Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Type Ia Supernova Cosmology

  • 515 Accesses

  • 4 Citations

Abstract

The primary agent for Type Ia supernova cosmology is the uniformity of their appearance. We present the current status, achievements and uncertainties. The Hubble constant and the expansion history of the universe are key measurements provided by Type Ia supernovae. They were also instrumental in showing time dilation, which is a direct observational signature of expansion. Connections to explosion physics are made in the context of potential improvements of the quality of Type Ia supernovae as distance indicators. The coming years will see large efforts to use Type Ia supernovae to characterise dark energy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. R. Amanullah, J. Johansson, A. Goobar et al., Diversity in extinction laws of Type Ia supernovae measured between 0.2 and 2 μm. Mon. Not. R. Astron. Soc. 453, 3300 (2015)

  2. P. Astier, C. Balland, M. Brescia et al., Extending the supernova Hubble diagram to \(z \sim 1.5\) with the Euclid space mission. Astron. Astrophys. 572, A80 (2014)

  3. N.A. Bahcall, J.P. Ostriker, S. Perlmutter, P.J. Steinhardt, The cosmic triangle: revealing the state of the universe. Science 284, 1481 (1999)

  4. R.L. Barone-Nugent, C. Lidman, J.S.B. Wyithe et al., Near-infrared observations of Type Ia supernovae: the best known standard candle for cosmology. Mon. Not. R. Astron. Soc. 425, 1007 (2012)

  5. M. Betoule, R. Kessler, J. Guy et al., Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys. 568, A22 (2014)

  6. S. Blondin, T.M. Davis, K. Krisciunas et al., Time dilation in Type Ia supernova spectra at high redshift. Astrophys. J. 682, 724 (2008)

  7. D. Branch, The Hubble diagram for Type I supernovae. Astrophys. J. 258, 35 (1982)

  8. D. Branch, G.A. Tammann, Type Ia supernovae as standard candles. Annu. Rev. Astron. Astrophys. 30, 359 (1992)

  9. D. Branch, Type Ia supernovae and the Hubble constant. Annu. Rev. Astron. Astrophys. 36, 17 (1998)

  10. D. Branch, J.C. Wheeler, Supernova Explosions: Astron. Astrophys. Library. (Springer, Germany, 2017). ISBN 978-3-662-55052-6

  11. C.R. Burns, M. Stritzinger, M.M. Phillips et al., The Carnegie supernova project: light-curve fitting with SNooPy. Astron. J. 141, 19 (2011)

  12. M.J. Childress, C. Lidman, T.M. Davis et al., OzDES multifibre spectroscopy for the Dark Energy Survey: 3-yr results and first data release. Mon. Not. R. Astron. Soc. 472, 273 (2017)

  13. A. Cikota, F. Patat, S. Cikota, J. Spyromilio, G. Rau, Common continuum polarization properties: a possible link between proto-planetary nebulae and Type Ia supernova progenitors. Mon. Not. R. Astron. Soc. 471, 2111 (2017)

  14. A. Conley, M. Sullivan, E.Y. Hsiao et al., SiFTO: an empirical method for fitting SN Ia light curves. Astrophys. J. 681, 482 (2008)

  15. A. Conley, J. Guy, M. Sullivan et al., Supernova constraints and systematic uncertainties from the first three years of the supernova legacy survey. Astrophys. J. Suppl. Ser. 192, 1 (2011)

  16. G. Contardo, B. Leibundgut, W.D. Vacca, Epochs of maximum light and bolometric light curves of Type Ia supernovae. Astron. Astrophys. 359, 876 (2000)

  17. T. de Jaeger, L. Galbany, A.V. Filippenko et al., SN 2016jhj at redshift 0.34: extending the Type II supernova Hubble diagram using the standard candle method. Mon. Not. R. Astron. Soc. 472, 4233 (2017a)

  18. T. de Jaeger, S. González-Gaitán, M. Hamuy et al., A Type II supernova Hubble diagram from the CSP-I, SDSS-II, and SNLS surveys. Astrophys. J. 835, 166 (2017b)

  19. S. Dhawan, B. Leibundgut, J. Spyromilio, K. Maguire, Near-infrared light curves of Type Ia supernovae: studying properties of the second maximum. Mon. Not. R. Astron. Soc. 448, 1345 (2015)

  20. S. Dhawan, B. Leibundgut, J. Spyromilio, S. Blondin, A reddening-free method to estimate the 56Ni mass of Type Ia supernovae. Astron. Astrophys. 588, A84 (2016)

  21. S. Dhawan, B. Leibundgut, J. Spyromilio, S. Blondin, Two classes of fast-declining Type Ia supernovae. Astron. Astrophys. 602, A118 (2017)

