Space Science Reviews

, 214:65 | Cite as

Water Loss from Young Planets

  • Feng Tian
  • Manuel Güdel
  • Colin P. Johnstone
  • Helmut Lammer
  • Rodrigo Luger
  • Petra Odert
Article
  • 57 Downloads
Part of the following topical collections:
  1. The Delivery of Water to Protoplanets, Planets and Satellites

Abstract

Good progress has been made in the past few years to better understand the XUV evolution trend of Sun-like stars, the capture and dissipation of hydrogen dominant envelopes of planetary embryos and protoplanets, and water loss from young planets around M dwarfs. This chapter reviews these recent developments. Observations of exoplanets and theoretical works in the near future will significantly advance our understanding of one of the fundamental physical processes shaping the evolution of solar system terrestrial planets.

Keywords

Exoplanet Evolution Water Habitability 

Notes

Acknowledgements

FT is supported by Natural and Science Foundation of China (11661161014) and the Tsinghua University Initiative Science Research Program (523001028). HL and PO acknowledge the Austrian Science Fund (FWF): P27256-N27. CPJ, MG, and HL acknowledge the support of the FWF NFN project S116, FWF NFN S11604-N16, and S11607-N16. This review is a result of the ISSI workshop “Delivery of Water to Protoplanets”.

