Advertisement

Space Science Reviews

, 214:84 | Cite as

Geology and Physical Properties Investigations by the InSight Lander

  • M. Golombek
  • M. Grott
  • G. Kargl
  • J. Andrade
  • J. Marshall
  • N. Warner
  • N. A. Teanby
  • V. Ansan
  • E. Hauber
  • J. Voigt
  • R. Lichtenheldt
  • B. Knapmeyer-Endrun
  • I. J. Daubar
  • D. Kipp
  • N. Muller
  • P. Lognonné
  • C. Schmelzbach
  • D. Banfield
  • A. Trebi-Ollennu
  • J. Maki
  • S. Kedar
  • D. Mimoun
  • N. Murdoch
  • S. Piqueux
  • P. Delage
  • W. T. Pike
  • C. Charalambous
  • R. Lorenz
  • L. Fayon
  • A. Lucas
  • S. Rodriguez
  • P. Morgan
  • A. Spiga
  • M. Panning
  • T. Spohn
  • S. Smrekar
  • T. Gudkova
  • R. Garcia
  • D. Giardini
  • U. Christensen
  • T. Nicollier
  • D. Sollberger
  • J. Robertsson
  • K. Ali
  • B. Kenda
  • W. B. Banerdt
Article
Part of the following topical collections:
  1. The InSight Mission to Mars II

Abstract

Although not the prime focus of the InSight mission, the near-surface geology and physical properties investigations provide critical information for both placing the instruments (seismometer and heat flow probe with mole) on the surface and for understanding the nature of the shallow subsurface and its effect on recorded seismic waves. Two color cameras on the lander will obtain multiple stereo images of the surface and its interaction with the spacecraft. Images will be used to identify the geologic materials and features present, quantify their areal coverage, help determine the basic geologic evolution of the area, and provide ground truth for orbital remote sensing data. A radiometer will measure the hourly temperature of the surface in two spots, which will determine the thermal inertia of the surface materials present and their particle size and/or cohesion. Continuous measurements of wind speed and direction offer a unique opportunity to correlate dust devils and high winds with eolian changes imaged at the surface and to determine the threshold friction wind stress for grain motion on Mars. During the first two weeks after landing, these investigations will support the selection of instrument placement locations that are relatively smooth, flat, free of small rocks and load bearing. Soil mechanics parameters and elastic properties of near surface materials will be determined from mole penetration and thermal conductivity measurements from the surface to 3–5 m depth, the measurement of seismic waves during mole hammering, passive monitoring of seismic waves, and experiments with the arm and scoop of the lander (indentations, scraping and trenching). These investigations will determine and test the presence and mechanical properties of the expected 3–17 m thick fragmented regolith (and underlying fractured material) built up by impact and eolian processes on top of Hesperian lava flows and determine its seismic properties for the seismic investigation of Mars’ interior.

Keywords

InSight Mars Geology Physical properties Surface materials 

Notes

Acknowledgements

A portion of the work was supported by the InSight Project at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. N. A. Teanby is supported by the UK Space Agency. French authors acknowledge the support by Centre National d’Études Spatiales (CNES) and IPGP authors the financial support of the UnivEarthS Labex program at Sorbonne Paris Cite (ANR-10-LABX-0023 and ANR-11-1013 IDEX-0005-02), the French National Research Agency (ANR-12-BS05-001-3/EXO-DUNES and ANR SIMARS), and the Institut Universitaire de France. The work by C. Schmelzbach and J. Robertsson was partly supported by ETH Research Grant ETH-06 17-2. ETH Zurich acknowledges support by Landmark Graphics via the Landmark University Grant Program (Landmark ProMax/SeisSpace software was partly used to process the synthetic HP3-SEIS hammering data). This paper is InSight Contribution Number 40.

References

  1. H. Abarca, R. Deen, G. Hollins, P. Zamani, O. Pariser, J. Maki, F. Ayoub, A. Tinio, N. Toole, S. Algermissen, T. Soliman, Y. Lu, M. Golombek, F. Calef III., K. Grimes, Image and data processing for InSight lander operations and science. Space Sci. Rev. (2018, this issue) Google Scholar
  2. K.A. Alshibli, A. Hasan, Strength properties of JSC-1A lunar regolith simulant. J. Geotech. Geoenviron. Eng. 135(5), 673–679 (2009) Google Scholar
  3. R.E. Arvidson, R.C. Anderson, P. Bartlett, J.F. Bell III, D. Blaney, P.R. Christensen, P. Chu, L. Crumpler, K. Davis, B.L. Ehlmann, R. Fergason, M.P. Golombek et al., Localization and physical properties experiments conducted by Spirit at Gusev crater. Science 305(5685), 821–824 (2004a).  https://doi.org/10.1126/science.1099922 ADSGoogle Scholar
  4. R.E. Arvidson, R.C. Anderson, P. Bartlett, J.F. Bell III, P.R. Christensen, P. Chu, K. Davis, B.L. Ehlmann, M.P. Golombek et al., Localization and physical properties experiments conducted by Opportunity at Meridiani Planum. Science 306(5702), 1730–1733 (2004b).  https://doi.org/10.1126/science.1104211 ADSGoogle Scholar
  5. R. Arvidson, D. Adams, G. Bonfiglio, P. Christensen, S. Cull, M. Golombek, J. Guinn, E. Guinness, T. Heet, R. Kirk, A. Knudson, M. Malin, M. Mellon, A. McEwen, A. Mushkin, T. Parker, F. Seelos, K. Seelos, P. Smith, D. Spencer, T. Stein, L. Tamppari, Mars Exploration Program 2007 Phoenix landing site selection and characteristics. J. Geophys. Res., Planets 113, E00A03 (2008).  https://doi.org/10.1029/2007JE003021 ADSGoogle Scholar
  6. R.E. Arvidson et al., Terrain physical properties derived from orbital data and the first 360 sols of Mars Science Laboratory Curiosity rover observations in Gale Crater. J. Geophys. Res., Planets 119, 1322–1344 (2014).  https://doi.org/10.1002/2013JE004605 ADSGoogle Scholar
  7. J.H. Atkinson, G. Sallfors, Experimental determination of soil properties. General Report to Session 1, in Proceedings of the 10th ECSMFE, Florence 3 (1991), pp. 915–956 Google Scholar
  8. F. Ayoub, J.P. Avouac, C.E. Newman, M.I. Richardson, A. Lucas, S. Leprince, N.T. Bridges, Threshold for sand mobility on Mars calibrated from seasonal variations of sand flux, in Eighth International Conference on Mars, Pasadena, CA, July 14–18, 2014 (Lunar and Planetary Institute, Houston, 2014). Abstract #1064 Google Scholar
  9. C. Bagaini, C. Barajas-Olalde, Assessment and compensation of inconsistent coupling conditions in point-receiver land seismic data. Geophys. Prospect. 55, 39–48 (2007).  https://doi.org/10.1111/j.1365-2478.2006.00606.x ADSGoogle Scholar
  10. R.A. Bagnold, The Physics of Blown Sand and Desert Dunes (Methuen, New York, 1941) Google Scholar
  11. J.L. Bandfield, R.R. Ghent, A.R. Vasavada, D.A. Paige, S.J. Lawrence, M.S. Robinson, Lunar surface rock abundance and regolith fines temperatures derived from LRO Diviner Radiometer data. J. Geophys. Res., Planets 116, 18 (2011).  https://doi.org/10.1029/2011je003866 Google Scholar
  12. W.B. Banerdt et al., The InSight Mission. Space Sci. Rev. (2018, this issue) Google Scholar
  13. D. Banfield et al., The Auxiliary Payload Sensor Suite on InSight. Space Sci. Rev. (2018, this issue) Google Scholar
  14. A. Becker, C. Vrettos, Tests on the thermal conductivity of regolith quasi-analogues at different porosities, in Earth and Space 2016, 15th ASCE International Conference on Engineering, Science, Construction and Operations in Challenging Environments (2016) Google Scholar
