185. S.E. Smrekar, E.R. Stofan, N. Mueller, A. Treiman, L. Elkins-Tanton, J. Helbert, G. Piccioni, P. Drossart, Recent Hotspot Volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010) ADSGoogle Scholar
  186. S. Smrekar, S. Hensley, M.S. Wallace, M.E. Lisano, M.R. Durrach, C. Sotin, D. Lehman, Venus Origins Explorer (VOX) Concept: A proposed New Frontiers Mission, Instit. Electrical and Electronics Engineers (IEEE) Aereospace Conf., pp. 1–19 (2018) Google Scholar
  187. V.S. Solomatov, Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995) ADSzbMATHGoogle Scholar
  188. V.S. Solomatov, L.N. Moresi, Stagnant lid convection on Venus. J. Geophys. Res. 101, 4737–4753 (1996) ADSGoogle Scholar
  189. S.C. Solomon, S.E. Smrekar, D.L. Bindschadler, R.E. Grimm, W.M. Kaula, G.E. McGill, R.J. Phillips, R.S. Saunders, G. Schubert, S.W. Squyres, E.R. Stofan, Venus tectonics: an overview of Magellan observations. J. Geophys. Res. 97, 13,199–13,256 (1992) ADSGoogle Scholar
  190. C. Sotin, S. Labrosse, Three-dimensional thermal convection in an iso-viscous, infinite Prandtl number fluid heated from within and from below: applications to the transfer of heat through planetary mantles. Phys. Earth Planet. Inter. 112(3–4), 171–190 (1999) ADSGoogle Scholar
  191. T. Spohn, Mantle differentiation and thermal evolution of Mars, Mercury, and Venus. Icarus 90(2), 222–236 (1991) ADSGoogle Scholar
  192. C. Stein, J. Schmalzl, U. Hansen, The effect of rheological parameters on plate behavior in a self-consistent model of mantle convection. Phys. Earth Planet. Inter. 142, 225–255 (2004) ADSGoogle Scholar
  193. C. Stein, A. Fahl, U. Hansen, Resurfacing events on Venus: implications on plume dynamics and surface topography. Geophys. Res. Lett. 37, L01201 (2010) ADSGoogle Scholar
  194. V. Steinbach, D.A. Yuen, The effects of multiple phase-transitions on Venusian mantle convection. Geophys. Res. Lett. 19(22), 2243–2246 (1992) ADSGoogle Scholar
  195. B. Steinberger, S.C. Werner, T.H. Torsvik, Deep versus shallow origin of gravity anomalies, topography and volcanism on Earth, Venus and Mars. Icarus 207(2), 564–577 (2010).  https://doi.org/10.1016/j.icarus.2009.12.025 ADSGoogle Scholar
  196. K.C. Stengel, D.S. Oliver, J.R. Booker, Onset of convection in a variable-viscosity fluid. J. Fluid Mech. 120, 411–431 (1982) ADSzbMATHGoogle Scholar
  197. D.J. Stevenson, Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–11 (2003) ADSGoogle Scholar
  198. D.J. Stevenson, S.C. McNamara, Background heat flow on hotspot planets: Io and Venus. Geophys. Res. Lett. 15(13), 1455–1458 (1988) ADSGoogle Scholar
  199. D.J. Stevenson, T. Spohn, G. Schubert, Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983) ADSGoogle Scholar
  200. E.R. Stofan, S.E. Smrekar, Large topographic rises, coronae, large flow fields and large volcanoes on Venus: evidence for mantle plumes? in Plates, Plumes, and Paradigms, ed. by G.R. Foulger, J.H. Natland, D.C. Presnall, D.L. Anderson. Geol. Soc. Am. Special, vol. 388 (2005), p. 861 Google Scholar
  201. E.R. Stofan, D.L. Bindschadler, J.W. Head, E.M. Parmentier, Corona structures on Venus: models of origin. J. Geophys. Res. 96, 20,933–20,946 (1991) ADSGoogle Scholar
  202. R. Strom, G. Schaber, D. Dawson, The global resurfacing of Venus. J. Geophys. Res. 99, 10,899–10,926 (1994).  https://doi.org/10.1029/94JE00388 ADSGoogle Scholar
  203. H. Svedhem et al., Venus Express—the first European mission to Venus. Planet. Space Sci. 55, 1636–1652 (2007) ADSGoogle Scholar
  204. P.J. Tackley, On the ability of phase transitions and viscosity layering to induce long-wavelength heterogeneity in the mantle. Geophys. Res. Lett. 23, 1985–1988 (1996) ADSGoogle Scholar
  205. P.J. Tackley, Self-consistent generation of tectonic plates in time-dependent, three-dimensional mantle convection simulations 1. Pseudoplastic yielding. Geochem. Geophys. Geosyst. 1 (2000).  https://doi.org/10.1029/2000GC000036
  206. P.J. Tackley, D.J. Stevenson, G.A. Glatzmaier, G. Schubert, Effects of multiple phase transitions in a 3-dimensional spherical model of convection in Earth’s mantle. J. Geophys. Res. 99, 15887–15901 (1994) ADSGoogle Scholar