References

  1. Y. Abe, T. Matsui, The formation of an impact-generated \(\mathrm{H}_{2}\mathrm{O}\) atmosphere and its implications for the thermal history of the Earth. J. Geophys. Res. 90, 545–559 (1985) CrossRefGoogle Scholar
  2. Y. Abe, T. Matsui, Early evolution of the Earth: accretion, atmosphere formation, and thermal history. J. Geophys. Res. 91, E291–E302 (1986) CrossRefADSGoogle Scholar
  3. F. Albarède, J. Blichert-Toft, The split fate of the early Earth, Mars, Venus, and Moon. C. R. Géosci. 339, 917–927 (2007) CrossRefGoogle Scholar
  4. Y. Alibert, C. Broeg, W. Benz, G. Tinetti, G.J. White, Origin and formation of planetary systems. Astrobiology 10, 19–32 (2010) CrossRefADSGoogle Scholar
  5. G. Anglada-Escude et al., A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536, 437 (2016).  https://doi.org/10.1038/nature19106 CrossRefADSGoogle Scholar
  6. T.R. Ayres, Evolution of the solar ionizing flux. J. Geophys. Res. 102, 1641 (1997) CrossRefADSGoogle Scholar
  7. I. Baraffe, G. Chabrier, F. Allard, P.H. Hauschildt, Evolutionary models for solar metallicity low-mass stars: mass-magnitude relationships and color-magnitude diagrams. Astron. Astrophys. 337, 403 (1998) ADSGoogle Scholar
  8. Z.K. Berta-Thompson et al., A rocky planet transiting a nearby low-mass star. Nature 527, 204 (2015).  https://doi.org/10.1038/nature15762 CrossRefADSGoogle Scholar
  9. J. Bin et al., New inner boundaries of the habitable zones around M dwarfs. Earth Planet. Sci. Lett. (2018 in review) Google Scholar
  10. E. Bolmont et al., Water loss from terrestrial planets orbiting ultra cool dwarfs: implications for the planets of TRAPPIST-1. Mon. Not. R. Astron. Soc. (2016) Google Scholar
  11. V. Bourrier et al., Temporal evolution of the high-energy irradiation and water content of TRAPPIST-1 exoplanets. Astrophys. J. (2017) Google Scholar
  12. V. Bourrier, A. Lecavelier des Etangs, H. Dupuy, D. Ehrenreich, A. Vidal-Madjar, G. Hébrard, G.E. Balleste, J.-M. Désert, R. Ferlet, D.K. Sing, P.J. Wheatley, Atmospheric escape from HD189733b observed in HI Lyman-\(\alpha \): detailed analysis of HST/STIS September 2011 observations. Astron. Astrophys. 551, A63 (2013) CrossRefADSGoogle Scholar
  13. D. Catling, The great oxidation event transition, in Treatise on Geochemistry, ed. by H.D. Holland, K.K. Turekian 2nd edn. (Elsevier, Oxford, 2014), pp. 177–195 CrossRefGoogle Scholar
  14. E. Chassefière, Hydrodynamic escape of hydrogen from a hot water-rich atmosphere: the case of Venus. J. Geophys. Res. 101(E11), 26039–26056 (1996) CrossRefADSGoogle Scholar
  15. L.A. Cieza et al., Imaging the water snow-line during a protostellar outburst. Nature 535, 258–261 (2016) CrossRefADSGoogle Scholar
  16. M.W. Claire et al., The evolution of solar flux from 0.1 nm to \(160~\upmu\mbox{m}\): quantitative estimates for planetary studies. Astrophys. J. 757, 95–107 (2012) CrossRefADSGoogle Scholar
  17. J. de Wit et al., A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c. Nature 537, 69–72 (2016) CrossRefADSGoogle Scholar
  18. J. Dittmann, A temperate rocky super-Earth transiting a nearby cool star. Nature 544, 333 (2017) CrossRefADSGoogle Scholar
  19. C. Dong, The influence of the extreme ultraviolet spectral energy distribution on the structure and composition of the upper atmosphere of exoplanets. Proc. Natl. Acad. Sci. USA 115, 260–265 (2018) CrossRefADSGoogle Scholar
  20. L.T. Elkins-Tanton, Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008) CrossRefADSGoogle Scholar
  21. L.T. Elkins-Tanton, Formation of water ocean on rocky planets. Astrophys. Space Sci. 332, 359–364 (2011) CrossRefADSGoogle Scholar
