Advertisement

Space Science Reviews

, 214:39 | Cite as

Water and the Interior Structure of Terrestrial Planets and Icy Bodies

  • J. MonteuxEmail author
  • G. J. Golabek
  • D. C. Rubie
  • G. Tobie
  • E. D. Young
Article
Part of the following topical collections:
  1. The Delivery of Water to Protoplanets, Planets and Satellites

Abstract

Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock–ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.

Keywords

Water Differentiation Internal evolution Terrestrial planets Icy moons 

Notes

Acknowledgements

We thank L. Elkins-Tanton, A. Morbidelli and two anonymous reviewers for detailed and thoughtful comments that helped to improve the manuscript. D.C.R. was supported by the European Research Council Advanced Grant “ACCRETE” (contract number 290568) and additional support was provided by the German Science Foundation (DFG) Priority Programme SPP1833 “Building a Habitable Earth” (Ru 1323/10-1). J.M. was funded by the Auvergne Fellowship program. This is Laboratory of Excellence ClerVolc contribution no. 283. G.J.G. thanks Taras Gerya for providing the code I2MART. G.T. acknowledges support from the project ANR OASIS.

References

  1. J.D. Anderson, R.A. Jacobson, T.P. McElrath, W.B. Moore, G. Schubert, P.C. Thomas, Shape, mean radius, gravity field, and interior structure of Callisto. Icarus 153, 157–161 (2001) ADSCrossRefGoogle Scholar
  2. J.D. Anderson, E.L. Lau, W.L. Sjogren, G. Schubert, W.B. Moore, Gravitational constraints on the internal structure of Ganymede. Nature 384, 541–543 (1996) ADSCrossRefGoogle Scholar
  3. P.J. Armitage, Astrophysics of Planet Formation (Cambridge University Press, Cambridge, 2010), 294 p. Google Scholar
  4. Y. Asahara, T. Kubo, T. Kondo, Phase relations of a carbonaceous chondrite at lower mantle conditions. Phys. Earth Planet. Inter. 143–144, 421–432 (2004) CrossRefGoogle Scholar
  5. X-N. Bai, J.M. Stone, Wind-driven accretion in protoplanetary disks. I. Supression of the magnetorotational instability and launching of the magnetocentrifugal wind. Astrophys. J. 769, 21 (2013) CrossRefGoogle Scholar
  6. R.M. Baland et al., Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 29–41 (2014) ADSCrossRefGoogle Scholar
  7. A.C. Barr, R.M. Canup, Constraints on gas giant satellite formation from the interior states of partially differentiated satellites. Icarus 198, 163–177 (2008) ADSCrossRefGoogle Scholar
  8. A.C. Barr, R.M. Canup, Origin of the Ganymede–Callisto dichotomy by impacts during the Late Heavy Bombardment. Nat. Geosci. 3, 164–167 (2010) ADSCrossRefGoogle Scholar
  9. A.C. Barr, G.C. Collins, Tectonic activity on Pluto after the Charon-forming impact. Icarus 246, 146–155 (2015) ADSCrossRefGoogle Scholar
  10. C. Béghin, O. Randriamboarison, M. Hamelin, E. Karkoschka, C. Sotin, R.C. Whitten, J.-J. Berthelier, R. Grard, F. Simões, Analytic theory of Titan’s Schumann resonance: constraints on ionospheric conductivity and buried water ocean. Icarus 218(2), 1028–1042 (2012) ADSCrossRefGoogle Scholar
  11. P.A. Bland et al., Why aqueous alteration in asteroids was isochemical: high porosity does not equal permeability. Earth Planet. Sci. Lett. 287, 559–568 (2009) ADSCrossRefGoogle Scholar
  12. R. Brett, P.M. Bell, Melting relations in the Fe-rich portion of the system Fe–FeS at 30 kb pressure. Earth Planet. Sci. Lett. 6, 479–482 (1969) ADSCrossRefGoogle Scholar
  13. D. Breuer et al., Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos in terrestrial planets and moons. Prog. Earth Planet. Sci. 2, 39 (2015) ADSCrossRefGoogle Scholar
  14. A.S. Buono, D. Walker, The Fe-rich liquidus in the Fe–FeS system from 1 bar to 10 GPa. Geochim. Cosmochim. Acta 75, 2072–2087 (2011) ADSCrossRefGoogle Scholar
  15. O. Cadek, G. Tobie, T. Van Hoolst, M. Massé, G. Choblet, A. Lefèvre, G. Mitri, R-M. Baland, M. Behounkova, O. Bourgeois, A. Trinh, Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Lett. 43(11), 5653–5660 (2016) ADSCrossRefGoogle Scholar
  16. J.C. Castillo-Rogez, J.I. Lunine, Evolution of Titan’s rocky core constrained by Cassini observations. Geophys. Res. Lett. 37, L20205 (2010) ADSGoogle Scholar
  17. J.C. Castillo-Rogez, E. Young, Origin and evolution of volatile-rich asteroids, in Early Differentiation and Consequences for Planets, ed. by L.T. Elkins-Tanton, B. Weiss. Cambridge Planetary Science (2017) Google Scholar