  22. S. Dhawan, S.W. Jha, B. Leibundgut, Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles. Astron. Astrophys. 609, A72 (2018)

  23. B. Dilday, D.A. Howell, B. Cenko et al., PTF 11kx: a Type Ia supernova with a symbiotic nova progenitor. Science 237, 942 (2012)

  24. H.K. Fakhouri, K. Boone, G. Aldering et al., Improving cosmological distance measurements using twin Type Ia supernovae. Astrophys. J. 815, 58 (2015)

  25. U. Feindt, M. Kerschhaggl, M. Kowalski et al., Measuring cosmic bulk flows with Type Ia supernovae from the Nearby Supernova Factory. Astron. Astrophys. 560, A90 (2013)

  26. A.V. Filippenko, M.W. Richmond, T. Matheson et al., The peculiar Type Ia SN 1991T—detonation of a white dwarf? Astrophys. J. Lett. 384, L15 (1992)

  27. M. Fink, M. Kromer, I.R. Seitenzahl et al., Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae. Mon. Not. R. Astron. Soc. 438, 1762 (2014)

  28. R.J. Foley, P.J. Challis, R. Chornock et al., Type Iax supernovae: a new class of stellar explosions. Astrophys. J. 767, 57 (2013)

  29. W.L. Freedman, B.F. Madore, B.K. Gibson et al., Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 553, 47 (2001)

  30. W.L. Freedman, C.R. Burns, M.M. Phillips et al., The Carnegie supernova project: first near-infrared Hubble diagram to \(z \sim 0.7\). Astrophys. J. 704, 1036 (2009)

  31. E.E.E. Gall, R. Kotak, B. Leibundgut et al., An updated Type II supernova Hubble diagram (2017). arXiv:1705.10806

  32. P. Garnavich, Discovery of cosmic acceleration, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-319-20794-0_104-1

  33. G. Goldhaber, D.E. Groom, A. Kim et al., Timescale stretch parameterization of Type Ia supernova B-band light curves. Astrophys. J. 558, 359 (2001)

  34. A. Goobar, S. Perlmutter, Feasibility of measuring the cosmological constant lambda and mass density omega using Type Ia supernovae. Astrophys. J. 450, 14 (1995)

  35. A. Goobar, B. Leibundgut, Supernova cosmology: legacy and future. Annu. Rev. Nucl. Part. Sci. 61, 251 (2011)

  36. J. Guy, P. Astier, S. Baumont et al., SALT2: using distant supernovae to improve the use of Type Ia supernovae as distance indicators. Astron. Astrophys. 466, 11 (2007)

  37. M. Hamuy, M.M. Phillips, N.B. Suntzeff et al., The Hubble diagram of the Calán/Tololo Type Ia supernovae and the value of \(H_{0}\). Astron. J. 112, 2398 (1996)

  38. T.W.-S. Holoien, K.Z. Stanek, C.S. Kochanek et al., The ASAS-SN bright supernova catalogue—I. 2013–2014. Mon. Not. R. Astron. Soc. 464, 2672 (2017a)

  39. T.W.-S. Holoien, J.S. Brown, K.Z. Stanek et al., The ASAS-SN bright supernova catalogue—II. 2015. Mon. Not. R. Astron. Soc. 467, 1098 (2017b)

  40. T.W.-S. Holoien, J.S. Brown, K.Z. Stanek et al., The ASAS-SN bright supernova catalogue—III. 2016. Mon. Not. R. Astron. Soc. 471, 4966 (2017c)

  41. D.A. Howell, M. Sullivan, P.E. Nugent et al., The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature 443, 308 (2006)

  42. E.M.L. Humphreys, M.J. Reid, J.M. Moran, L.J. Greenhill, A.L. Argon, Toward a new geometric distance to the active galaxy NGC 4258. III. Final results and the Hubble constant. Astrophys. J. 775, 13 (2013)

  43. S. Jha, A.G. Riess, R.P. Kirshner, Improved distances to Type Ia supernovae with Multicolor Light-Curve Shapes: MLCS2k2. Astrophys. J. 659, 122 (2007)

  44. S.W. Jha, Type Iax supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2017). https://doi.org/10.1007/978-3-319-20794-0_42-1

  45. D.O. Jones, D.M. Scolnic, A.G. Riess et al., Measuring Dark Energy Properties with Photometrically Classified Pan-STARRS Supernovae. II. Cosmological Parameters (2018). arXiv:1710.00846

  46. W.E. Kerzendorf, G. Strampelli, K.J. Shen et al., A Search for a Surviving White Dwarf Companion in SN 1006 (2017). arXiv:1709.06566

  47. K. Krisciunas, M.M. Phillips, N.B. Suntzeff, Hubble diagrams of Type Ia supernovae in the near-infrared. Astrophys. J. Lett. 602, L81 (2004)