  22. L.T. Elkins-Tanton, Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 40, 113–139 (2012) CrossRefADSGoogle Scholar
  23. N.V. Erkaev, Yu.N. Kulikov, H. Lammer, F. Selsis, D. Langmayr, G.F. Jaritz, H.K. Biernat, Roche lobe effects on the atmospheric loss from “Hot Jupiters”. Astron. Astrophys. 472, 329–334 (2007) CrossRefADSGoogle Scholar
  24. N.V. Erkaev, H. Lammer, L.T. Elkins-Tanton, A. Stökl, P. Odert, E. Marcq, E.A. Dorfi, K.G. Kislyakova, Yu.N. Kulikov, M. Leitzinger, M. Güdel, Planet. Space Sci. 98, 106–119 (2014) CrossRefADSGoogle Scholar
  25. J.M. Fontenla et al., Solar spectral irradiance, solar activity, and the near-ultra-violet. Astrophys. J. 809, 157 (2015) CrossRefADSGoogle Scholar
  26. K. France, J.L. Linsky, F. Tian, C.S. Froning, A. Roberge, Astrophys. J. Lett. 750, L32 (2012) CrossRefADSGoogle Scholar
  27. K. France, C.S. Froning, J.L. Linsky et al., Astrophys. J. 763, 149 (2013) CrossRefADSGoogle Scholar
  28. K. France et al., The MUSCLES Treasury Survey. I. Motivation and overview. Astrophys. J. 820, 89–113 (2016) CrossRefADSGoogle Scholar
  29. F. Gallet, J. Bouvier, Astron. Astrophys. 556, A36 (2013) CrossRefADSGoogle Scholar
  30. A. Garcia Muñoz, Physical and chemical aeronomy of HD209458b. Planet. Space Sci. 55, 1426–1455 (2007) CrossRefADSGoogle Scholar
  31. C. Gillmann, E. Chassefière, P. Lognonné, A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009) CrossRefADSGoogle Scholar
  32. M. Gillon et al., Temperate Earth-sized planets transiting a nearby ultracool dwarf star. Nature 533, 221–224 (2016).  https://doi.org/10.1038/nature17448 CrossRefADSGoogle Scholar
  33. M. Gillon, A.H.M.J. Triaud, B.O. Demory et al., Nature 542, 456 (2017) CrossRefADSGoogle Scholar
  34. M. Güdel, E.F. Guinan, S.L. Skinner, Astrophys. J. 483, 947 (1997) CrossRefADSGoogle Scholar
  35. J.H. Guo, L. Ben-Jaffel, The influence of the extreme ultraviolet spectral energy distribution on the structure and composition of the upper atmosphere of exoplanets. Astrophys. J. 818, 107 (2016) CrossRefADSGoogle Scholar
  36. A.N. Halliday, H. Wänke, J.L. Birck, R.N. Clayton, The accretion, composition and early differentiation of Mars. Space Sci. Rev. 96, 197–230 (2001) CrossRefADSGoogle Scholar
  37. K. Hamano, Y. Abe, H. Genda, Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013) CrossRefADSGoogle Scholar
  38. C. Hayashi, Stellar evolution in early phases of gravitational contraction. Publ. Astron. Soc. Jpn. 13, 450–452 (1961) ADSGoogle Scholar
  39. H.E. Hinteregger, Adv. Space Res. 1, 39 (1981) CrossRefADSGoogle Scholar
  40. S.B. Howell, C. Sobeck, M. Haas, M. Still, T. Barclay, F. Mullally, J. Troeltzsch, S. Aigrain, S.T. Bryson, D. Caldwell, W.J. Chaplin, W.D. Cochran, D. Huber, G.W. Marcy, A. Miglio, J.R. Najita, M. Smith, J.D. Twicken, J.J. Fortney, Publ. Astron. Soc. Pac. 126, 398 (2014) CrossRefADSGoogle Scholar
  41. D.M. Hunten, The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 1481–1494 (1973) CrossRefADSGoogle Scholar
  42. D.M. Hunten, R.O. Pepin, J.C.G. Walker, Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987) CrossRefADSGoogle Scholar
  43. C.P. Johnstone, M. Güdel, Astron. Astrophys. 578, A129 (2015) CrossRefADSGoogle Scholar
  44. C.P. Johnstone, M. Güdel, I. Brott, T. Lüftinger, Stellar winds on the main-sequence II. The evolution of rotation and winds. Astron. Astrophys. 577, A28 (2015) CrossRefADSGoogle Scholar
  45. P. Judge, S.C. Solomon, T.R. Ayres, Astrophys. J. 593, 534 (2003) CrossRefADSGoogle Scholar