  18. F. Cerantola, N. Walte, D.C. Rubie, Deformation of a crystalline olivine aggregate containing two immiscible liquids: implications for early core-mantle differentiation. Earth Planet. Sci. Lett. 417, 67–77 (2015) ADSCrossRefGoogle Scholar
  19. J.E. Chambers, Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus 224, 43–56 (2013) ADSCrossRefGoogle Scholar
  20. E. Chiang, A.N. Youdin, Forming planetesimals in solar and extrasolar nebula. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010) ADSCrossRefGoogle Scholar
  21. G. Choblet, G. Tobie, C. Sotin, K. Kalousova, O. Grasset, Heat and melt transport in the high-pressure ice mantle of large icy moons. Icarus 285, 252–262 (2017) ADSCrossRefGoogle Scholar
  22. L. Chudinovskikh, R. Boehler, Eutectic melting in the system Fe–S to 44 GPa. Earth Planet. Sci. Lett. 257(1), 97–103 (2007) ADSCrossRefGoogle Scholar
  23. A.L. Cochran et al., The composition of comets. Space Sci. Rev. 197(1–4), 9–46 (2015) ADSCrossRefGoogle Scholar
  24. A. Coradini, C. Federico, O. Forni, G. Magni, Origin and thermal evolution of icy satellites. Surv. Geophys. 16, 533–591 (1995) ADSCrossRefGoogle Scholar
  25. A. Costa, L. Caricchi, N. Bagdassarov, A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem. Geophys. Geosyst. 10, 3010 (2009) ADSCrossRefGoogle Scholar
  26. N.B. Cowan, D.S. Abbot, Water cycling between ocean and mantle: super-Earths need not be waterworlds. Astrophys. J. 781(1), 27 (2014). ADSCrossRefGoogle Scholar
  27. F.J. Crary, F. Bagenal, Remanent ferromagnetism and the interior structure of Ganymede. J. Geophys. Res. 103, 25757–25773 (1998) ADSCrossRefGoogle Scholar
  28. J.W. Crowley, M. Gérault, R.J. O’Connell, On the relative influence of heat and water transport on planetary dynamics. Earth Planet. Sci. Lett. 310, 380–388 (2011) ADSCrossRefGoogle Scholar
  29. J.N. Cuzzi, K.J. Zahnle, Material enhancement in protoplanetary nebulae by particle drift through evaporation fronts. Astrophys. J. 614, 490–496 (2004) ADSCrossRefGoogle Scholar
  30. T.W. Dahl, D.J. Stevenson, Turbulent mixing of metal and silicate during planet accretion and interpretation of the Hf–W chronometer. Earth Planet. Sci. Lett. 295, 177–186 (2010) ADSCrossRefGoogle Scholar
  31. N. Dauphas, The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017) ADSCrossRefGoogle Scholar
  32. M.C. de Sanctis et al., Ammoniated phyllosilicates with a likely outer solar system origin on Ceres. Nature 528, 241–244 (2015) ADSCrossRefGoogle Scholar
  33. J. de Vries, F. Nimmo, H.J. Melosh, S.A. Jacobson, A. Morbidelli, D.C. Rubie, Impact-induced melting during accretion of the Earth. Prog. Earth Planet. Sci. 3, 7 (2016).  https://doi.org/10.1186/s40645-016-0083-8 ADSCrossRefGoogle Scholar
  34. R. Deguen, M. Landeau, P. Olson, Turbulent metal–silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014) ADSCrossRefGoogle Scholar
  35. T. Encrenaz, Water in the solar system. Annu. Rev. Astron. Astrophys. 46, 57–87 (2008) ADSCrossRefGoogle Scholar
  36. Y. Fei, C.M. Bertka, L.W. Finger, High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe–FeS system. Science 275, 1621–1623 (1997) CrossRefGoogle Scholar
  37. Y. Fei, J. Li, C.M. Bertka, C.T. Prewitt, Structure type and bulk modulus of Fe3S, a new iron–sulfur compound. Am. Mineral. 85, 1830–1833 (2000) ADSCrossRefGoogle Scholar
  38. F.M. Flasar, F. Birch, Energetics of core formation: a correction. J. Geophys. Res. 78, 6101–6103 (1973) ADSCrossRefGoogle Scholar
  39. A.J. Friedson, D.J. Stevenson, Viscosity of rock–ice mixtures and applications to the evolution of icy satellites. Icarus 56, 1–14 (1983) ADSCrossRefGoogle Scholar
  40. D.J. Frost, C. Liebske, F. Langenhorst, C.A. McCammon, R.G. Trønnes, D.C. Rubie, Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428, 409–412 (2004) ADSCrossRefGoogle Scholar
  41. R.R. Fu, L.T. Elkins-Tanton, The fate of magmas in planetsimals and the retention of primitive chondritic crusts. Earth Planet. Sci. Lett. 390, 128–137 (2014) ADSCrossRefGoogle Scholar
  42. R.R. Fu, E. Young, R.C. Greenwood, L.T. Elkins-Tanton, Silicate melting and volatile loss during differentiation in planetesimals, in Early Differentiation and Consequences for Planets, ed. by L.T. Elkins-Tanton, B. Weiss. Cambridge Planetary Science (2017) Google Scholar