  15. R.A. Beyer, Meter-scale slopes of candidate InSight landings sites from point photoclinometry. Space Sci. Rev. 211, 97–107 (2017).  https://doi.org/10.1007/s11214-016-0287-7 ADSGoogle Scholar
  16. A.B. Binder, R.E. Arvidson, E.A. Guinness et al., The geology of the Viking Lander 1 site. J. Geophys. Res. 82, 4439–4451 (1977) ADSGoogle Scholar
  17. J.E. Bleacher, T.R. Orr, A.P. de Wet, J.R. Zimbelman, C.W. Hamilton, W.B. Garry, L.S. Crumpler, D.A. Williams, Plateaus and sinuous ridges as the fingerprints of lava flow inflation in the Eastern Tharsis Plains of Mars. J. Volcanol. Geotherm. Res. 342, 29–46 (2017).  https://doi.org/10.1016/j.jvolgeores.2017.03.025 ADSGoogle Scholar
  18. C. Bloom, M. Golombek, N. Warner, N. Wigton, Size frequency distribution and ejection velocity of Corinto crater secondaries in Elysium Planitia, in Eighth International Conference on Mars, Pasadena, CA, July 14–18, 2014, (Lunar and Planetary Institute, Houston, 2014). Abstract #1289 Google Scholar
  19. N.T. Bridges, F. Ayoub, J-P. Avouac, S. Leprince, A. Lucas, S. Mattson, Earth-like sand fluxes on Mars. Nature 485, 339–342 (2012) ADSGoogle Scholar
  20. N. Bridges, P. Geissler, S. Silvestro, M. Banks, Bedform migration on Mars: current results and future plans. Aeolian Res. 9, 133–151 (2013) ADSGoogle Scholar
  21. W.D. Carrier, J.K. Mitchell, A. Mahmood, The relative density of lunar soil, in Proc. Lunar Sci. Conf., 4th, vol. 4 (1973), pp. 118–120 Google Scholar
  22. M.A. Carrigy, Experiments on the angles of repose of granular materials. Sedimentology 14(3–4), 147–158 (1970) ADSGoogle Scholar
  23. D.C. Catling et al., A lava sea in the northern plains of Mars: circumpolar Hesperian oceans reconsidered, in 42nd Lunar and Planetary Science Conference (Lunar and Planetary Institute, Houston, 2011). Abstract #2529 Google Scholar
  24. D.C. Catling et al., Does the Vastitas Borealis formation contain oceanic or volcanic deposits? in Third Conference on Early Mars, Lake Tahoe, NV, May 21–25, 2012 (Lunar and Planetary Institute, Houston, 2012). Abstract #7031 Google Scholar
  25. T.E. Chamberlain, H.L. Cole, R.G. Dutton, G.C. Greene, J.E. Tillman, Atmospheric measurements of Mars: the Viking meteorology experiment. Bull. Am. Meteorol. Soc. 57, 1094–1104 (1976) ADSGoogle Scholar
  26. C. Charalambous, On the evolution of particle fragmentation with applications to planetary surfaces. Ph.D. Thesis (Imperial College, London, 2015) Google Scholar
  27. C. Charalambous, W.T. Pike, M.P. Golombek, Estimating the grain size distribution of Mars based on fragmentation theory and observations, in 2017 Fall AGU Meeting, 11–15 Dec., New Orleans, LA (2017). Abstract P41C-2843 Google Scholar
  28. M. Chojnacki, J.R. Johnson, J.E. Moersch, L.K. Fenton, T.I. Michaels, J.F. Bell III, Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface. Icarus 251, 275–290 (2015) ADSGoogle Scholar
  29. P.R. Christensen, The spatial distribution of rocks on Mars. Icarus 68, 217–238 (1986) ADSGoogle Scholar
  30. P.R. Christensen, H.J. Moore, The martian surface layer, in MARS, ed. by H.H. Kieffer, B.M. Jakosky, C.W. Snyder, M.S. Matthews (University of Arizona Press, Tucson, 1992), pp. 686–727 Google Scholar
  31. P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. McSween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004) ADSGoogle Scholar
  32. P. Claudin, B. Andreotti, A scaling low for aeolian dunes on Mars, Venus, Earth and for subaqueous ripples. Earth Planet. Sci. 252, 30–44 (2006) ADSGoogle Scholar
  33. J.F. Clinton, D. Giardini, P. Lognonné, B. Banerdt, M. van Driel, M. Drilleau, N. Murdoch, M. Panning, R. Garcia, D. Mimoun, M. Golombek, J. Tromp, R. Weber, M. Böse, S. Ceylan, I. Daubar, B. Kenda, A. Khan, L. Perrin, A. Spiga, Preparing for InSight: an invitation to participate in a blind test for Martian seismicity. Seismol. Res. Lett. 88, 1290–1302 (2017).  https://doi.org/10.1785/0220170094 Google Scholar
  34. J.F. Clinton et al., Marsquake Service—building a Martian seismicity catalogue for InSight. Space Sci. Rev. (2018, this issue) Google Scholar
  35. S. Courrech du Pont, C. Narteau, X. Gao, Two modes for dune orientation. Geology 42, 743–746 (2014) ADSGoogle Scholar
  36. R.A. Craddock, M.P. Golombek, Characteristics of terrestrial basaltic rock populations: implications for Mars lander and rover science and safety. Icarus 274, 50–72 (2016).  https://doi.org/10.1016/j.icarus.2016.02.042 ADSGoogle Scholar
  37. I.J. Daubar, A.S. McEwen, M.P. Golombek, Albedo changes at Martian landing sites, in 46th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2015). Abstract #2225 Google Scholar
  38. I.J. Daubar, C.M. Dundas, S. Byrne, P. Geissler, G.D. Bart, A.S. McEwen, P.S. Russell, M. Chojnacki, M.P. Golombek, Changes in blast zone albedo patterns around new martian impact craters. Icarus 267, 86–105 (2016).  https://doi.org/10.1016/j.icarus.2015.11.032 ADSGoogle Scholar
  39. I.J. Daubar et al., Impact-seismic investigations of the InSight mission. Space Sci. Rev. (2018, this issue) Google Scholar
  40. P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, P. Lognonné, M. Golombek, E. De Laure, K. Hurst, J.-C. Dupla, S. Kedar, Y.J. Cui, B. Banerdt, An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site. Space Sci. Rev. 211, 191–213 (2017).  https://doi.org/10.1007/s11214-017-0339-7 ADSGoogle Scholar
  41. L. Drube et al., Magnetic and optical properties of airborne dust and settling rates of dust at the Phoenix landing site. J. Geophys. Res. 115, E00E23 (2010).  https://doi.org/10.1029/2009JE003419 Google Scholar
  42. C.S. Edwards, K.J. Nowicki, P.R. Christensen, J. Hill, N. Gorelick, K. Murray, Mosaicking of global planetary image datasets: 1. Techniques and data processing for Thermal Emission Imaging System (THEMIS) multi-spectral data. J. Geophys. Res. 116, E10008 (2011).  https://doi.org/10.1029/2010je003755 ADSGoogle Scholar
  43. B.L. Ehlmann et al., Chemistry, mineralogy, and grain properties at Namib and high dunes, Bagnold dune field, Gale crater, Mars: a synthesis of curiosity rover observations. J. Geophys. Res., Planets 122, 2510–2543 (2018).  https://doi.org/10.1002/2017JE005267 ADSGoogle Scholar
  44. L. Fayon et al., A numerical model of the SEIS leveling system transfer matrix and resonances: Application to SEIS rotational seismology and dynamic ground interaction. Space Sci. Rev. (2018, in review, this issue) Google Scholar
  45. R.L. Fergason, P.R. Christensen, J.F. Bell III, M.P. Golombek, K.E. Herkenhoff, H.H. Kieffer, Physical properties of the Mars Exploration Rover landing sites as inferred from Mini-TES derived thermal inertia. J. Geophys. Res. 111(E2), E02S21 (2006).  https://doi.org/10.1029/2005JE002583 ADSGoogle Scholar
  46. R. Fergason, R.L. Kirk, G. Cushing, D.M. Galuzska, M.P. Golombek, T.M. Hare, E. Howington-Kraus, D.M. Kipp, B.L. Redding, Analysis of local slopes at the InSight landing site on Mars. Space Sci. Rev. 211, 109–133 (2017).  https://doi.org/10.1007/s11214-016-0292-x ADSGoogle Scholar