  46. J.F. Kasting, J.B. Pollack, Loss of water from Venus. I. Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983) CrossRefADSGoogle Scholar
  47. J.F. Kasting, D.P. Whitmire, R.T. Reynolds, Icarus 101, 108 (1993) CrossRefADSGoogle Scholar
  48. T.V. Kazachevskaya et al., Stud. Geophys. Geod. 42, 92 (1998) CrossRefGoogle Scholar
  49. M.L. Khodachenko et al., Ly\(\alpha\) absorption at transits of HD 209458b: a comparative study of various mechanisms under different conditions. Astrophys. J. 847, 126 (2017) CrossRefADSGoogle Scholar
  50. R.V. Kopparapu et al., Habitable moist atmospheres on terrestrial planets near the inner edge of the habitable zone around M dwarfs. Astrophys. J. 845, 5 (2017) CrossRefADSGoogle Scholar
  51. T.T. Koskinen, M.J. Harris, R.V. Yelle, P. Lavvas, The escape of heavy atoms from the ionosphere of HD209458b. I. A photochemical–dynamical model of the thermosphere. Icarus 226, 1678–1694 (2013) CrossRefADSGoogle Scholar
  52. T.T. Koskinen, P. Lavvas, M.J. Harris, R.V. Yelle, Thermal escape from extrasolar giant planets. Philos. Trans. R. Soc. Lond. Ser. A, Math. Phys. Sci. 372, 20130089 (2014) CrossRefADSGoogle Scholar
  53. R.P. Kraft, Astrophys. J. 150, 551 (1967) CrossRefADSGoogle Scholar
  54. H. Lammer, F. Selsis, I. Ribas, E.F. Guinan, S.J. Bauer, W.W. Weiss, Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating. Astrophys. J. 598, L121–L124 (2003) CrossRefADSGoogle Scholar
  55. H. Lammer et al., Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008).  https://doi.org/10.1007/s11214-008-9413-5 CrossRefADSGoogle Scholar
  56. H. Lammer, K.G. Kislyakova, P. Odert, M. Leitzinger, R. Schwarz, E. Pilat-Lohinger, Yu.N. Kulikov, M.L. Khodachenko, M. Güdel, A. Hanslmeier, Pathways to Earth-like atmospheres: Extreme ultraviolet (EUV)-powered escape of hydrogen-rich protoatmospheres. Orig. Life Evol. Biosph. 41, 503–522 (2011) CrossRefADSGoogle Scholar
  57. H. Lammer, N.V. Erkaev, P. Odert, K.G. Kislyakova, M. Leitzinger, M.L. Khodachenko, Probing the blow-off criteria of hydrogen-rich ‘super-Earths’. Mon. Not. R. Astron. Soc. 430, 1247–1256 (2013) CrossRefADSGoogle Scholar
  58. H. Lammer, A. Stokl, N.V. Erkaev, E.A. Dorfi, P. Odert, M. Gudel, Yu.N. Kulikov, K.G. Kislyakova, M. Leitzinger, Origin and loss of nebula-captured hydrogen envelopes from ‘sub’- to ‘super-Earths’ in the habitable zone of Sun-like stars. Mon. Not. R. Astron. Soc. 439, 3225–3238 (2014) CrossRefADSGoogle Scholar
  59. T. LaTourrette, G.J. Wasserburg, Mg diffusion in anorthite: implications for the formation of early solar system planetesimals. Earth Planet. Sci. Lett. 158, 91–108 (1998) CrossRefADSGoogle Scholar
  60. T. Lebrun, H. Massol, E. Chassefiere et al., Thermal evolution of an early magma ocean in interaction with the atmosphere. J. Geophys. Res., Planets 118, 1155–1176 (2013) CrossRefADSGoogle Scholar
  61. A. Leger et al., Impact of \(\eta_{\mathrm{earth}}\) on the capabilities of affordable space missions to detect biosignatures on extrasolar planets. Astrophys. J. (2015) Google Scholar
  62. H.I.M. Lichtenegger, K.G. Kisylakova, P. Odert, N.V. Erkaev, H. Lammer, H. Gröller, C.P. Johnstone, L. Elkins-Tanton, L. Tu, M. Güdel, M. Holmström, Solar XUV and ENA-driven water loss from early Venus’ steam atmosphere. J. Geophys. Res. 121, 4718–4732 (2016) CrossRefGoogle Scholar
  63. J.L. Linsky, H. Yang, K. France, C.S. Froning, J.C. Green et al., Observations of mass loss from the transiting exoplanet HD 209458b. Astrophys. J. 717, 1291–1299 (2010) CrossRefADSGoogle Scholar
  64. J.L. Linsky, K. France, T.R. Ayres, Astrophys. J. 766, 69 (2013) CrossRefADSGoogle Scholar