  43. P. Gao, D.J. Stevenson, Nonhydrostatic effects and the determination of icy satellites’ moment of inertia. Icarus 226, 1185–1191 (2013) ADSCrossRefGoogle Scholar
  44. T.V. Gerya, D.A. Yuen, Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Inter. 163, 83–105 (2007) ADSCrossRefGoogle Scholar
  45. G.J. Golabek, B. Bourdon, T.V. Gerya, Numerical models of the thermomechanical evolution of planetesimals: application to the acapulcoite-lodranite parent body. Meteorit. Planet. Sci. 49, 1083–1099 (2014) ADSCrossRefGoogle Scholar
  46. G.J. Golabek, T.V. Gerya, B.J.P. Kaus, R. Ziethe, P.J. Tackley, Rheological controls on the terrestrial core formation mechanism. Geochem. Geophys. Geosyst. 10, Q11007 (2009) ADSCrossRefGoogle Scholar
  47. O. Grasset et al., Jupiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 1–21 (2013) ADSCrossRefGoogle Scholar
  48. O. Grasset, C. Sotin, The cooling rate of a liquid shell in Titan’s interior. Icarus 123, 101–112 (1996) ADSCrossRefGoogle Scholar
  49. O. Grasset, C. Sotin, F. Deschamps, On the internal structure and dynamics of Titan. Planet. Space Sci. 48, 617–636 (2000) ADSCrossRefGoogle Scholar
  50. L. Grossman, A.V. Fedkin, S.B. Simon, Formation of the first oxidized iron in the solar system. Meteorit. Planet. Sci. 47, 2160–2169 (2012) ADSCrossRefGoogle Scholar
  51. W.M. Grundy et al., Surface compositions across Pluto and Charon. Science 351(6279), aad9189 (2016) ADSCrossRefGoogle Scholar
  52. N.P. Hammond, A.C. Barr, E.M. Parmentier, Recent tectonic activity on Pluto driven by phase changes in the ice shell. Geophys. Res. Lett. 43(13), 6775–6782 (2016) ADSCrossRefGoogle Scholar
  53. L. Hartmann, in Discs, Planetesimals, and Planets, ed. by F. Garzon, C. Eiroa, D. de Winter, T.J. Mahoney. ASP Conf. Ser., vol. 219 (Astron. Soc. Pac, San Francisco, 2000), p. 95 Google Scholar
  54. T.I. Hasegawa, E. Herbst, C.M. Leung, Models of gas–grain chemistry in dense interstellar clouds with complex organic molecules. Astrophys. J. Suppl. Ser. 82, 167 (1992) ADSCrossRefGoogle Scholar
  55. S.A. Hauck, J.M. Aurnou, A.J. Dombard, Sulfur’s impact on core evolution and magnetic field generation on Ganymede. J. Geophys. Res. 111(E9), E09008 (2006) ADSCrossRefGoogle Scholar
  56. V.J. Hillgren, C.K. Gessmann, J. Li, An experimental perspective on the light element in Earth’s core, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (University of Arizona Press, Tucson, 2000), pp. 245–264 Google Scholar
  57. M.M. Hirschmann, Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34, 629–653 (2006) ADSCrossRefGoogle Scholar
  58. G. Hirth, D.L. Kohlstedt, Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996) ADSCrossRefGoogle Scholar
  59. A. Holzheid, Sulphide melt distribution in partially molten silicate aggregates: implications to core formation scenarios in terrestrial planets. Eur. J. Mineral. 25, 267–277 (2013) ADSCrossRefGoogle Scholar
  60. A. Holzheid, M.D. Schmitz, T.L. Grove, Textural equilibria of iron sulphide liquids in partly molten silicate aggregates and their relevance to core formation scenarios. J. Geophys. Res. 105, 13555–13567 (2000) ADSCrossRefGoogle Scholar
  61. A.W. Howard et al., Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201(2), 15 (2012) ADSCrossRefGoogle Scholar
  62. H.H. Hsieh, D. Jewitt, A population of comets in the main asteroid belt. Science 312, 561–563 (2006) ADSCrossRefGoogle Scholar
  63. H.-W. Hsu, F. Postberg, Y. Sekine et al., Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015) ADSCrossRefGoogle Scholar
  64. H. Hussmann et al., Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185, 258–273 (2006) ADSCrossRefGoogle Scholar
  65. H. Hussmann, C. Sotin, J.I. Lunine, Interiors and evolution of icy satellites, in Physics of Terrestrial Planets and Moons Treatise on Geophysics, vol. 10, 2nd edn. (Elsevier, Amsterdam, 2015), pp. 605–635 Google Scholar
  66. L. Iess et al., Gravity field, shape, and moment of inertia of Titan. Science 327, 1367–1369 (2010) ADSCrossRefGoogle Scholar
  67. L. Iess et al., The tides of Titan. Science 337, 457 (2012) ADSCrossRefGoogle Scholar
  68. L. Iess et al., The gravity field and interior structure of Enceladus. Science 344, 78–80 (2014) ADSCrossRefGoogle Scholar