  47. L. Fernandez-Cascales, A. Lucas, S. Rodriguez, X. Gao, A. Spiga, C. Narteau, First quantification of relationship between dune orientation and sediment availability, Olympia Undae, Mars. Earth Planet. Sci. Lett. 489, 241–250 (2018).  https://doi.org/10.1016/j.epsl.2018.03.001 ADSGoogle Scholar
  48. W. Folkner, V. Dehant, S. Le Maistre, M. Yseboodt, A. Rivoldini, T. Van Hoolst, S.W. Asmar, M.P. Golombek, The Rotation and Interior Structure Experiment on the InSight Mission to Mars. Space Sci. Rev. (2018, this issue) Google Scholar
  49. H.V. Frey, Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res. 111, E08S91 (2006).  https://doi.org/10.1029/2005JE002449 ADSGoogle Scholar
  50. X. Gao, C. Narteau, O. Rozier, S. Courrech du Pont, Phase diagrams of dune shape and orientation depending on sand availability. Sci. Rep. 5, 14677 (2015) ADSGoogle Scholar
  51. E. Gardin, P. Allemand, C. Quantin, S. Silvestro, C. Delacourt, Dune fields on Mars: recorders of a climate change? Planet. Space Sci. 60, 314–321 (2012) ADSGoogle Scholar
  52. J.B. Garvin, P.J. Mouginis-Mark, J.W. Head, Characterization of rock populations on planetary surfaces: techniques and a preliminary analysis of Mars and Venus. Moon Planets 24, 355–387 (1981) ADSGoogle Scholar
  53. J.B. Garvin, S.E.H. Sakamoto, C. Schnetzler, J.J. Frawley, Craters on Mars: global geometric properties from gridded MOLA topography, in 6th International Conference on Mars, 20–25 July (California Institute of Technology, Pasadena, 2003). Abs. #3277 Google Scholar
  54. W. Goetz et al., Microscopy analysis of soils at the Phoenix landing site, Mars: classification of soil particles and description of their optical and magnetic properties. J. Geophys. Res. 115, E00E22 (2010).  https://doi.org/10.1029/2009JE003437 Google Scholar
  55. M.P. Golombek, N.T. Bridges, Erosion rates on Mars and implications for climate change: constraints from the Pathfinder landing site. J. Geophys. Res., Planets 105(E1), 1841–1853 (2000).  https://doi.org/10.1029/1999JE001043 ADSGoogle Scholar
  56. M.P. Golombek, R.J. Phillips, Mars tectonics, in Planetary Tectonics, ed. by T.R. Watters, R.A. Schultz (Cambridge University Press, Cambridge, 2010), pp. 183–232. Chap. 5 Google Scholar
  57. M.P. Golombek, J.B. Plescia, B.J. Franklin, Faulting and folding in the formation of planetary wrinkle ridges, in Proc. Lunar Planet. Sci. Conf, vol. 21 (1991), pp. 679–693 Google Scholar
  58. M.P. Golombek, R.A. Cook, T. Economou, W.M. Folkner, A.F.C. Haldemann, P.H. Kallemeyn, J.M. Knudsen, R.M. Manning, H.J. Moore, T.J. Parker, R. Rieder, J.T. Schofield, P.H. Smith, R.M. Vaughan, Overview of the Mars Pathfinder mission and assessment of landing site predictions. Science 278, 1743–1748 (1997a) ADSGoogle Scholar
  59. M.P. Golombek, R.A. Cook, H.J. Moore, T.J. Parker, Selection of the Mars Pathfinder landing site. J. Geophys. Res. 102, 3967–3988 (1997b) ADSGoogle Scholar
  60. M.P. Golombek et al., Overview of the Mars Pathfinder mission: launch through landing, surface operations, data sets, and science results. J. Geophys. Res. 104, 8523–8553 (1999a) ADSGoogle Scholar
  61. M.P. Golombek, H.J. Moore, A.F.C. Haldemann, T.J. Parker, J.T. Schofield, Assessment of Mars Pathfinder landing site predictions. J. Geophys. Res. 104, 8585–8594 (1999b) ADSGoogle Scholar
  62. M.P. Golombek et al., Selection of the Mars Exploration Rover landing sites. J. Geophys. Res. 108(E12), 8072 (2003a).  https://doi.org/10.1029/2003JE002074 Google Scholar
  63. M.P. Golombek, A.F.C. Haldemann, N.K. Forsberg-Taylor, E.N. DiMaggio, R.D. Schroeder, B.M. Jakosky, M.T. Mellon, J.R. Matijevic, Rock size-frequency distributions on Mars and implications for Mars Exploration Rover landing safety and operations. J. Geophys. Res. 108(E12), 8086 (2003b).  https://doi.org/10.1029/2002JE002035 Google Scholar
  64. M.P. Golombek et al., Assessment of Mars Exploration Rover landing site predictions. Nature 436, 44–48 (2005).  https://doi.org/10.1038/nature03600 ADSGoogle Scholar
  65. M.P. Golombek et al., Geology of the Gusev cratered plains from the Spirit rover traverse. J. Geophys. Res. 110, E02S07 (2006a).  https://doi.org/10.1029/2005JE002503 Google Scholar
  66. M.P. Golombek, J.A. Grant, L.S. Crumpler, R. Greeley, R.E. Arvidson, J.F. Bell III, C.M. Weitz, R. Sullivan, P.R. Christensen, L.A. Soderblom, S.W. Squyres, Erosion rates at the Mars Exploration Rover landing sites and long-term climate change on Mars. J. Geophys. Res., Planets 111, E12S10 (2006b).  https://doi.org/10.1029/2006JE002754 ADSGoogle Scholar
  67. M.P. Golombek, A.F.C. Haldemann, R.A. Simpson, R.L. Fergason, N.E. Putzig, R.E. Arvidson, J.F. Bell III, M.T. Mellon, Martian surface properties from joint analysis of orbital, Earth-based, and surface observations, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008a), pp. 468–497. Chap. 21 Google Scholar
  68. M.P. Golombek et al., Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces. J. Geophys. Res. 113, E00A09 (2008b).  https://doi.org/10.1029/2007JE003065 Google Scholar
  69. M. Golombek, K. Robinson, A. McEwen, N. Bridges, B. Ivanov, L. Tornabene, R. Sullivan, Constraints on ripple migration at Meridiani Planum from Opportunity and HiRISE observations of fresh craters. J. Geophys. Res. 115, E00F08 (2010).  https://doi.org/10.1029/2010JE003628 ADSGoogle Scholar
  70. M. Golombek, J. Grant, D.D. Kipp, A. Vasavada, R. Kirk, R. Fergason, P. Bellutta, F. Calef, K. Larsen, Y. Katayama, A. Huertas, R. Beyer, A. Chen, T. Parker, B. Pollard, S. Lee, R. Hoover, H. Sladek, J. Grotzinger, R. Welch, E. Noe Dobrea, J. Michalski, M.M. Watkins, Selection of the Mars Science Laboratory landing site. Space Sci. Rev. 170, 641–737 (2012a).  https://doi.org/10.1007/s11214-012-9916-y ADSGoogle Scholar
  71. M. Golombek, A. Huertas, D. Kipp, F. Calef, Detection and characterization of rocks and rock size-frequency distributions at the final four Mars Science Laboratory landing sites. Mars 7, 1–22 (2012b).  https://doi.org/10.1555/mars.2012.0001 ADSGoogle Scholar
  72. M.P. Golombek, N.H. Warner, V. Ganti, M.P. Lamb, T.J. Parker, R.L. Fergason, R. Sullivan, Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res., Planets 119, 2522–2547 (2014).  https://doi.org/10.1002/2014JE004658 ADSGoogle Scholar
  73. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the InSight landing site. Space Sci. Rev. 211, 5–95 (2017).  https://doi.org/10.1007/s11214-016-0321-9 ADSGoogle Scholar
  74. M.P. Golombek, C. Charalambous, W.T. Pike, R. Sullivan, The origin of sand on Mars, in 49th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2018). Abstract #2319 Google Scholar
  75. J. Gomez-Elvira, C. Armiens, L. Castaner, M. Dominguez, M. Genzer, F. Gomez, R. Haberle, A.-M. Harri, V. Jimenez, H. Kahanpaa, L. Kowalski, A. Lepinette, J. Martin, J. Martinez-Frias, I. McEwan, L. Mora, J. Moreno et al., REMS: the environmental sensor suite for the Mars Science Laboratory Rover. Space Sci. Rev. 170, 583–640 (2012) ADSGoogle Scholar
  76. S. Goossens, T.J. Sabaka, A. Genova, E. Mazarico, J.B. Nicholas, G.A. Neumann, Evidence for a low bulk crustal density for Mars from gravity and topography. Geophys. Res. Lett. 44, 7686–7694 (2017).  https://doi.org/10.1002/2017GL074172 ADSGoogle Scholar