  48. K. Krisciunas, The infrared Hubble diagram of Type Ia supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-20794-0_103-1

  49. B. Leibundgut, Cosmological implications from observations of Type Ia supernovae. Annu. Rev. Astron. Astrophys. 39, 67 (2001)

  50. B. Leibundgut, Supernovae and cosmology. Gen. Relativ. Gravit. 40, 221 (2008)

  51. B. Leibundgut, History of supernovae as distance indicators, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-20794-0_99-1

  52. B. Leibundgut, R. Schommer, M. Phillips et al., Time dilation in the light curve of the distant Type Ia supernova SN 1995K. Astrophys. J. Lett. 466, L21 (1996)

  53. W. Li, A.V. Filippenko, R. Chornock et al., SN 2002cx: the most peculiar known Type Ia supernova. Publ. Astron. Soc. Pac. 115, 453 (2003)

  54. W. Li, A.V. Filippenko, E. Gates et al., The unique Type Ia supernova 2000cx in NGC 524. Publ. Astron. Soc. Pac. 113, 1178 (2001)

  55. W. Li, J.S. Bloom, P. Podsiadlowski et al., Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480, 348 (2011)

  56. K. Maguire, M. Sullivan, F. Patat et al., A statistical analysis of circumstellar material in Type Ia supernovae. Mon. Not. R. Astron. Soc. 436, 222 (2013)

  57. K. Maguire, Type Ia supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-20794-0_36-1

  58. K.S. Mandel, D.M. Scolnic, H. Shariff, R.J. Foley, R.P. Kirshner, Star formation, supernovae, iron, and \(\alpha \): consistent cosmic and galactic histories. Astrophys. J. 842, 93 (2017)

  59. G. Narayan, A. Rest, B.E. Tucker et al., Light curves of 213 Type Ia supernovae from the ESSENCE survey. Astrophys. J. Suppl. Ser. 224, 3 (2016)

  60. P. Nugent, M. Phillips, E. Baron, D. Branch, P. Hauschildt, Evidence for a spectroscopic sequence among Type 1a supernovae. Astrophys. J. Lett. 455, 147 (1995)

  61. P. Nugent, M. Hamuy, Cosmology with Type IIP supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-20794-0_108-1

  62. P.E. Nugent, M. Sullivan, S.B. Cenko et al., Supernova SN 2011fe from an exploding carbon–oxygen white dwarf star. Nature 480, 344 (2011)

  63. F. Patat, P. Chandra, R. Chevalier et al., Detection of circumstellar material in a normal Type Ia supernova. Science 317, 924 (2007)

  64. S. Perlmutter, G. Aldering, G. Goldhaber et al., Measurements of \(\varOmega \) and \(\varLambda \) from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

  65. S. Perlmutter, B.P. Schmidt, Measuring cosmology with supernovae, in Supernovae and Gamma-Ray Bursters. Lecture Notes in Physics, vol. 598 (2003), p. 195

  66. M.M. Phillips, The absolute magnitudes of Type Ia supernovae. Astrophys. J. Lett. 413, L105 (1993)

  67. M.M. Phillips, L.A. Wells, N.B. Suntzeff et al., SN 1991T—further evidence of the heterogeneous nature of type Ia supernovae. Astron. J. 103, 1632 (1992)

  68. M.M. Phillips, W. Li, J.A. Frieman et al., The peculiar SN 2005hk: do some Type Ia supernovae explode as deflagrations? Publ. Astron. Soc. Pac. 119, 360 (2007)

  69. M.M. Phillips, J.D. Simon, N. Morrell et al., On the source of the dust extinction in Type Ia supernovae and the discovery of anomalously strong Na I absorption. Astrophys. J. 779, 38 (2013)

  70. M.M. Phillips, C.R. Burns, The peak luminosity–decline rate relationship for Type Ia supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-20794-0_100-1

  71. Planck Collaboration, P.A.R. Ade, N. Aghanim et al., Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016)

  72. A. Rest, D. Scolnic, R.J. Foley et al., Cosmological constraints from measurements of Type Ia supernovae discovered during the first 1.5 yr of the Pan-STARRS1 survey. Astrophys. J. 795, 44 (2014)

  73. A.G. Riess, A.V. Filippenko, D.C. Leonard et al., Time dilation from spectral feature age measurements of Type Ia supernovae. Astron. J. 114, 722 (1997)

  74. A.G. Riess, A.V. Filippenko, P. Challis et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

  75. A.G. Riess, L.M. Macri, S.L. Hoffmann et al., A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016)

  76. A.G. Riess, Confirming cosmic acceleration in the decade that followed from SNe Ia at \(z>1\), in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-20794-0_105-1