  69. S.A. Jacobson, A. Morbidelli, S.N. Raymond, D.P. O’Brien, K.J. Walsh, D.C. Rubie, Highly siderophile elements in the Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014) ADSCrossRefGoogle Scholar
  70. D. Jewitt, B. Yang, N. Haghighipour, Main-belt Comet P/2008 R1 (Garradd). Astron. J. 137, 4313–4321 (2009) ADSCrossRefGoogle Scholar
  71. A. Johansen, M.-M. Mac Low, P. Lacerda, M. Bizzarro, Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, 1500109 (2015) ADSCrossRefGoogle Scholar
  72. S. Kamada, H. Terasaki, E. Ohtani, T. Sakai, T. Kikegawa, Y. Ohishi, N. Hirao, N. Sata, T. Kondo, Phase relationships of the Fe–FeS system in conditions up to the Earth’s outer core. Earth Planet. Sci. Lett. 294(1), 94–100 (2010) ADSCrossRefGoogle Scholar
  73. S. Karato, V.R. Murthy, Core formation and chemical equilibrium in the Earth—I. Physical considerations. Phys. Earth Planet. Inter. 100, 61–79 (1997) ADSCrossRefGoogle Scholar
  74. J.S. Kargel, Ammonia±water volcanism on icy satellites: phase relations at 1 atmosphere. Icarus 100, 556–574 (1992) ADSCrossRefGoogle Scholar
  75. R.F. Katz, M. Spiegelman, C.H. Langmuir, A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4 (2003).  https://doi.org/10.1029/2002GC000433
  76. Y. Ke, V.S. Solomatov, Coupled core-mantle thermal evolution of early Mars. J. Geophys. Res. 114, E07004 (2009) ADSCrossRefGoogle Scholar
  77. J.D. Kendall, H.J. Melosh, Differentiated planetesimal impacts into a terrestrial magma ocean: fate of the iron core. Earth Planet. Sci. Lett. 448, 24–33 (2016) ADSCrossRefGoogle Scholar
  78. J.F. Kerridge, T.E. Bunch, in Asteroids, ed. by T. Gehrels (University of Arizona Press, Tucson, 1979), pp. 745–764 Google Scholar
  79. K.K. Khurana, M.G. Kivelson, D.J. Stevenson, G. Schubert, C.T. Russell, R.J. Walker, S. Joy, C. Polanskey, Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395, 777–780 (1998) ADSCrossRefGoogle Scholar
  80. R.L. Kirk, D.J. Stevenson, Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69, 91–134 (1987) ADSCrossRefGoogle Scholar
  81. M.G. Kivelson et al., Ganymede’s magnetosphere: magnetometer overview. J. Geophys. Res. 103, 19,963–19,972 (1998) ADSCrossRefGoogle Scholar
  82. M.G. Kivelson, K.K. Khurana, C.T. Russell, M. Volwerk, R.J. Walker, C. Zimmer, Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289, 1340–1343 (2000) ADSCrossRefGoogle Scholar
  83. M. Kivelson, K. Khurana, C. Russell, R. Walker, J. Warnecke, F. Coroniti, C. Polanskey, D. Southwood, G. Schubert, Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature 384(6609), 537–541 (1996) ADSCrossRefGoogle Scholar
  84. J. Korenaga, Scaling of plate-tectonic convection with pseudoplastic rheology. J. Geophys. Res. 115, B11405 (2010) ADSCrossRefGoogle Scholar
  85. K.J. Kossacki, J. Leliwa-Kopystynski, Medium-sized icy satellites: thermal and structural evolution during accretion. Planet. Space Sci. 41, 729–741 (1993) ADSCrossRefGoogle Scholar
  86. A.N. Krot et al., Progressive alteration in CV3 chondrites: more evidence for asteroidal alteration. Meteorit. Planet. Sci. 33, 1065–1085 (1998) ADSCrossRefGoogle Scholar
  87. A.N. Krot, B. Fegley, K. Lodders, Meteoritical and astrophysical constraints on the oxidation state of the solar nebula, in Protostars and Planets IV, ed. by V. Mannings, A.P. Boss, S.S. Russell (University of Arizona Press, Tucson, 2000), pp. 1019–1054 Google Scholar
  88. M. Küppers et al., Localized sources of water vapour on the dwarf planet (1) Ceres. Nature 505, 525–527 (2014) ADSCrossRefGoogle Scholar
  89. M. Landeau, P. Olson, R. Deguen, B.H. Hirsh, Core merging and stratification following giant impact. Nat. Geosci. 9, 786–789 (2016) ADSCrossRefGoogle Scholar
  90. J.S. Lewis, Satellites of the outer planets: their physical and chemical nature. Icarus 15, 174–185 (1971) ADSCrossRefGoogle Scholar
  91. J. Li, Y. Fei, H. Mao, K. Hirose, S. Shieh, Sulfur in the Earth’s inner core. Earth Planet. Sci. Lett. 193(3), 509–514 (2001) ADSCrossRefGoogle Scholar
  92. T. Lichtenberg, G.J. Golabek, T.V. Gerya, M.R. Meyer, The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus 274, 350–365 (2016) ADSCrossRefGoogle Scholar
  93. C. Liebske, B. Schmickler, H. Terasai, B.T. Poe, A. Suzuki, K. Funakoshi, R. Ando, D.C. Rubie, Viscosity of peridotite liquid up to 13 GPa: implications for magma ocean viscosities. Earth Planet. Sci. Lett. 240, 589–604 (2005) ADSCrossRefGoogle Scholar