  77. R. Greeley, J.D. Iversen, Wind as a Geological Process on Earth, Mars, Venus and Titan. Cambridge Planetary Science Series, vol. 4 (Cambridge Univ. Press, Cambridge, 1985) Google Scholar
  78. R. Greeley, A. Skypeck, J.B. Pollack, Martian aeolian features and deposits—comparisons with general circulation model results. J. Geophys. Res. 98, 3183–3196 (1993) ADSGoogle Scholar
  79. R. Greeley, N.T. Bridges, R.O. Kuzmin, J.E. Laity, Terrestrial analogs to wind-related features at the Viking and Pathfinder landing sites on Mars. J. Geophys. Res. 107(E1), E5005 (2002) ADSGoogle Scholar
  80. T.K.P. Gregg, Patterns and processes: Subaerial lava flow morphologies: a review. J. Volcanol. Geotherm. Res. 342, 3–12 (2017).  https://doi.org/10.1016/j.jvolgeores.2017.04.022 ADSGoogle Scholar
  81. M. Grott, Thermal disturbances caused by lander shadowing and the measurability of the martian planetary heat flow. Planet. Space Sci. 57, 71–77 (2009) ADSGoogle Scholar
  82. M. Grott, J. Helbert, R. Nadalini, Thermal structure of Martian soil and the measurability of the planetary heat flow. J. Geophys. Res. 112, E09004 (2007) ADSGoogle Scholar
  83. T.V. Gudkova, P. Lognonné, J. Gagnepain-Beyneix, Large impacts detected by the Apollo seismometers: impactor mass and source cutoff frequency estimation. Icarus 211, 1049–1065 (2011) ADSGoogle Scholar
  84. T. Gudkova, P. Lognonné, K. Miljkovic, J. Gagnepain-Beyneix, Impact cut-off frequency-momentum scaling law inverted from Apollo seismic data. Earth Planet. Sci. Lett. 427, 57–65 (2015).  https://doi.org/10.1016/j.epsl.2015.06.037 ADSGoogle Scholar
  85. V.E. Hamilton, A.R. Vasavada, E. Sebastián, M. de la Torre Juárez, M. Ramos et al., Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. J. Geophys. Res., Planets 119, 745–770 (2014).  https://doi.org/10.1002/2013JE004520 ADSGoogle Scholar
  86. M. Hamm, M. Grott, E. Kührt et al., A method to derive surface thermophysical properties of asteroid (162173) Ryugu (1999JU3) from in-situ surface brightness temperature measurements. Planet. Space Sci. (2018, submitted) Google Scholar
  87. H. Hansen-Goos, M. Grott, R. Lichtenheld et al., Predicted penetration performance of the InSight HP3 mole, in Lunar and Planetary Science Conference, 45 (2014). Abstract #1325 Google Scholar
  88. B.A. Hardage, Vertical seismic profiling: principles, in Handbook of Geophysical Exploration. Seismic Exploration, vol. 14 (Pergamon, Elmsford, 2000) Google Scholar
  89. W.K. Hartmann, A.J. de la Casa, M. Berman, D.D. Ryan, E. Martian, Cratering 7: the role of impact gardening. Icarus 149, 37–53 (2001) ADSGoogle Scholar
  90. L.A. Haskin et al., Water alteration of rocks and soils on Mars at the Spirit rover site in Gusev crater. Nature 436, 66–69 (2005).  https://doi.org/10.1038/nature03640 ADSGoogle Scholar
  91. R.K. Hayward, K.F. Mullins, L.K. Fenton, T.M. Hare, T.N. Titus, M.C. Bourke, A. Colaprete, P.R. Christensen, Mars Global Digital Dune Database and initial science results. J. Geophys. Res. 112, E11007 (2007).  https://doi.org/10.1029/2007JE002943 ADSGoogle Scholar
  92. J.W. Head, M.A. Kreslavsky, S. Pratt, Northern lowlands of Mars: evidence for widespread volcanic flooding and tectonic deformation in the Hesperian period. J. Geophys. Res. 107(E1), 1–29 (2002).  https://doi.org/10.1029/2000JE001445 Google Scholar
  93. E. Hébrard, C. Listowski, P. Coll, B. Marticorena, G. Bergametti, A. Määttänen, F. Montmessin, F. Forget, An aerodynamic roughness length map derived from extended Martian rock abundance data. J. Geophys. Res. 117, E04008 (2012).  https://doi.org/10.1029/2011JE003942 ADSGoogle Scholar
  94. T.L. Heet, R.E. Arvidson, S.C. Cull, M.T. Mellon, K.D. Seelos, Geomorphic and geologic settings of the Phoenix lander mission landing site. J. Geophys. Res. 114, E00E04 (2009).  https://doi.org/10.1029/2009JE003416 ADSGoogle Scholar
  95. K.E. Herkenhoff, M.P. Golombek, E.A. Guiness, J.B. Johnson, A. Kusack, L. Richter, R.J. Sullivan, S. Gorevan, In situ observations of the physical properties of the martian surface, in The Martian Surface: Composition, Mineralogy and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008), pp. 451–467. Chap. 20 Google Scholar
  96. M. Hobiger, N. Le Bihan, C. Cornou, P.-Y. Bard, Multicomponent signal processing for Rayleigh wave ellipticity estimation. IEEE Signal Process. Mag. 29, 29–39 (2012).  https://doi.org/10.1109/MSP.2012.2184969 ADSGoogle Scholar
  97. R.D. Holtz, W.D. Kovacs, An Introduction to Geotechnical Engineering (Prentice Hall, New York, 1981) Google Scholar
  98. K. Hon, J. Kauahikaua, R. Denlinger, K. Mackay, Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol. Soc. Am. Bull. 106(3), 351–370 (1994) ADSGoogle Scholar
  99. K.C. Horstman, H.J. Melosh, Drainage pits in cohesionless materials: implications for the surface of Phobos. J. Geophys. Res. 94(B9), 12433–12441 (1989) ADSGoogle Scholar
  100. C.B. Hundal, M.P. Golombek, I.J. Daubar, Chronology of fresh rayed craters in Elysium Planitia, Mars, in 48th Lunar Planet. Sci. Conf. (2017). Abstract 1726 Google Scholar
  101. J.A. Hurowitz, S.M. McLennan, N.J. Tosca, R.E. Arvidson, J.R. Michalski, D.W. Ming, C. Schroder, S.W. Squyres, In situ and experimental evidence for acidic weathering of rocks and soils on Mars. J. Geophys. Res. 111, E02S19 (2006).  https://doi.org/10.1029/2005JE002515 ADSGoogle Scholar
  102. B.M. Jakosky, P.R. Christensen, Global duricrust on Mars: analysis of remote sensing data. J. Geophys. Res. 91(B3), 3547–3560 (1986) ADSGoogle Scholar
  103. R. Kawamoto et al., Level set discrete element method for three-dimensional computations with triaxial case study. Journal of the Mechanics and Physics of Solids 91, 1–13 (2016) ADSMathSciNetGoogle Scholar
  104. S. Kedar, J. Andrade, B. Banerdt, P. Delage, M. Golombek, M. Grott, T. Hudson, A. Kiely, M. Knappmeyer, B. Knapmeyer-Endrun, C. Krause, T. Kawamura, P. Lognonne, T. Pike, Y. Ruan, T. Spohn, N. Teanby, J. Tromp, J. Wookey, Analysis of regolith properties using seismic signals generated by InSight’s HP3 penetrator. Space Sci. Rev. 211, 315–337 (2017).  https://doi.org/10.1007/s11214-017-0391-3 ADSGoogle Scholar
  105. B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W.B. Banerdt, R. Lorenz, D. Banfield, M. Golombek, Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. 211, 501–524 (2017).  https://doi.org/10.1007/s11214-017-0378-0 ADSGoogle Scholar
  106. H.H. Kieffer, Thermal model for analysis of Mars infrared mapping. J. Geophys. Res., Planets 118, 451470 (2013) Google Scholar
  107. B. Knapmeyer-Endrun, M. Golombek, M. Ohrnberger, Rayleigh wave ellipticity modeling and inversion for shallow structure at the proposed InSight landing site in Elysium Planitia. Space Sci. Rev. 211, 339–382 (2017).  https://doi.org/10.1007/s11214-016-0300-1 ADSGoogle Scholar
  108. B. Knapmeyer-Endrun, N. Murdoch, B. Kenda, M.P. Golombek, M. Knapmeyer, L. Witte, N. Verdier, S. Kedar, P. Lognonné, W.B. Banerdt, Influence of body waves, instrumentation resonances, and prior assumptions on Rayleigh wave ellipticity inversion for shallow structure at the InSight landing site. Space Sci. Rev. (2018, this issue) Google Scholar
  109. N.I. Kömle, J. Poganski, G. Kargl, J. Grygorczuk, Pile driving models for the evaluation of soil penetration resistance measurements from planetary subsurface probes. Planet. Space Sci. 109–110, 135–148 (2015) Google Scholar