  65. J.L. Linsky, J. Fontenla, K. France, Astrophys. J. 780, 61 (2014) CrossRefADSGoogle Scholar
  66. J.J. Lissauer et al., A closely packed system of low-mass, low-density planets transiting Kepler-11. Nature 470, 53–59 (2011) CrossRefADSGoogle Scholar
  67. E.D. Lopez, J.J. Fortney, N. Miller, How thermal evolution and mass-loss sculpt populations of super-Earths and sub-Neptunes: application to the Kepler-11 system and beyond. Astrophys. J. 761, 59 (2012) CrossRefADSGoogle Scholar
  68. R.O.P. Loyd, K. France, A. Youngblood et al., Astrophys. J. 824, 10 (2016) CrossRefGoogle Scholar
  69. R.O. Loyd et al., Ultraviolet Cii and Siiii transit spectroscopy and modeling of the evaporating atmosphere of GJ436b. Astrophys. J. Lett. 834, L17 (2017) CrossRefADSGoogle Scholar
  70. R. Luger, R. Barnes, Extreme water loss and abiotic \(\mathrm{O}_{2}\) buildup on planets throughout the habitable zones of M dwarfs. Astrobiology 15, 119–143 (2015) CrossRefADSGoogle Scholar
  71. A. Maggio, S. Sciortino, G.S. Vaiana, P. Majer, J. Bookbinder et al., Astrophys. J. 315, 687 (1987) CrossRefADSGoogle Scholar
  72. T.I. Maindl, R. Dvorak, H. Lammer, M. Güdel, C. Schäfer, R. Speith, P. Odert, N.V. Erkaev, K.G. Kislyakova, E. Pilat-Lohinger, Impact induced surface heating by planetesimals on early Mars. Astron. Astrophys. 574, A22 (2015) CrossRefGoogle Scholar
  73. G.W. Marcy et al., Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. Astrophys. J. Suppl. Ser. 210, 20–90 (2014) CrossRefADSGoogle Scholar
  74. H. Massol et al., Formation and evolution of protoatmospheres. Space Sci. Rev. (2016).  https://doi.org/10.1007/s11214-016-0280-1 Google Scholar
  75. J.D. Mulders et al., The snow line in viscous disks around low-mass stars: implications for water delivery to terrestrial planets in the habitable zone. Astrophys. J. 807, 9 (2015).  https://doi.org/10.1088/0004-637X/807/1/9 CrossRefADSGoogle Scholar
  76. R.W. Noyes, L.W. Hartmann, S.L. Baliunas, D.K. Duncan, A.N. Vaughan, Astrophys. J. 279, 763 (1984) CrossRefADSGoogle Scholar
  77. E.J. Öpik, S.F. Singer, Distribution of density in a planetary exosphere. II. Phys. Fluids 4, 221–233 (1961) MathSciNetCrossRefADSGoogle Scholar
  78. J.E. Owen, S. Mohanty, Mon. Not. R. Astron. Soc. 459, 4088 (2016) CrossRefADSGoogle Scholar
  79. R. Pallavicini, L. Golub, R. Rosner, G.S. Vaiana, T. Ayres, J.L. Linsky, Astrophys. J. 248, 279 (1981) CrossRefADSGoogle Scholar
  80. B. Paxton, L. Bildsten, A. Dotter, F. Herwig, P. Lesaffre, F. Timmes, Modules for experiments in stellar astrophysics (MESA). Astrophys. J. 192, 3–37 (2011) CrossRefADSGoogle Scholar
  81. R.O. Pepin, On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991) CrossRefADSGoogle Scholar
  82. N. Pizzolato, A. Maggio, G. Micela, S. Sciortino, P. Ventura, The stellar activity-rotation relationship revisited: dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs? Astron. Astrophys. 397, 147–157 (2003) CrossRefADSGoogle Scholar
  83. R.M. Ramirez, L. Kaltenegger, The habitable zones of pre-main-sequence stars. Astrophys. J. 797, L25–L33 (2014) CrossRefADSGoogle Scholar
  84. I.N. Reid, S.L. Hawley, New Light on Dark Stars (Springer, Heidelberg, 2005) Google Scholar
  85. I. Ribas, E.F. Guinan, M. Güdel, M. Audard, Evolution of the solar activity over time and effects on planetary atmospheres, I. High energy irradiances (1–1700 Å). Astrophys. J. 622, 680–694 (2005) CrossRefADSGoogle Scholar
  86. G.R. Ricker, R.K. Vanderspek, D.W. Latham et al., The Transiting Exoplanet Survey satellite mission, in American Astronomical Society Meeting Abstracts (2014), p. 224 Google Scholar