  77. M. Rigault, G. Aldering, M. Kowalski et al., Confirmation of a star formation bias in Type Ia supernova distances and its effect on the measurement of the Hubble constant. Astrophys. J. 802, 20 (2015)

  78. A. Saha, L.M. Macri, The Hubble constant from supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-20794-0_102-1

  79. A. Sandage, The ability of the 200-inch telescope to discriminate between selected world models. Astrophys. J. 133, 355 (1961)

  80. A.R. Sandage, Cosmology: a search for two numbers. Phys. Today 23, 34 (1970)

  81. R.A. Scalzo, A.J. Ruiter, S.A. Sim, The ejected mass distribution of Type Ia supernovae: a significant rate of non-Chandrasekhar-mass progenitors. Mon. Not. R. Astron. Soc. 445, 2535 (2014a)

  82. R. Scalzo, G. Aldering, P. Antilogus et al., Type Ia supernova bolometric light curves and ejected mass estimates from the Nearby Supernova Factory. Mon. Not. R. Astron. Soc. 440, 1498 (2014b)

  83. B.P. Schmidt, N.B. Suntzeff, M.M. Phillips et al., The High-Z supernova search: measuring cosmic deceleration and global curvature of the universe using Type Ia supernovae. Astrophys. J. 507, 46 (1998)

  84. D. Scolnic, A. Rest, A. Riess et al., Systematic uncertainties associated with the cosmological analysis of the first Pan-STARRS1 Type Ia supernova sample. Astrophys. J. 795, 45 (2014)

  85. D.M. Scolnic, R. Kessler, Measuring Type Ia supernova populations of stretch and color and predicting distance biases. Astrophys. J. 822, 35L (2016)

  86. D.M. Scolnic, D.O. Jones, A. Rest et al., The Complete Light-curve Sample of Spectroscopically Confirmed Type Ia Supernovae from Pan-STARRS1 and Cosmological Constraints from The Combined Pantheon Sample (2017). arXiv:1710.00845

  87. H. Shariff, X. Jiao, R. Trotta, D.A. van Dyk, BAHAMAS: new analysis of Type Ia supernovae reveals inconsistencies with standard cosmology. Astrophys. J. 827, 1 (2016)

  88. S.J. Smartt, S. Valenti, M. Fraser et al., PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects. Astron. Astrophys. 579, A40 (2015)

  89. V. Stanishev, A. Goobar, R. Amanullah et al., Type Ia Supernova Cosmology in the Near-Infrared (2015). arXiv:1505.07707

  90. A. Sternberg, A. Gal-Yam, J.D. Simon et al., Circumstellar material in Type Ia supernovae via sodium absorption features. Science 333, 856 (2011)

  91. A. Sternberg, A. Gal-Yam, J.D. Simon et al., Multi-epoch high-spectral-resolution observations of neutral sodium in 14 Type Ia supernova. Mon. Not. R. Astron. Soc. 443, 1849 (2014)

  92. M. Stritzinger, B. Leibundgut, Lower limits on the Hubble constant from models of type Ia supernovae. Astron. Astrophys. 431, 423 (2005)

  93. M. Stritzinger, B. Leibundgut, S. Walch, G. Contardo, Constraints on the progenitor systems of type Ia supernovae. Astron. Astrophys. 450, 241 (2006)

  94. S. Taubenberger, The extremes of thermonuclear supernovae, in Handbook of Supernovae, ed. by A.W. Alsabti, P. Murdin (Springer, Berlin, 2016). https://doi.org/10.1007/978-3-319-20794-0_31-1

  95. S. Taubenberger, S. Benetti, M. Childress et al., High luminosity, slow ejecta and persistent carbon lines: SN 2009dc challenges thermonuclear explosion scenarios. Mon. Not. R. Astron. Soc. 412, 2735 (2011)

  96. R. Tripp, A two-parameter luminosity correction for Type Ia supernovae. Astron. Astrophys. 331, 815 (1998)

  97. O.C. Wilson, Possible applications of supernovae to the study of the nebular red shifts. Astrophys. J. 90, 634 (1939)

Download references

Acknowledgements

B.L. acknowledges support for this work by the Deutsche Forschungsgemeinschaft through the TransRegio Project TRR33 “The Dark Universe”.

Author information

Correspondence to B. Leibundgut.

Additional information

Supernovae

Edited by Andrei Bykov, Roger Chevalier, John Raymond, Friedrich-Karl Thielemann, Maurizio Falanga and Rudolf von Steiger

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Leibundgut, B., Sullivan, M. Type Ia Supernova Cosmology. Space Sci Rev 214, 57 (2018). https://doi.org/10.1007/s11214-018-0491-8

Download citation

Keywords

  • Cosmology
  • Supernovae