  94. U. Malamud, D. Prialnik, Modeling Kuiper belt objects Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies. Icarus 246, 21–36 (2015) ADSCrossRefGoogle Scholar
  95. U. Mann, D.J. Frost, D.C. Rubie, Evidence for high-pressure core-mantle differentiation from the metal-silicate partitioning of lithophile and weakly siderophile elements. Geochim. Cosmochim. Acta 73, 7360–7386 (2009).  https://doi.org/10.1016/j.gca.2009.08.006 ADSCrossRefGoogle Scholar
  96. G.W. Marcy et al., Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. Astrophys. J. Suppl. Ser. 210(2), 20 (2014) ADSCrossRefGoogle Scholar
  97. T. Matsui, Y. Abe, Evolution of an impact-induced atmosphere and magma ocean on the accreting Earth. Nature 319, 303–305 (1986) ADSCrossRefGoogle Scholar
  98. M. Mayor, C. Lovis, N.C. Santos, Doppler spectroscopy as a path to the detection of Earth-like planets. Nature 513, 328–335 (2014) ADSCrossRefGoogle Scholar
  99. W.B. McKinnon, Core evolution in the icy Galilean satellites, and the prospects for dynamo-generated magnetic fields. Bull. Am. Astron. Soc. 28, 1076 (1996) ADSGoogle Scholar
  100. W.B. McKinnon, Note: mystery of Callisto: is it undifferentiated? Icarus 130, 540–543 (1997) ADSCrossRefGoogle Scholar
  101. W.G. Minarik, F.J. Ryerson, E.B. Watson, Textural entrapment of core-forming melts. Science 272, 530–533 (1996) ADSCrossRefGoogle Scholar
  102. G. Mitri et al., Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236, 169–177 (2014) ADSCrossRefGoogle Scholar
  103. J. Monteux, N. Coltice, F. Dubuffet, Y. Ricard, Thermo-mechanical adjustment after impacts during planetary growth. Geophys. Res. Lett. 34, L24201 (2007) ADSCrossRefGoogle Scholar
  104. J. Monteux, G. Tobie, G. Choblet, M. Le Feuvre, Can large icy moons accrete undifferentiated? Icarus 237, 377–387 (2014) ADSCrossRefGoogle Scholar
  105. J.M. Moore et al., The geology of Pluto and Charon through the eyes of New Horizons. Science 351, 6279 (2016) CrossRefGoogle Scholar
  106. G. Morard, D. Andrault, N. Guignot, C. Sanloup, M. Mezouar, S. Petitgirard et al., In situ determination of Fe–Fe3S phase diagram and liquid structural properties up to 65 GPa. Earth Planet. Sci. Lett. 272, 620–662 (2008) ADSCrossRefGoogle Scholar
  107. A. Morbidelli, B. Bitsch, A. Crida, M. Gounelle, T. Guillot, S. Jacobson, A. Johansen, M. Lambrechts, E. Lega, Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016) ADSCrossRefGoogle Scholar
  108. I. Mosqueira, P.R. Estrada, Formation of the regular satellites of giant planets in an extended gaseous nebula. I: subnebula model and accretion of satellites. Icarus 163, 198–231 (2003) ADSCrossRefGoogle Scholar
  109. O. Mousis, A. Drouard, P. Vernazza, J.I. Lunine, M. Monnereau, R. Maggiolo, K. Altwegg, H. Balsiger, J.-J. Berthelier, G. Cessateur, J. De Keyser, S.A. Fuselier, S. Gasc, A. Korth, T. Le Deun, U. Mall, B. Marty, H. Rème, M. Rubin, C.-Y. Tzou, J.H. Waite, P. Wurz, Impact of radiogenic heating on the formation conditions of comet 67P/Churyumov–Gerasimenko. Astrophys. J. Lett. 839, L4 (2017) ADSCrossRefGoogle Scholar
  110. S. Mueller, W.B. McKinnon, Three-layered models of Ganymede and Callisto—compositions, structures, and aspects of evolution. Icarus 76, 437–464 (1988) ADSCrossRefGoogle Scholar
  111. K. Nagel, D. Breuer, T. Spohn, A model for the interior structure, evolution, and differentiation of Callisto. Icarus 169, 402–412 (2004) ADSCrossRefGoogle Scholar
  112. T. Nakamura, Yamato 793321 CM chondrite: dehydrated regolith material of a hydrous asteroid. Earth Planet. Sci. Lett. 242, 26–38 (2006) ADSCrossRefGoogle Scholar
  113. A. Nakato, T. Nakamura, F. Kitajima, T. Noguchi, Evaluation of dehydration mechanism during heating of hydrous asteroids based on mineralogical and chemical analysis of naturally and experimentally heated CM chondrites. Earth Planets Space 60, 855–864 (2008) ADSCrossRefGoogle Scholar
  114. H.B. Niemann et al., Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini–Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res. 115, E12006 (2010) ADSCrossRefGoogle Scholar
  115. F. Nimmo, D. O’Brien, T. Kleine, Tungsten isotopic evolution during late-stage accretion: constraints on Earth–Moon equilibration. Earth Planet. Sci. Lett. 292, 363–370 (2010) ADSCrossRefGoogle Scholar