  87. I.-J. Sackmann, A.I. Boothroyd, Astrophys. J. 583, 1024 (2003) CrossRefADSGoogle Scholar
  88. V.S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets (Akad. Nauk. SSSR, Moscow, 1969) Google Scholar
  89. J. Sanz-Forcada, G. Micela, I. Ribas, A.M.T. Pollock, C. Eiroa, A. Velasco, E. Solano, D. Garcia-Alvarez, Astron. Astrophys. 532, A6 (2011) CrossRefADSGoogle Scholar
  90. J. Scalo, L. Kaltenegger, A. Segura, M. Fridlund et al., M stars as targets for terrestrial exoplanet searches and biosignature detection. Astrobiology 7, 85–171 (2007) CrossRefADSGoogle Scholar
  91. L. Schaefer et al., Predictions of the atmospheric composition of GJ 1132B. arXiv:1607.03906v1 (2016)
  92. G. Schubert, J.D. Anderson, T. Spohn, W.B. McKinnon, Interior composition, structure and dynamics of the Galilean satellites, in Jupiter—The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon (Cambridge University Press, Cambridge, 2004), pp. 281–306 Google Scholar
  93. E.W. Schwieterman et al., Identifying planetary biosignature impostors: spectral features of CO and \(\mathrm{O}_{4}\) resulting from abiotic \(\mathrm{O}_{2}/\mathrm{O}_{3}\) production. Astrophys. J. 819, L13–L19 (2016) CrossRefADSGoogle Scholar
  94. I.F. Shaikhislamov, M.L. Khodachenko, Yu.L. Sasunov, H. Lammer, K.G. Kislyakova, N.V. Erkaev, Atmospheric expansion and mass loss of close-orbit giant exoplanets heated by stellar XUV. I. Modeling of hydrodynamic escape of upper atmospheric material. Astrophys. J. 795, 132 (2014) CrossRefADSGoogle Scholar
  95. A. Skumanich, Astrophys. J. 171, 565 (1972) CrossRefADSGoogle Scholar
  96. D.R. Soderblom, J.R. Stauffer, K.B. MacGregor, B.F. Jones, Astrophys. J. 409, 624 (1993) CrossRefADSGoogle Scholar
  97. B. Stelzer et al., The UV and X-ray activity of the M dwarfs within 10 pc of the Sun. Mon. Not. R. Astron. Soc. 431, 2063–2079 (2013) CrossRefADSGoogle Scholar
  98. A. Stökl, E. Dorfi, H. Lammer, Astron. Astrophys. 576, A87 (2015) CrossRefGoogle Scholar
  99. F. Tian, Thermal escape from super earth atmospheres in the habitable zones of M stars. Astrophys. J. 703, 905–909 (2009) CrossRefADSGoogle Scholar
  100. F. Tian, Conservation of total escape from hydrodynamic planetary atmospheres. Earth Planet. Sci. Lett. 379, 104–107 (2013) CrossRefADSGoogle Scholar
  101. F. Tian, Atmospheric escape from solar system terrestrial planets and exoplanets. Annu. Rev. Earth Planet. Sci. 43, 459–476 (2015a).  https://doi.org/10.1146/annurev-earth-060313-054834 CrossRefADSGoogle Scholar
  102. F. Tian, History of water loss and atmospheric \(\mathrm{O}_{2}\) buildup on rocky exoplanets near M dwarfs. Earth Planet. Sci. Lett. 432, 126–132 (2015b) CrossRefADSGoogle Scholar
  103. F. Tian, S. Ida, Water content of earth-mass planets around M dwarfs. Nat. Geosci. 8, 177–180 (2015).  https://doi.org/10.1038/NGEO2372 CrossRefADSGoogle Scholar
  104. F. Tian, O.B. Toon, A.A. Pavlov, H. DeSterck, Tran-sonic hydrodynamic escape of hydrogen from extrasolar planetary atmospheres. Astrophys. J. 621, 1049–1060 (2005) CrossRefADSGoogle Scholar
  105. F. Tian, J.F. Kasting, S.C. Solomon, Thermal escape of carbon from the early Martian atmosphere. Geophys. Res. Lett. 36, L02205 (2009).  https://doi.org/10.1029/2008GL036513 CrossRefADSGoogle Scholar
  106. F. Tian, E. Chassefière, F. Leblanc, D.A. Brain, Atmosphere escape and climate evolution of terrestrial planets, in Comparative Climatology of Terrestrial Planets, ed. by S.J. Mackwell, A.A. Simon-Miller, J.W. Harder, M.A. Bullock (University of Arizona Press, Tucson, 2013), pp. 567–581 Google Scholar
  107. F. Tian et al., High stellar FUV/NUV ratio and oxygen contents in the atmospheres of potentially habitable planets. Earth Planet. Sci. Lett. 22, 27 (2014) Google Scholar
  108. E. Tognelli, P.G. PradaMoroni, S. Degl’Innocenti, The Pisa pre-main sequence tracks and isochrones. A database covering a wide range of \(Z\), \(Y\), mass, and age values. Astron. Astrophys. 533, A109 (2011).  https://doi.org/10.1051/0004-6361/200913913 CrossRefGoogle Scholar
  109. L. Tu, C.P. Johnstone, M. Güdel, H. Lammer, Astron. Astrophys. 577, L3 (2015) CrossRefADSGoogle Scholar
  110. H.C. Urey, The cosmic abundances of potassium, uranium, and thorium and the heat balance of the Earth, the Moon, and Mars. Proc. Natl. Acad. Sci. 41, 127–144 (1955) CrossRefADSGoogle Scholar
  111. A. Vidal-Madjar, A. Lecavelier des Etangs, J.M. Désert, G.E. Ballester, R. Ferlet, G. Hébrard, M. Mayor, An extended upper atmosphere around the extrasolar giant planet HD209458b. Nature 422, 143–146 (2003) CrossRefADSGoogle Scholar
  112. A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, G. Hébrard, G.E. Ballester et al., Detection of oxygen and carbon in the hydrodynamically escaping atmosphere of the extrasolar planet HD209458b. Astrophys. J. 604, L69–L72 (2004) CrossRefADSGoogle Scholar
  113. A. Vidal-Madjar, C.M. Huitson, V. Bourrier, J.M. Désert, G. Ballester et al., Magnesium in the atmosphere of the planet HD 209458 b: observations of the thermosphere-exosphere transition region. Astron. Astrophys. 560, A54 (2013) CrossRefGoogle Scholar
  114. F.M. Walter, Astrophys. J. 245, 677 (1981) CrossRefADSGoogle Scholar
  115. A.J. Watson, T.M. Donahue, J.C.G. Walker, The dynamics of a rapidly escaping atmosphere—the evolution of Earth and Venus. Icarus 48, 150–166 (1981) CrossRefADSGoogle Scholar
  116. E.J. Weber, L. Davis Jr., Astrophys. J. 148, 217 (1967) CrossRefADSGoogle Scholar
  117. A. West et al., Astron. J. 135, 785 (2008) CrossRefADSGoogle Scholar
  118. G.W. Wetherill, G.R. Stewart, Accumulation of a swarm of small planetesimals. Icarus 77, 330–357 (1989) CrossRefADSGoogle Scholar
  119. E.T. Wolf, Assessing the habitability of the TRAPPIST-1 system using a 3D climate model. Astrophys. J. Lett. 839, L1 (2017) CrossRefADSGoogle Scholar
  120. N.J. Wright, J.J. Drake, Solar-type dynamo behaviour in fully convective stars without a tachocline. Nature 535, 526–530 (2016) CrossRefADSGoogle Scholar
  121. N.J. Wright, J.J. Drake, E.E. Mamajek, G.W. Henry, Astrophys. J. 743, 48 (2011) CrossRefADSGoogle Scholar
  122. R.V. Yelle, Aeronomy of extra-solar giant planets at small orbital distances. Icarus 170, 167–179 (2004). Corrigendum: Icarus 183, 508 (2006) CrossRefADSGoogle Scholar
  123. A. Youngblood, K. France, R.O.P. Loyd et al., Astrophys. J. 824, 101 (2016) CrossRefADSGoogle Scholar
  124. K.J. Zahnle, J.F. Kasting, Mass fractionation during transonic escape and implications for loss of water from Mars and Venus. Icarus 68, 462–480 (1986) CrossRefADSGoogle Scholar
  125. K. Zahnle, J.F. Kasting, J.B. Pollack, Mass fractionation of noble gases in diffusion-limited hydrodynamic hydrogen escape. Icarus 84, 502–527 (1990) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Feng Tian
    • 1
  • Manuel Güdel
    • 2
  • Colin P. Johnstone
    • 2
  • Helmut Lammer
    • 3
  • Rodrigo Luger
    • 4
  • Petra Odert
    • 3
  1. 1.Department for Earth System ScienceTsinghua UniversityBeijingChina
  2. 2.Department of AstrophysicsUniversity of ViennaViennaAustria
  3. 3.Space Research InstituteAustrian Academy of SciencesGrazAustria
  4. 4.Department of AstronomyUniversity of WashingtonSeattleUSA

Personalised recommendations