  110. A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011) ADSGoogle Scholar
  111. A.S. Konopliv, R.S. Park, W.M. Folkner, An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data. Icarus 274, 253–260 (2016).  https://doi.org/10.1016/j.icarus.2016.02.052 ADSGoogle Scholar
  112. L. Lancelot, I. Shahrour, M. Al Mahmoud, Comportement du sable d’Hostun sous faibles contraintes. Rev. Fr. Géotech. 74, 63–74 (1996) Google Scholar
  113. G.A. Landis, P.P. Jenkins, Measurement of the settling rate of atmospheric dust on Mars by the MAE instrument on Mars Pathfinder. J. Geophys. Res. 105, 1855–1857 (2000) ADSGoogle Scholar
  114. K.L. Lee, H.B. Seed, Drained strength characteristics of drained sands. J. Soil Mech. Found. Div. SM6, 117–141 (1967) Google Scholar
  115. M.T. Lemmon et al., Atmospheric imaging results from the Mars Exploration Rovers: Spirit and Opportunity. Science 306, 1753–1756 (2004).  https://doi.org/10.1126/science.1104474 ADSGoogle Scholar
  116. R. Lichtenheldt, A novel systematic method to estimate the contact parameters of particles in discrete element simulations of soil, in Particle-Based Methods IV (2015), pp. 430–441. ISBN 978-84-944244-7-2 Google Scholar
  117. R. Lichtenheldt, Lokomotorische Interaktion planetarer Explorationssysteme mit weichen Sandböden (Verlag Dr. Hut, Munich, 2016). ISBN 978-3-8439-2704-8 Google Scholar
  118. R. Lichtenheldt, Covering shock waves on Mars induced by InSight’s HP3-MOLE—efficient co-simulation using DEM and multi-domain dynamics, in Coupled Problems 2017 (Artes Gráficas Torres S.L., Huelva, 2017). ISBN 978-84-943928-3-2 Google Scholar
  119. R. Lichtenheldt, O. Krömer, Soil modeling for InSight’s HP3-Mole: from highly accurate particle-based towards fast empirical models, in ASCE Earth and Space Conference (2016) Google Scholar
  120. R. Lichtenheldt, B. Schäfer, O. Krömer, Hammering beneath the surface of Mars—modeling and simulation of the impact-driven locomotion of the HP3-Mole by coupling enhanced multi-body dynamics and discrete element method. Shaping the future by engineering, in 58th Ilmenau Scientific Colloquium, IWK (2014). urn:nbn:de:gbv:ilm1-2014iwk-155:2 Google Scholar
  121. P. Lognonné et al., SEIS: The Seismic Experiment for Internal Structure of InSight. Space Sci. Rev. (2018, this issue) Google Scholar
  122. R. Lorenz, D. Christie, Dust devil signatures in infrasound records of the International Monitoring System. Geophys. Res. Lett. 42, 2009–2014 (2015).  https://doi.org/10.1002/2015GL063237 ADSGoogle Scholar
  123. R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015) ADSGoogle Scholar
  124. R. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W.B. Banerdt, Seismometer detection of dust devil vortices by ground tilt. Bull. Seismol. Soc. Am. 105, 3015–3023 (2015) Google Scholar
  125. P. Lü, C. Narteau, Z. Dong, O. Rozier, S. Courrech du Pont, Unravelling raked linear dunes to explain the coexistence of bedforms in complex dune fields. Nat. Commun. 8, 14239 (2017) ADSGoogle Scholar
  126. A. Lucas, C. Narteau, S. Rodriguez, O. Rozier, Y. Callot, A. Garcia, S. Courrech du Pont, Sediment flux from the morphodynamics of elongating linear dunes. Geology 43, 1027–1030 (2015) ADSGoogle Scholar
  127. J.N. Maki, J.J. Lorre, P.H. Smith, R.D. Brandt, D.J. Steinwand, The color of Mars: measurements from the Pathfinder landing site. J. Geophys. Res., Planets 104(E4), 8781–8794 (1999).  https://doi.org/10.1029/98JE01767 ADSGoogle Scholar
  128. J.N. Maki, J.F. Bell, K.E. Herkenhoff, S.W. Squyres, A. Kiely, M. Klimesh, M. Schwochert, T. Litwin, R. Willson, A. Johnson, M. Maimone, E. Baumgartner, A. Collins, M. Wadsworth, S.T. Elliot, A. Dingizian, D. Brown, E.C. Hagerott, L. Scherr, R. Deen, D. Alexander, J. Lorre, The Mars Exploration Rover Engineering Cameras. J. Geophys. Res. 108(E12), 8071 (2003).  https://doi.org/10.1029/2003JE002077 Google Scholar
  129. J. Maki, D. Thiessen, A. Pourangi, P. Kobzeff, T. Litwin, L. Scherr, S. Elliott, A. Dingizian, M. Maimone, The Mars Science Laboratory Engineering Cameras. Space Sci. Rev. 170, 77–93 (2012).  https://doi.org/10.1007/s11214-012-9882-4 ADSGoogle Scholar
  130. J.N. Maki, M. Golombek, R. Deen, H. Abarca, C. Sorice, T. Goodsall, M. Lemmon, A. Trebi-Ollennu, B. Banerdt, The color cameras on the InSight lander. Space Sci. Rev. (2018, this issue) Google Scholar
  131. N. Mangold, P. Allemand, P.G. Thomas, G. Vidal, Chronology of compressional deformation on Mars: evidence for a single and global origin. Planet. Space Sci. 48, 1201–1211 (2000) ADSGoogle Scholar
  132. J.P. Marshall, T.L. Hudson, J.E. Andrade, Experimental investigation of InSight HP3 mole interaction with Martian regolith simulant. Quasi-static and dynamic penetration testing. Space Sci. Rev. 211, 1–4, 239–258 (2017) Google Scholar
  133. A.S. McEwen, L.L. Tornabene, H. Team, E.M. Eliason, J.W. Bergstrom, N.T. Bridges, C.J. Hansen, W.A. Delamere, J.A. Grant, V.C. Gulick, K.E. Herkenhoff, L. Keszthelyi, R.L. Kirk, M.T. Mellon, S.W. Squyres, N. Thomas, C.M. Weitz, Mars Reconnaissance Orbiter’s High-Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 112, E05S02 (2007).  https://doi.org/10.1029/2005JE002605 Google Scholar
  134. G.E. McGill, A.M. Dimitriou, Origin of the Martian global dichotomy by crustal thinning in the Late Noachian or Early Hesperian. J. Geophys. Res. 95, 12,595–12,605 (1990) ADSGoogle Scholar
  135. I.O. McGlynn, C.M. Fedo, H.Y. McSween Jr., Origin of basaltic soils at Gusev crater, Mars, by aeolian modification of impact-generated sediment. J. Geophys. Res. 116, E00F22 (2011).  https://doi.org/10.1029/2010JE003712 ADSGoogle Scholar
  136. D.S. McKay, J.L. Carter, W.W. Boles, C. Allen, J. Allton, JSC-1: A Lunar Soil Simulant. Engineering, Construction, and Operations in Space IV (Am. Soc. Civil Engineers, Reston, 1994), pp. 857–866 Google Scholar
  137. H.Y. McSween Jr., S.L. Murchie, J.A. Crisp, N.T. Bridges, R.C. Anderson, J.F. Bell III, D.T. Britt, J. Brückner, G. Dreibus, T. Economou, A. Ghosh, M.P. Golombek, J.P. Greenwood, J.R. Johnson, H.J. Moore, R.V. Morris, T.J. Parker, R. Rieder, R. Singer, H. Wänke, Chemical, multispectral, and textural constraints on the composition and origin of rocks at the Mars Pathfinder landing site. J. Geophys. Res. 104, 8679–8715 (1999) ADSGoogle Scholar
  138. H.Y. McSween et al., Basaltic rocks analyzed by the Spirit rover in Gusev crater. Science 305, 842–845 (2004) ADSGoogle Scholar
  139. M. Mehta, N.O. Rennó, J. Marshall, M. Rob Grover, A. Sengupta, N.A. Rusche, J.F. Kok, R.E. Arvidson, W.J. Markiewicz, M.T. Lemmon, P.H. Smith, Explosive erosion during the Phoenix landing exposes subsurface water on Mars. Icarus 211, 172–194 (2011).  https://doi.org/10.1016/j.icarus.2010.10.003 ADSGoogle Scholar
  140. M. Mehta, A. Sengupta, N.O. Rennó, J.W. Van Norman, P.G. Huseman, D.S. Gulick, M. Pokora, Thruster plume surface interactions: applications for spacecraft landings on planetary bodies. AIAA J. 51, 2800–2818 (2013).  https://doi.org/10.2514/1.J052408 ADSGoogle Scholar
  141. M.T. Mellon, B.M. Jakosky, H.H. Kieffer, P.R. Christensen, High-resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer. Icarus 148, 437–455 (2000) ADSGoogle Scholar