  116. D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, A.M. Mandell, Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014).  https://doi.org/10.1016/j.icarus.2014.05.009 ADSCrossRefGoogle Scholar
  117. E. Ohtani, N. Hirao, T. Kondo, M. Ito, T. Kikegawa, Iron–water reaction at high pressure and temperature, and hydrogen transport into the core. Phys. Chem. Miner. 32, 77–82 (2005) ADSCrossRefGoogle Scholar
  118. T. Okuchi, Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278, 1781–1784 (1997) ADSCrossRefGoogle Scholar
  119. H.St.C. O’Neill, D.C. Rubie, D. Canil, C.A. Geiger, C.R. Ross II., F. Seifert, A.B. Woodland, Ferric iron in the upper mantle and in transition zone assemblages: implications for relative oxygen fugacities in the mantle, in Evolution of the Earth and Planets, ed. by E. Takahashi, R. Jeanloz, D.C. Rubie. Geophysical Monograph, vol. 74, IUGG 14 (1993), pp. 73–88 Google Scholar
  120. P. O’Rourke, D.J. Stevenson, Stability of ice/rock mixtures with application to a partially differentiated Titan. Icarus 227, 67–77 (2014) ADSCrossRefGoogle Scholar
  121. R.T. Pappalardo, G.C. Collins, J.W. Head III., P. Helfenstein, T.B. McCord, J.M. Moore, L.M. Prockter, P.M. Schenk, J.R. Spencer, Geology of Ganymede, in Jupiter: The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon. Cambridge Planetary Science (2004), pp. 363–396 Google Scholar
  122. C.C. Porco et al., Cassini observes the active South Pole of Enceladus. Science 311, 1393–1401 (2006) ADSCrossRefGoogle Scholar
  123. F. Postberg et al., Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009) ADSCrossRefGoogle Scholar
  124. F. Postberg, J. Schmidt, J. Hillier, S. Kempf, R. Srama, A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474, 620–622 (2011) ADSCrossRefGoogle Scholar
  125. D. Prialnik, G. Sarid, E.D. Rosenberg, R. Merk, Thermal and chemical evolution of comet nuclei and Kuiper belt objects. Space Sci. Rev. 138, 147–164 (2008) ADSCrossRefGoogle Scholar
  126. S.N. Raymond, A. Izidoro, Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus (2017).  https://doi.org/10.1016/j.icarus.2017.06.030 Google Scholar
  127. S.N. Raymond, D.P. O’Brien, A. Morbidelli, N.A. Kaib, Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009) ADSCrossRefGoogle Scholar
  128. S.N. Raymond, T. Quinn, J.I. Lunine, Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004) ADSCrossRefGoogle Scholar
  129. Y. Ricard, O. Šrámek, F. Dubuffet, A multi-phase model of runaway core-mantle segregation in planetary embryos. Earth Planet. Sci. Lett. 284, 144–150 (2009) ADSCrossRefGoogle Scholar
  130. G. Robuchon, F. Nimmo, Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean. Icarus 216(2), 426–439 (2011) ADSCrossRefGoogle Scholar
  131. L. Roth et al., Transient water vapor at Europa’s South pole. Science 343, 171 (2014) ADSCrossRefGoogle Scholar
  132. D.C. Rubie, D.J. Frost, U. Mann, Y. Asahara, K. Tsuno, F. Nimmo, P. Kegler, A. Holzheid, H. Palme, Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011).  https://doi.org/10.1016/j.epsl.2010.11.030 ADSCrossRefGoogle Scholar
  133. D.C. Rubie, S.A. Jacobson, A. Morbidelli, D.P. O’Brien, E.D. Young, J. de Vries, F. Nimmo, H. Palme, D.J. Frost, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015a) ADSCrossRefGoogle Scholar
  134. D.C. Rubie, V. Laurenz, S.A. Jacobson, A. Morbidelli, H. Palme, A.K. Vogel, D.J. Frost, Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science 353, 1141–1144 (2016) ADSCrossRefGoogle Scholar
  135. D.C. Rubie, H.J. Melosh, J.E. Reid, C. Liebske, K. Righter, Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239–255 (2003) ADSCrossRefGoogle Scholar
  136. D.C. Rubie, F. Nimmo, H.J. Melosh, Formation of the Earth’s core, in Treatise on Geophysics, ed. by D. Stevenson. Evolution of the Earth, vol. 9, 2nd edn. (Elsevier, Amsterdam, 2015b), pp. 43–79 CrossRefGoogle Scholar
  137. J. Rudge, T. Kleine, B. Bourdon, Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat. Geosci. 3, 439–443 (2010) ADSCrossRefGoogle Scholar
  138. T. Rushmer, N. Petford, Microsegregation rates of liquid Fe–Ni–S metal in natural silicate-metal systems: a combined experimental and numerical study. Geochem. Geophys. Geosyst. 12 (2011).  https://doi.org/10.1029/2010GC003413
  139. H. Samuel, A re-evaluation of metal diapir breakup and equilibration in terrestrial magma oceans. Earth Planet. Sci. Lett. 313, 105–114 (2012) ADSCrossRefGoogle Scholar