  207. M. Thielmann, A. Rozel, B.J.P. Kaus, Y. Ricard, Intermediate-depth earthquake generation and shear zone formation caused by grain size reduction and shear heating. Geology 43(9), 791–794 (2015) ADSGoogle Scholar
  208. R. Trompert, U. Hansen, Mantle convection simulations with rheologies that generate plate-like behavior. Nature 395(6703), 686–689 (1998) ADSGoogle Scholar
  209. D.L. Turcotte, A heat pipe mechanism for volcanism and tectonics on Venus. J. Geophys. Res. B, Solid Earth Planets 94(B3), 2779–2785 (1989) Google Scholar
  210. D.L. Turcotte, An episodic hypothesis for Venusian tectonics. J. Geophys. Res. 98(E9), 17,061–17,068 (1993) ADSGoogle Scholar
  211. D.L. Turcotte, How does Venus lose heat? J. Geophys. Res. 100, 16931–16940 (1995) ADSGoogle Scholar
  212. K. Ueda, T. Gerya, S.V. Sobolev, Subduction initiation by thermal–chemical plumes: numerical studies. Phys. Earth Planet. Inter. 171(1–4), 296–312 (2008) ADSGoogle Scholar
  213. P. Van Thienen, N. Vlaar, A. Van den Berg, Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus. Phys. Earth Planet. Inter. 150(4), 287–315 (2005) ADSGoogle Scholar
  214. M.J. Way, A.D. Del Genio, N.Y. Kiang, L.E. Sohl, D.H. Grinspoon, I. Aleinov, M. Kelley, T. Clune, Was Venus the first habitable world of our solar system? Geophys. Res. Lett. 43(16), 8376–8383 (2016) ADSGoogle Scholar
  215. D. Weeraratne, M. Manga, Transitions in the style of mantle convection at high Rayleigh numbers. Earth Planet. Sci. Lett. 160, 563–568 (1998) ADSGoogle Scholar
  216. S.A. Weinstein, The potential role of non-Newtonian rheology in the resurfacing of Venus. Geophys. Res. Lett. 23(5), 511–514 (1996) ADSGoogle Scholar
  217. S.A. Weinstein, U.R. Christensen, Convection planforms in a fluid with a temperature-dependent viscosity beneath a stress-free upper boundary. Geophys. Res. Lett. 18, 2035–2038 (1991) ADSGoogle Scholar
  218. M.B. Weller, A. Lenardic, On the evolution of terrestrial planets: bi-stability, stochastic effects, and the non-uniqueness of tectonic states. Geosci. Front. 9, 91–102 (2017).  https://doi.org/10.1016/j.gsf.2017.03.001 Google Scholar
  219. M.B. Weller, A. Lenardic, C. O’Neill, The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets. Earth Planet. Sci. Lett. 420, 85–94 (2015) ADSGoogle Scholar
  220. D.B. White, The planforms and onset of convection with a temperature-dependent viscosity fluid. J. Fluid Mech. 191, 247–286 (1988) ADSGoogle Scholar
  221. J.A. Whitehead Jr., D.S. Luther, Dynamics of laboratory diapir and plume models. J. Geophys. Res. 80, 705–717 (1975) ADSGoogle Scholar
  222. A. Yang, H.H. Weng, J.S. Huang, Numerical studies of the effects of phase transitions on Venusian mantle convection. Sci. China Earth Sci. 58, 1883–1894 (2015).  https://doi.org/10.1016/j.pss.2016.06.001 Google Scholar
  223. A. Yang, J. Huang, D. Wei, Separation of dynamic and isostatic components of the Venusian gravity and topography and determination of the crustal thickness of Venus. Planet. Space Sci. 129, 24–31 (2016) ADSGoogle Scholar
  224. M. Yoshida, M. Ogawa, The role of hot uprising plumes in the initiation of plate-like regime of three-dimensional mantle convection. Geophys. Res. Lett. 31, L05607 (2004) ADSGoogle Scholar
  225. S. Zhong, M.T. Zuber, Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. 189, 75–84 (2001) ADSGoogle Scholar
  226. S. Zhong, A. McNamara, E. Tan, L. Moresi, M. Gurnis, A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9 (2008).  https://doi.org/10.1029/2008GC002048
  227. J.R. Zimbelman, Image resolution and evaluation of genetic hypotheses for planetary landscapes. Geomorphology 37, 179–199 (2001) ADSGoogle Scholar
  228. M.T. Zuber, E.M. Parmentier, Formation of fold and thrust belts on Venus by thick-skinned deformation. Nature 377, 704–707 (1995) ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Suzanne E. Smrekar
    • 1
  • Anne Davaille
    • 2
  • Christophe Sotin
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Laboratoire FASTCNRS/Univ/Paris-Sud, Univ. Paris-SarclayOrsayFrance

Personalised recommendations