  142. M.T. Mellon, R.L. Fergason, N.E. Putzig, The thermal inertia of the surface of Mars, in The Martian Surface: Composition, Mineralogy, and Physical Properties, ed. by J.F. Bell III (Cambridge University Press, Cambridge, 2008) Google Scholar
  143. H.J. Melosh, Impact Cratering: A Geologic Process (Oxford University Press, London, 1989) Google Scholar
  144. D. Mimoun, N. Murdoch, P. Lognonné, K. Hurst, W.T. Pike, J. Hurley, T. Nébut, W.B. Banerdt (SEIS Team), The noise model of the SEIS seismometer of the InSight mission to Mars. Space Sci. Rev. 211, 383–428 (2017).  https://doi.org/10.1007/s11214-017-0409-x ADSGoogle Scholar
  145. M.E. Minitti, L.C. Kah, R.A. Yingst, K.S. Edgett, R.C. Anderson, L.W. Beegle, J.L. Carsten, R.G. Deen, W. Goetz, C. Hardgrove, D.E. Harker, MAHLI at the Rocknest sand shadow: science and science-enabling activities. J. Geophys. Res., Planets 118(11), 2338–2360 (2013) ADSGoogle Scholar
  146. S. Monin, A. Obukhov, Basic laws of turbulent mixing in the ground layer of the atmosphere. Tr. Akad. Nauk SSSR Geofiz. Inst. 24, 163–187 (1954) Google Scholar
  147. H.J. Moore, R.E. Hutton, G.D. Clow, C.R. Spitzer, Physical properties of the surface materials of the Viking landing sites on Mars. U. S. Geol. Surv. Prof. Pap. 1389, 222pp., 2plates (1987) Google Scholar
  148. H.J. Moore, D. Bickler, J. Crisp et al., Soil-like deposits observed by Sojourner, the Pathfinder rover. J. Geophys. Res. 104, 8729–8746 (1999) ADSGoogle Scholar
  149. J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249, 129–142 (2015) ADSGoogle Scholar
  150. P. Morgan, M. Grott, M. Golombek, P. Delage, B. Knapmeyer-Endrun, S. Piqueux, I.J. Daubar, C. Charalambous, T. Pike, N. Müller, A. Hagermann, M. Siegler, R. Lichtenheldt, N. Teanby, S. Kedar, A pre-landing assessment of regolith properties at the InSight landing site. Space Sci. Rev. (2018, this issue) Google Scholar
  151. K. Mueller, M.P. Golombek, Compressional structures on Mars. Annu. Rev. Earth Planet. Sci. 32, 435–464 (2004).  https://doi.org/10.1146/annurev.earth.32.101802.120553 ADSGoogle Scholar
  152. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the Insight mission. Space Sci. Rev. 211, 457–483 (2017a).  https://doi.org/10.1007/s11214-017-0343-y ADSGoogle Scholar
  153. N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, Evaluating the wind-induced mechanical noise on the InSight seismometers. Space Sci. Rev. 211, 419–455 (2017b).  https://doi.org/10.1007/s11214-016-0311-y ADSGoogle Scholar
  154. T.A. Mutch, R.E. Arvidson, A.B. Binder, E.A. Guinness, E.C. Morris, The geology of the Viking Lander 2 site. J. Geophys. Res. 82, 4452–4467 (1977) ADSGoogle Scholar
  155. G. Neugebauer, G. Munch, H. Kieffer, J.S.C. Chase, E. Miner, Mariner 1969 infrared radiometer results: temperatures and thermal properties of the martian surface. Astron. J. 76, 719–728 (1971) ADSGoogle Scholar
  156. S.A. Nowicki, P.R. Christensen, Rock abundance on Mars from the Thermal Emission Spectrometer. J. Geophys. Res. 112, E05007 (2007).  https://doi.org/10.1029/2006JE002798 ADSGoogle Scholar
  157. V.R. Oberbeck, W.L. Quaide, Genetic implications of lunar regolith thickness variations. Icarus 9, 446–465 (1968) ADSGoogle Scholar
  158. L. Ojha, S.E. Smrekar, D. Nunes, Geophysical characterization of Elysium Planitia: Implications for the InSight Mission (2018, in preparation) Google Scholar
  159. D.A. Paige, M.P. Golombek, J.N. Maki, T.J. Parker, L.S. Crumpler, J.A. Grant, J.P. Williams, MER small crater statistics: evidence against recent quasi-periodic climate variations, in The Seventh International Conference on Mars, Pasadena, CA, July 9–13, 2007 (Lunar and Planetary Institute, Houston, 2007). Abstract #3392 (CD-ROM) Google Scholar
  160. L. Pan, C. Quantin, Regional geological context of the InSight Landing Site from mineralogy and stratigraphy. in 49th Lunar and Planetary Science (Lunar and Planetary Institute, Houston, 2018). Abstract #1918 Google Scholar
  161. M.P. Panning, P. Lognonne, W.B. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp, R. Weber, E. Beucler, J.-F. Blanchette-Guertin, E. Bozdag, M. Drilleau, T. Gudkova et al., Planned products of the Mars Structure Service for the InSight mission to Mars. Space Sci. Rev. 211, 611–650 (2017).  https://doi.org/10.1007/s11214-016-0317-5 ADSGoogle Scholar
  162. G.H. Peters, W. Abbey, G.H. Bearman, G.S. Mungas, J.A. Smith, R.C. Anderson, S. Douglas, L.W. Beegle, Mojave Mars simulant—characterization of a new geologic Mars analog. Icarus 197, 470–479 (2008).  https://doi.org/10.1016/j.icarus.2008.05.004 ADSGoogle Scholar
  163. G.M. Pharr, W.C. Oliver, F.R. Brotzen, On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 7(3), 613–617 (1992) ADSGoogle Scholar
  164. R.J. Pike, Depth/diameter relations of fresh lunar craters: revision from spacecraft data. Geophys. Res. Lett. 1, 291–294 (1974).  https://doi.org/10.1029/GL001i007p00291 ADSGoogle Scholar
  165. S. Piqueux, P.R. Christensen, A model of thermal conductivity for planetary soils: 2. Theory for cemented soils. J. Geophys. Res. 114, E09006 (2009).  https://doi.org/10.1029/2008je003309 ADSGoogle Scholar
  166. S. Piqueux, P.R. Christensen, Temperature-dependent thermal inertia of homogeneous Martian regolith. J. Geophys. Res. 116, E07004 (2011).  https://doi.org/10.1029/2011je003805 ADSGoogle Scholar
  167. T. Platz, G. Michael, K.L. Tanaka, J.A. Skinner Jr., C.M. Fortezzo, Crater-based dating of geological units on Mars: methods and application for the new global geological map. Icarus 225, 806–827 (2013).  https://doi.org/10.1016/j.icarus.2013.04.021 ADSGoogle Scholar
  168. D.H. Plemmons, M. Mehta, B.C. Clark, S.P. Kounaves, L.L. Peach, N.O. Rennó, L.K. Tamppari, S.M.M. Young, Effects of the Phoenix Lander descent thruster plume on the Martian surface. J. Geophys. Res. 113, E00A11 (2008).  https://doi.org/10.1029/2007JE003059 ADSGoogle Scholar
  169. A.-C. Plesa, M. Grott, M.T. Lemmon et al., Interannual perturbations of the Martian surface heat flow by atmospheric dust opacity variations. J. Geophys. Res., Planets 121, 2166–2175 (2016) ADSGoogle Scholar
  170. J. Poganski, N.I. Kömle, G. Kargl et al., Extended pile driving model to predict the penetration of the Insight/HP3 Mole into the martian soil. Space Sci. Rev. 211, 1–4, 237–237 (2017a) Google Scholar
  171. J. Poganski et al., DEM modelling of a dynamic penetration process on Mars as a part of the NASA InSight Mission. Proc. Eng. 175, 43–50 (2017b) Google Scholar
  172. H.-G. Poulos, E.-H. Davis, Elastic Solutions for Soil and Rock Mechanics (Wiley, New York, 1974) Google Scholar
  173. B.A. Preblich, A.S. McEwen, D.M. Studer, Mapping rays and secondary craters from Martian crater Zunil. J. Geophys. Res., Planets 112, E05006 (2007).  https://doi.org/10.1029/2006JE002817 ADSGoogle Scholar
  174. M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials, Part I: A review. J. Geophys. Res. 102, 6535–6549 (1997a) ADSGoogle Scholar
  175. M.A. Presley, P.R. Christensen, Thermal conductivity measurements of particulate materials, Part II: Results. J. Geophys. Res. 102, 6551–6566 (1997b) ADSGoogle Scholar
  176. M.A. Presley, P.R. Christensen, The effect of bulk density and particle size sorting on the thermal conductivity of particulate materials under Martian atmospheric pressures. J. Geophys. Res. 102(E4), 9221–9229 (1997c) ADSGoogle Scholar
  177. M.A. Presley, R.A. Craddock, Thermal conductivity measurements of particulate materials: 3. Natural samples and mixtures of particle sizes. J. Geophys. Res. 111, E09013 (2006) ADSGoogle Scholar
  178. N.E. Putzig, M.T. Mellon, Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191(1), 68–94 (2007).  https://doi.org/10.1016/j.icarus.2007.1005.1013 ADSGoogle Scholar
  179. F. Reiser, C. Schmelzbach, D. Sollberger, H. Maurer, S.A. Greenhalgh, S. Planke, F. Kästner, Ó. Flóvenz, R. Giese, S. Halldórsdóttir, G. Hersir, Imaging the high-temperature geothermal field at Krafla using vertical seismic profiling. J. Volcanol. Geotherm. Res. (2018, submitted) Google Scholar
  180. D. Reiss, R.D. Lorenz, Dust devil track survey at Elysium Planitia, Mars: implications for the InSight landing sites. Icarus 266, 315–330 (2016) ADSGoogle Scholar
  181. D.M. Rubin, R.E. Hunter, Bedform alignment in directionally varying flows. Science 237, 276–278 (1987) ADSGoogle Scholar
  182. S. Ruff, P.R. Christensen, Bright and dark regions on Mars: particle size and mineralogical characteristics based on Thermal Emission Spectrometer data. J. Geophys. Res. 107(E12), 5127 (2002).  https://doi.org/10.1029/2001JE001580 Google Scholar
  183. K.D. Runyon, N.T. Bridges, F. Ayoub, C.E. Newman, J.J. Quade, An integrated model for dune morphology and sand fluxes on Mars. Earth Planet. Sci. Lett. 457, 204–212 (2017) ADSGoogle Scholar
  184. C. Schmelzbach, A.G. Green, H. Horstmeyer, Ultra-shallow seismic reflection imaging in a region characterized by high source-generated noise. Near Surf. Geophys. 3, 33–46 (2005) Google Scholar
  185. R.A. Schultz, Localization of bedding-plane slip and backthrust faults above blind thrust faults: keys to wrinkle ridge structure. J. Geophys. Res. 105, 035 (2000) Google Scholar
  186. R.F. Scott, Failure. Geotechnique 37(4), 423–466 (1987) Google Scholar
  187. K.D. Seelos, F.P. Seelos, C.E. Viviano- Beck, S.L. Murchie, R.E. Arvidson, B.L. Ehlmann, A.A. Fraeman, Mineralogy of the MSL Curiosity landing site in Gale crater as observed by MRO/CRISM. Geophys. Res. Lett. 41, 4880–4887 (2014).  https://doi.org/10.1002/2014GL060310 ADSGoogle Scholar
  188. E. Sefton-Nash, N.A. Teanby, C. Newman, R.A. Clancy, M.I. Richardson, Constraints on Mars’ recent equatorial wind regimes from layered deposits and comparison with general circulation model results. Icarus 230, 81–95 (2014) ADSGoogle Scholar
  189. K. Seiferlin, P. Ehrenfreund, J. Garry, K. Gunderson, E. Hütter, G. Kargl, A. Maturilli, J.P. Merrison, Simulating martian regolith in the laboratory. Planet. Space Sci. 56(15), 2009–2025 (2008) ADSGoogle Scholar
  190. A. Seiff, J.E. Tillman, J.R. Murphy, J.T. Schofield, D. Crisp, J.R. Barnes, C. LaBaw, C. Mahoney, G.R. Wilson, R. Haberle, The atmosphere structure and meteorology instrument on the Mars Pathfinder lander. J. Geophys. Res. 102, 4045–4056 (1997) ADSGoogle Scholar
  191. A. Shaw, R.E. Arvidson, R. Bonitz, J. Carsten, H.U. Keller, M.T. Lemmon, M.T. Mellon, M. Robinson, A. Trebi-Ollennu, Phoenix soil physical properties investigation. J. Geophys. Res. 114, E00E05 (2009).  https://doi.org/10.1029/2009JE003455 ADSGoogle Scholar
  192. D.E. Smith et al., Mars Orbiter Laser Altimeter (MOLA): experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106, 23,689–23,722 (2001) ADSGoogle Scholar
  193. P.H. Smith et al., \(\mbox{H}_{2}\mbox{O}\) at the Phoenix landing site. Science 325, 58–61 (2009) ADSGoogle Scholar
  194. G.G. Sorrells, J.A. McDonald, Z.A. Der, E. Herrin, Earth motion caused by local atmospheric pressure changes. Geophys. J. R. Astron. Soc. 26, 83–98 (1971) ADSGoogle Scholar
  195. A. Spiga et al., Atmospheric science with InSight. Space Sci. Rev. (2018, this issue) Google Scholar
  196. T. Spohn, M. Grott et al., The Heat Flow and Physical Properties Package (HP3) for the InSight Mission. Space Sci. Rev. (2018, this issue) Google Scholar
  197. P.M. Stella, J.A. Herman, The Mars surface and solar array performance, in 35th IEEE Photovoltaic Specialists Conference, Honolulu, 20–25 June 2010 (2010), pp. 002631–002635.  https://doi.org/10.1109/PVSC.2010.5617185 Google Scholar
  198. J.D. Stopar, M.S. Robinson, O.S. Barnouin, A.S. McEwen, E.J. Speyerer, M.R. Henriksen, S.S. Sutton, Relative depths of simple craters and the nature of the lunar regolith. Icarus 298, 34–48 (2017).  https://doi.org/10.1016/j.icarus.2017.05.022 ADSGoogle Scholar
  199. R. Sullivan, R. Greeley, M. Kraft, G. Wilson, M. Golombek, K. Herkenhoff, J. Murphy, P. Smith, Results of the Imager for Mars Pathfinder windsock experiment. J. Geophys. Res. 105, 24547–24562 (2000) ADSGoogle Scholar
  200. R. Sullivan, R. Anderson, J. Biesiadecki, T. Bond, H. Stewart, Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs. J. Geophys. Res. 116, E02006 (2011).  https://doi.org/10.1029/2010JE003625 ADSGoogle Scholar
  201. J.L. Sutton, C.B. Levoy, J.E. Tillman, Diurnal variations of the Martian surface layer meteorological parameters during the first 45 sols at two Viking Lander sites. J. Atmos. Sci. 35, 2346–2355 (1978) ADSGoogle Scholar
  202. J. Sweeney, N.H. Warner, M.P. Golombek, R.L. Kirk, R.L. Fergason, A. Pivarunas, Crater degradation and surface erosion rates at the InSight landing site, western Elysium Planitia, Mars, in 47th Lunar Planet. Sci. Conf. (2016). Abstract 1576 Google Scholar
  203. J. Sweeney, N.H. Warner, V. Ganti, M.P. Golombek, M.P. Lamb, R. Fergason, R. Kirk, Degradation of one-hundred-meter-scale impact craters at the InSight landing site on Mars with implications for surface process rates in the Hesperian and Amazonian. J. Geophys. Res., Planets (2018, in review) Google Scholar
  204. T. Szabo, G. Domokos, J.P. Grotzinger, D.J. Jerolmack, Reconstructing the transport history of pebbles on Mars. Nat. Commun. 6, 8366 (2015).  https://doi.org/10.1038/ncomms9366 ADSGoogle Scholar
  205. K.L. Tanaka, J.A. Skinner, J.M. Dohm, R.P. Irwin, E.J. Kolb, C.M. Fortezzo, T. Platz, G.G. Michael, T.M. Hare, Geologic Map of Mars, 1:20,000,000, USGS Scientific Investigations Map 3292 (2014) Google Scholar
  206. P.A. Taylor, D.C. Catling, M. Daly, C.S. Dickinson, H.P. Gunnlaugsson, A-M. Harri, C.F. Lange, Temperature, pressure and wind instrumentation in the Phoenix meteorological package. J. Geophys. Res. 113, E00A10 (2008).  https://doi.org/10.1029/2007JE003015 ADSGoogle Scholar
  207. N.A. Teanby, J. Stevanović, J. Wookey, N. Murdoch, J. Hurley, R. Myhill, N.E. Bowles, S.B. Calcutt, W.T. Pike, Seismic coupling of short-period wind noise through Mars’ regolith for NASA’s InSight lander. Space Sci. Rev. 211, 485 (2017).  https://doi.org/10.1007/s11214-016-0310-z ADSGoogle Scholar
  208. E. Theilig, R. Greeley, Lava flows on Mars: analysis of small surface features and comparisons with terrestrial analogs. J. Geophys. Res. 91(B13), E193–E206 (1986).  https://doi.org/10.1029/JB091iB13p0E193 ADSGoogle Scholar
  209. N. Thomas, G. Cremonese, R. Ziethe, M. Gerber et al., The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter. Space Sci. Rev. 2017(212), 1897–1944 (2017).  https://doi.org/10.1007/s11214-017-0421-1 ADSGoogle Scholar
  210. B.J. Thomson, P.H. Schultz, N.T. Bridges, Extracting scientific results from robotic arm support operations: a technique for estimating the density and composition of rocks on Mars. Mars 4, 27–32 (2008).  https://doi.org/10.1555/mars.2008.0003 ADSGoogle Scholar
  211. A. Trebi-Ollennu, W. Kim, K. Ali et al., InSight Mars lander robotics instrument deployment system. Space Sci. Rev. (2018, this issue) Google Scholar
  212. A.R. Vasavada, S. Piqueux, K.W. Lewis et al., Thermophysical properties along Curiosity’s traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus 284, 372–386 (2017).  https://doi.org/10.1016/j.icarus.2016.11.035 ADSGoogle Scholar
  213. J. Vaucher, D. Baratoux, N. Mangold, P. Pinet, K. Kurita, M. Grégoire, The volcanic history of central Elysium Planitia: implications for martian magmatism. Icarus 204, 418–442 (2009) ADSGoogle Scholar
  214. A.F. Vaughan et al., Pancam and microscopic imager observations of dust on the Spirit rover: cleaning events, spectral properties, and aggregates. Mars 5, 129–145 (2010).  https://doi.org/10.1555/mars.2010.0005 ADSGoogle Scholar
  215. C.A. Verba, P.E. Geissler, T.N. Titus, D. Waller, Observations from the high resolution imaging science experiment (HiRISE): Martian dust devils in Gusev and Russell craters. J. Geophys. Res., Planets 115(E9), Doi (2010).  https://doi.org/10.1029/2009JE003498 Google Scholar
  216. C. Vrettos, Shear strength investigations for a class of extra-terrestrial analogue soils. J. Geotech. Geoenviron. Eng. 138, 508–515 (2012) Google Scholar
  217. C. Vrettos, A. Becker, K. Merz, L. Witte, Penetration tests in a mold on regolith quasi-analogues at different relative densities, in Earth & Space 2014, 14th ASCE International Conference on Engineering, Science, Construction and Operations in Challenging Environments (2014) Google Scholar
  218. G.P.L. Walker, Structure, and origin by injection of lava under surface crust, of tumuli, “lava rises”, “lava-rise pits”, and “lava-inflation clefts”, Hawaii. Bull. Volcanol. 53(7), 546–558 (1991) ADSGoogle Scholar
  219. N.H. Warner, S. Gupta, F.J. Calef, P. Grindrod, K. Goddard, Minimum effective area for high resolution crater counting of martian terrains. Icarus 245, 198–240 (2015).  https://doi.org/10.1016/j.icarus.2014.09.024 ADSGoogle Scholar
  220. N.H. Warner, M.P. Golombek, J. Sweeney, R. Fergason, R. Kirk, C. Schwartz, Near surface stratigraphy and regolith production in southwestern Elysium Planitia, Mars: implications for Hesperian-Amazonian terrains and the InSight lander mission. Space Sci. Rev. 211, 147–190 (2017).  https://doi.org/10.1007/s11214-017-0352-x ADSGoogle Scholar
  221. T.R. Watters, Wrinkle ridge assemblages on the terrestrial planets. J. Geophys. Res. 93, 10236–10254 (1988) ADSGoogle Scholar
  222. W.A. Watters, L.M. Geiger, M.A. Fendrock, R. Gibson, Morphometry of small recent impact craters on Mars: size and terrain dependence, short-term modification. J. Geophys. Res., Planets 210(2), 226–254 (2015).  https://doi.org/10.1002/2014JE004630 ADSGoogle Scholar
  223. S.G. Wells, J.C. Dohrenwend, L.D. McFadden, B.F. Turrin, K.D. Mahrer, Late Cenozoic landscape evolution on lava flow surfaces of the Cima volcanic field, Mojave Desert, California. Geol. Soc. Am. Bull. 96, 1518–1529 (1985) ADSGoogle Scholar
  224. S.C. Werner, K.L. Tanaka, Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars. Icarus 215, 603–607 (2011) ADSGoogle Scholar
  225. M.A. Wieczorek et al., The crust of the Moon as seen by GRAIL. Science 339(6120), 671–675 (2012).  https://doi.org/10.1126/science.1231530 ADSGoogle Scholar
  226. A. Wilkinson, A. DeGennaro, Digging and pushing lunar regolith: classical soil mechanics and the forces needed for excavation and traction. J. Terramech. 44(2), 133–152 (2007) Google Scholar
  227. M.M. Withers, R.C. Aster, C.J. Young, E.P. Chael, High-frequency analysis of seismic background noise as a function of wind speed and shallow depth. Bull. Seismol. Soc. Am. 86, 1507–1515 (1996) Google Scholar
  228. R.A. Yingst, A.F.C. Haldemann, K.L. Biedermann et al., Quantitative morphology of rocks at the Mars Pathfinder landing site. J. Geophys. Res. 112, E06002 (2007).  https://doi.org/10.1029/2005JE002582 ADSGoogle Scholar
  229. R.A. Yingst, L. Crumpler, W.H. Farrand et al., Morphology and texture of particles along the Spirit rover traverse from sol 450 to sol 745. J. Geophys. Res. 113, E12S41 (2008).  https://doi.org/10.1029/2008JE003179 ADSGoogle Scholar
  230. R.A. Yingst et al., Characteristics of pebble- and cobble-sized clasts along the Curiosity rover traverse from Bradbury Landing to Rocknest. J. Geophys. Res., Planets 118, 2361–2380 (2013).  https://doi.org/10.1002/2013JE004435 ADSGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • M. Golombek
    • 1
  • M. Grott
    • 2
  • G. Kargl
    • 3
  • J. Andrade
    • 4
  • J. Marshall
    • 4
  • N. Warner
    • 5
  • N. A. Teanby
    • 6
  • V. Ansan
    • 7
  • E. Hauber
    • 2
  • J. Voigt
    • 2
  • R. Lichtenheldt
    • 8
  • B. Knapmeyer-Endrun
    • 9
  • I. J. Daubar
    • 1
  • D. Kipp
    • 1
  • N. Muller
    • 1
  • P. Lognonné
    • 10
  • C. Schmelzbach
    • 11
  • D. Banfield
    • 12
  • A. Trebi-Ollennu
    • 1
  • J. Maki
    • 1
  • S. Kedar
    • 1
  • D. Mimoun
    • 13
  • N. Murdoch
    • 13
  • S. Piqueux
    • 1
  • P. Delage
    • 14
  • W. T. Pike
    • 15
  • C. Charalambous
    • 15
  • R. Lorenz
    • 16
  • L. Fayon
    • 10
  • A. Lucas
    • 10
  • S. Rodriguez
    • 10
  • P. Morgan
    • 17
  • A. Spiga
    • 18
    • 19
  • M. Panning
    • 1
  • T. Spohn
    • 2
  • S. Smrekar
    • 1
  • T. Gudkova
    • 20
  • R. Garcia
    • 13
  • D. Giardini
    • 11
  • U. Christensen
    • 9
  • T. Nicollier
    • 11
  • D. Sollberger
    • 11
  • J. Robertsson
    • 11
  • K. Ali
    • 1
  • B. Kenda
    • 10
  • W. B. Banerdt
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.DLRInstitute of Planetary ResearchBerlinGermany
  3. 3.Space Research InstituteAustrian Academy of SciencesGrazAustria
  4. 4.Mechanical and Civil EngineeringCalifornia Institute of TechnologyPasadenaUSA
  5. 5.SUNY GeneseoGeneseoUSA
  6. 6.School of Earth SciencesUniversity of BristolBristolUK
  7. 7.Laboratoire de Planétologie et Géodynamique, CNRS URM6112Université de NantesNantesFrance
  8. 8.DLRInstitute of System Dynamics and ControlOberpfaffenhofenGermany
  9. 9.Max Planck Institute for Solar System ResearchGöttingenGermany
  10. 10.Institut de Physique du Globe de ParisParisFrance
  11. 11.ETH Swiss Federal Institute of TechnologyZurichSwitzerland
  12. 12.Cornell Center for Astrophysics and Planetary ScienceCornell UniversityIthacaUSA
  13. 13.Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO)Université de ToulouseToulouseFrance
  14. 14.École des Ponts Paris TechParisFrance
  15. 15.Imperial CollegeLondonUK
  16. 16.Applied Physics LabJohns Hopkins UniversityBaltimoreUSA
  17. 17.Colorado School of MinesGoldenUSA
  18. 18.Laboratoire de Météorologie Dynamique (LMD/IPSL), Sorbonne Université, Centre National de la Recherche Scientifique, École Normale SupérieureÉcole PolytechniqueParisFrance
  19. 19.Institut Universitaire de FranceParisFrance
  20. 20.Schmidt Institute of Physics of the EarthMoscowRussia

Personalised recommendations