  140. H. Samuel, P.J. Tackley, M. Evonuk, Heat partitioning in terrestrial planets during core formation by negative diapirism. Phys. Earth Planet. Inter. 290, 13–19 (2010) CrossRefGoogle Scholar
  141. J. Saur et al., The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. Space Phys. 120 (2015) Google Scholar
  142. L. Schaefer, D. Sasselov, The persistence of oceans on Earth-like planets: insights from the deep-water cycle. Astrophys. J. 801(1), 40 (2015) ADSCrossRefGoogle Scholar
  143. A. Scheinberg, R.R. Fu, L.T. Elkins-Tanton, B.P. Weiss, Asteroid differentiation: melting and large-scale structure, in Asteroids IV, ed. by P. Michel, F.E. DeMeo, W.F. Bottke (University of Arizona Press, Tucson, 2015), pp. 533–552 Google Scholar
  144. M. Schönbächler, R.W. Carlson, M.F. Horan, T.D. Mock, E.H. Hauri, Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328, 884–887 (2010).  https://doi.org/10.1126/science.1186239 ADSCrossRefGoogle Scholar
  145. G. Schubert, H. Hussmann, V. Lainey, D.L. Matson, W.B. McKinnon, F. Sohl, C. Sotin, G. Tobie, D. Turrini, T. Van Hoolst, Evolution of icy satellites. Space Sci. Rev. 153(1), 447–484 (2010) ADSCrossRefGoogle Scholar
  146. G. Schubert, T. Spohn, R.T. Reynolds, Thermal histories, compositions and internal structures of the moons of the solar system, in Satellites, ed. by J.A. Burns, M.S. Matthews (University of Arizona Press, Tucson, 1986), pp. 224–292 Google Scholar
  147. G. Schubert, D.J. Stevenson, K. Ellsworth, Internal structures of the Galilean satellites. Icarus 47, 46–59 (1981) ADSCrossRefGoogle Scholar
  148. H.P. Scott, Q. Williams, F.J. Ryerson, Experimental constraints on the chemical evolution of large icy satellites. Earth Planet. Sci. Lett. 203, 399–412 (2002) ADSCrossRefGoogle Scholar
  149. Y. Sekine et al., High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015) CrossRefGoogle Scholar
  150. Y. Sekine, H. Genda, S. Kamata, T. Funatsu, The Charon-forming giant impact as a source of Pluto’s dark equatorial regions. Nat. Astron. 1, 0031 (2017) ADSCrossRefGoogle Scholar
  151. N.I. Shakura, R.A. Sunyaev, Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973) ADSGoogle Scholar
  152. Z.D. Sharp, F.M. McCubbin, C.K. Shearer, A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet. Sci. Lett. 380, 88–97 (2013) ADSCrossRefGoogle Scholar
  153. Y. Shibazaki, E. Ohtani, H. Terasaki, A. Suzuki, K. Funakoshi, Hydrogen partitioning between iron and ringwoodite: implications for water transport into the Martian core. Earth Planet. Sci. Lett. 287, 463–470 (2009) ADSCrossRefGoogle Scholar
  154. J.B. Simon, P.J. Armitage, R. Li, A.N. Youdin, The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016) ADSCrossRefGoogle Scholar
  155. F. Sohl et al., Subsurface water oceans on icy satellites: chemical composition and exchange processes. Space Sci. Rev. 153, 485–510 (2010) ADSCrossRefGoogle Scholar
  156. V.S. Solomatov, Magma oceans and primordial mantle differentiation, in Treatise on Geophysics, 2nd edn. (2015), pp. 81–104 CrossRefGoogle Scholar
  157. C. Sotin, G. Mitri, N. Rappaport, G. Schubert, D. Stevenson, in Titan from Cassini/Huygens, ed. by R.H. Brown, J.P. Lebreton, J.H. Waite (2009a), pp. 61–73 CrossRefGoogle Scholar
  158. C. Sotin, G. Tobie, J. Wahr, W.B. McKinnon, in Tides and Tidal Heating on Europa, ed. by R. Pappalardo et al., Space Science Series (University of Arizona Press, Tucson, 2009b), pp. 85–117 Google Scholar
  159. S.W. Squyres, R.T. Raynolds, A.L. Summers, F. Shung, Accretional heating of the satelites of Saturn and Uranus. J. Geophys. Res. 93, 8779–8794 (1988) ADSCrossRefGoogle Scholar
  160. D.J. Stevenson, Fluid dynamics of core formation, in The Origin of the Earth, ed. by H.E. Newsom, J.H. Jones (Oxford University Press, London, 1990), pp. 231–249 Google Scholar
  161. R. Tajeddine, N. Rambaux, V. Lainey, S. Charnoz, A. Richard, A. Rivoldini, B. Noyelles, Constraints on Mimas’ interior from Cassini ISS libration measurements. Science 346(6207), 322–324 (2014) ADSCrossRefGoogle Scholar
  162. H. Terasaki, D.J. Frost, D.C. Rubie, F. Langenhorst, The effect of oxygen and sulphur on the dihedral angle between Fe–O–S melt and silicate minerals at high pressure: implications for Martian core formation. Earth Planet. Sci. Lett. 232, 379–392 (2005).  https://doi.org/10.1016/j.epsl.2005.01.030 ADSCrossRefGoogle Scholar
  163. H. Terasaki, D.J. Frost, D.C. Rubie, F. Langenhorst, Percolative core formation in planetesimals. Earth Planet. Sci. Lett. 273, 132–137 (2008) ADSCrossRefGoogle Scholar
  164. P.C. Thomas et al., Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016) ADSCrossRefGoogle Scholar
  165. G. Tobie, J.I. Lunine, J. Monteux, O. Mousis, F. Nimmo, The origin and evolution of Titan, in: Titan: Surface, Atmosphere and Magnetosphere, ed. by I. Mueller-Wodarg, C. Griffith, T. Cravens, E. Lellouch (Cambridge University Press, Cambridge, 2013) Google Scholar
  166. K.A. Todd, H.C. Watson, T. Yu, Y. Wang, The effects of shear deformation on planetesimal core segregation: results from in-situ X-ray micro-tomography. Am. Mineral. 101, 1996–2004 (2016) ADSCrossRefGoogle Scholar
  167. T.M. Usselman, Experimental approach to the state of the core. Part I. The liquidus relations of the Fe-rich portion of the Fe–Ni–S system. Am. J. Sci. 275, 278–290 (1975) ADSCrossRefGoogle Scholar
  168. S. Vance, J.M. Brown, Thermodynamic properties of aqueous MgSO4 to 800 MPa at temperatures from −20 to \(100\,{}^{\circ}\)C and concentrations to 25 mol kg−1 from sound speeds, with applications to icy world oceans. Geochim. Cosmochim. Acta 110, 176–189 (2013) CrossRefADSGoogle Scholar
  169. N. von Bargen, H.S. Waff, Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J. Geophys. Res. 91, 9261–9276 (1986) ADSCrossRefGoogle Scholar
  170. J.-B. Wacheul, M. Le Bars, J. Monteux, J.M. Aurnou, Laboratory experiments on the breakup of liquid metal diapirs. Earth Planet. Sci. Lett. 403, 236–245 (2014) ADSCrossRefGoogle Scholar
  171. J. Wade, B.J. Wood, Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005) ADSCrossRefGoogle Scholar
  172. K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011) ADSCrossRefGoogle Scholar
  173. M.J. Walter, E. Cottrell, Assessing uncertainty in geochemical models for core formation in Earth. Earth Planet. Sci. Lett. 365, 165–176 (2013) ADSCrossRefGoogle Scholar
  174. K. Willacy, H.H. Klahr, T.J. Millar, Th. Henning, Gas and grain chemistry in a protoplanetary disk. Astron. Astrophys. 338, 995–1005 (1998) ADSGoogle Scholar
  175. B.J. Wood, M.J. Walter, J. Wade, Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006).  https://doi.org/10.1038/nature04763 ADSCrossRefGoogle Scholar
  176. T. Yoshino, M.J. Walter, T. Katsura, Core formation in planetesimals triggered by permeable flow. Nature 422, 154–157 (2003) ADSCrossRefGoogle Scholar
  177. E.D. Young, The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philos. Trans. R. Soc. Lond. A 359, 2095–2110 (2001) ADSCrossRefGoogle Scholar
  178. E.D. Young, R.D. Ash, P. England, D. Rumble III, Fluid flow in chondrite parent bodies: deciphering the compositions of planetesimals. Science 286, 1331–1335 (1999) ADSCrossRefGoogle Scholar
  179. E. Young, K. Zhang, G. Schubert, Conditions for pore water convection within carbonaceous chondrite parent bodies—implications for planetesimal size and heat production. Earth Planet. Sci. Lett. 213, 249–259 (2003) ADSCrossRefGoogle Scholar
  180. K. Zhang, K.M. Pontoppidan, C. Salyk, G.A. Blake, Evidence for a snow line beyond the transitional radius in the TW Hya protoplanetary disk. Astrophys. J. 766, 82 (2013) ADSCrossRefGoogle Scholar
  181. M.E. Zolensky, W.L. Bourcier, J.L. Gooding, Aqueous alteration on the hydrous asteroids: results of EQ3/6 computer simulations. Icarus 78, 411–425 (1989) ADSCrossRefGoogle Scholar
  182. M.Y. Zolotov, J.S. Kargel, On the composition of Europa’s icy shell, ocean and underlying rocks, in Europa, ed. by R. Pappalardo, W.B. McKinnon, K. Khurana (University of Arizona Press, Tucson, 2009), pp. 431–457 Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • J. Monteux
    • 1
    Email author
  • G. J. Golabek
    • 2
  • D. C. Rubie
    • 2
  • G. Tobie
    • 3
  • E. D. Young
    • 4
  1. 1.CNRS, IRD, OPGC, Laboratoire Magmas et VolcansUniversité Clermont AuvergneClermont-FerrandFrance
  2. 2.Bayerisches GeoinstitutUniversität BayreuthBayreuthGermany
  3. 3.Laboratoire de Planétologie et Géodynamique, UMR-CNRS 6112Université de NantesNantes CedexFrance
  4. 4.Department of Earth, Planetary, and Space SciencesUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations