Advertisement

Space Science Reviews

, 214:31 | Cite as

Neutrinos from Supernovae

  • Irene Tamborra
  • Kohta Murase
Article
  • 275 Downloads
Part of the following topical collections:
  1. Supernovae

Abstract

Neutrinos are fundamental particles in the collapse of massive stars. Because of their weakly interacting nature, neutrinos can travel undisturbed through the stellar core and be direct probes of the still uncertain and fascinating supernova mechanism. Intriguing recent developments on the role of neutrinos during the stellar collapse are reviewed, as well as our current understanding of the flavor conversions in the stellar envelope. The detection perspectives of the next burst and of the diffuse supernova background will be also outlined. High-energy neutrinos in the GeV-PeV range can follow the MeV neutrino emission. Various scenarios concerning the production of high-energy neutrinos are discussed.

Keywords

Core-collapse supernova Neutrinos Flavor oscillations Neutrino telescopes 

Notes

Acknowledgements

The authors thank the organizers of the ISSI SN Workshop held in October 2016 for their kind invitation and warm hospitality. I.T. acknowledges support from the Knud Højgaard Foundation, the Villum Foundation (Project No. 13164) and the Danish National Research Foundation (DNRF91). The work of K.M. is supported by Alfred P. Sloan Foundation and NSF Grant No. PHY-1620777.

References

  1. S. Abbar, H. Duan, Neutrino flavor instabilities in a time-dependent supernova model. Phys. Lett. B 751, 43–47 (2015) ADSCrossRefGoogle Scholar
  2. F. An et al., Neutrino physics with JUNO. J. Phys. G 43(3), 030401 (2016) ADSCrossRefGoogle Scholar
  3. S. Ando, J.F. Beacom, Revealing the supernova-gamma-ray burst connection with TeV neutrinos. Phys. Rev. Lett. 95, 061103 (2005). astro-ph/0502521 ADSCrossRefGoogle Scholar
  4. H. Andresen, B. Mueller, E. Mueller, H.T. Janka, Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae. Mon. Not. R. Astron. Soc. 468(2), 2032–2051 (2017) ADSCrossRefGoogle Scholar
  5. P. Antonioli et al., SNEWS: the supernova early warning system. New J. Phys. 6, 114 (2004) ADSCrossRefGoogle Scholar
  6. K. Asano, T. Terasawa, Slow heating model of gamma-ray burst: photon spectrum and delayed emission. Astrophys. J. 705, 1714–1720 (2009). 0905.1392 ADSCrossRefGoogle Scholar
  7. J.N. Bahcall, P. Mészáros, 5-GeV to 10-GeV neutrinos from gamma-ray burst fireballs. Phys. Rev. Lett. 85, 1362–1365 (2000). hep-ph/0004019 ADSCrossRefGoogle Scholar
  8. I. Bartos, B. Dasgupta, S. Marka, Probing the structure of jet driven core-collapse supernova and long gamma ray burst progenitors with high energy neutrinos. Phys. Rev. D 86, 083007 (2012). 1206.0764 ADSCrossRefGoogle Scholar
  9. I. Bartos, A.M. Beloborodov, K. Hurley, S. Márka, Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore. Phys. Rev. Lett. 110(24), 241101 (2013). 1301.4232 ADSCrossRefGoogle Scholar
  10. J.F. Beacom, The diffuse supernova neutrino background. Annu. Rev. Nucl. Part. Sci. 60, 439–462 (2010) ADSCrossRefGoogle Scholar
  11. J.F. Beacom, P. Vogel, Can a supernova be located by its neutrinos? Phys. Rev. D 60, 033007 (1999) ADSCrossRefGoogle Scholar
  12. J.H. Beall, W. Bednarek, Neutrinos from early phase, pulsar driven supernovae. Astrophys. J. 569, 343–348 (2002). astro-ph/0108447 ADSCrossRefGoogle Scholar
  13. A.M. Beloborodov, Collisional mechanism for GRB emission. Mon. Not. R. Astron. Soc. 407, 1033 (2010). 0907.0732 ADSCrossRefGoogle Scholar
  14. H.A. Bethe, W.R. James, Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 295, 14–23 (1985) ADSCrossRefGoogle Scholar
  15. A. Bhattacharya, R. Enberg, M.H. Reno, I. Sarcevic, Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events. J. Cosmol. Astropart. Phys. 1506(06), 034 (2015). 1407.2985 ADSCrossRefGoogle Scholar
  16. K. Blum, D. Kushnir, Neutrino signal of collapse-induced thermonuclear supernovae: the case for prompt black hole formation in SN1987A. Astrophys. J. 828(1), 31 (2016). 1601.03422 ADSCrossRefGoogle Scholar
  17. O. Bromberg, E. Nakar, T. Piran, R. Sari, The propagation of relativistic jets in external media. Astrophys. J. 740, 100 (2011). 1107.1326 ADSCrossRefGoogle Scholar
  18. A.M. Bykov, P. Meszaros, Electron acceleration and efficiency in nonthermal gamma-ray sources. Astrophys. J. 461, L37–L40 (1996). astro-ph/9602016 ADSCrossRefGoogle Scholar
  19. S. Chakraborty, R. Hansen, I. Izaguirre, G. Raffelt, Collective neutrino flavor conversion: recent developments. Nucl. Phys. B 908, 366–381 (2016a) ADSMathSciNetzbMATHCrossRefGoogle Scholar
  20. S. Chakraborty, R.S. Hansen, I. Izaguirre, G. Raffelt, Self-induced neutrino flavor conversion without flavor mixing. J. Cosmol. Astropart. Phys. 1603(03), 042 (2016b) ADSzbMATHCrossRefGoogle Scholar
  21. R.A. Chevalier, Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 258, 790–797 (1982) ADSCrossRefGoogle Scholar
  22. R.A. Chevalier, C. Fransson, Thermal and non-thermal emission from circumstellar interaction (2016). 1612.07459
  23. R.A. Chevalier, C.M. Irwin, Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. 729, L6 (2011). 1101.1111 ADSCrossRefGoogle Scholar
  24. B. Dasgupta, E.P. O’Connor, C.D. Ott, The role of collective neutrino flavor oscillations in core-collapse supernova shock revival. Phys. Rev. D 85, 065008 (2012) ADSCrossRefGoogle Scholar
  25. B. Dasgupta, A. Mirizzi, M. Sen, Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions. J. Cosmol. Astropart. Phys. 1702(02), 019 (2017) ADSCrossRefGoogle Scholar
  26. E.V. Derishev, V.V. Kocharovsky, V.V. Kocharovsky, The neutron component in fireballs of gamma-ray bursts: dynamics and observable imprints. Astrophys. J. 521, 640–649 (1999) ADSCrossRefGoogle Scholar
  27. E.V. Derishev, F.A. Aharonian, V.V. Kocharovsky, V.V. Kocharovsky, Particle acceleration through multiple conversions from charged into neutral state and back. Phys. Rev. D 68, 043003 (2003). astro-ph/0301263 ADSCrossRefGoogle Scholar
  28. A.S. Dighe, A.Yu. Smirnov, Identifying the neutrino mass spectrum from the neutrino burst from a supernova. Phys. Rev. D 62, 033007 (2000) ADSCrossRefGoogle Scholar
  29. H. Duan, S. Shalgar, Flavor instabilities in the neutrino line model. Phys. Lett. B 747, 139–143 (2015) ADSCrossRefGoogle Scholar
  30. H. Duan, G.M. Fuller, J. Carlson, Y.Z. Qian, Simulation of coherent non-linear neutrino flavor transformation in the supernova environment. 1. Correlated neutrino trajectories. Phys. Rev. D 74, 105014 (2006) ADSCrossRefGoogle Scholar
  31. H. Duan, G.M. Fuller, Y.Z. Qian, Collective neutrino oscillations. Annu. Rev. Nucl. Part. Sci. 60, 569–594 (2010) ADSCrossRefGoogle Scholar
  32. H. Duan, A. Friedland, G.C. McLaughlin, R. Surman, The influence of collective neutrino oscillations on a supernova r-process. J. Phys. G 38, 035201 (2011) ADSCrossRefGoogle Scholar
  33. R. Enberg, M.H. Reno, I. Sarcevic, High energy neutrinos from charm in astrophysical sources. Phys. Rev. D 79, 053006 (2009). 0808.2807 ADSCrossRefGoogle Scholar
  34. T. Ertl, H.T. Janka, S.E. Woosley, T. Sukhbold, M. Ugliano, A two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism. Astrophys. J. 818(2), 124 (2016) ADSCrossRefGoogle Scholar
  35. A. Esteban-Pretel, A. Mirizzi, S. Pastor, R. Tomàs, G.G. Raffelt, P.D. Serpico, G. Sigl, Role of dense matter in collective supernova neutrino transformations. Phys. Rev. D 78, 085012 (2008) ADSCrossRefGoogle Scholar
  36. K. Fang, K. Kotera, K. Murase, A.V. Olinto, Testing the newborn pulsar origin of ultrahigh energy cosmic rays with EeV neutrinos. Phys. Rev. D 90(10), 103005 (2014). 1311.2044 ADSCrossRefGoogle Scholar
  37. P. Fernández, GADZOOKS! (SuperK-Gd): status and physics potential (2016). PoS ICRC2015:1131 Google Scholar
  38. G. Fogli, E. Lisi, A. Marrone, I. Tamborra, Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns. J. Cosmol. Astropart. Phys. 0910, 002 (2009) ADSCrossRefGoogle Scholar
  39. G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, I. Tamborra, Low-energy spectral features of supernova (anti)neutrinos in inverted hierarchy. Phys. Rev. D 78, 097301 (2008) ADSCrossRefGoogle Scholar
  40. T.K. Gaisser, T. Stanev, Energetic (>GeV) neutrinos as a probe of acceleration in the new supernova. Phys. Rev. Lett. 58, 1695 (1987). Erratum: Phys. Rev. Lett. 59, 844(E) (1987) ADSCrossRefGoogle Scholar
  41. F. Halzen, G.G. Raffelt, Reconstructing the supernova bounce time with neutrinos in IceCube. Phys. Rev. D 80, 087301 (2009) ADSCrossRefGoogle Scholar
  42. S. Horiuchi, K. Nakamura, T. Takiwaki, K. Kotake, M. Tanaka, The red supergiant and supernova rate problems: implications for core-collapse supernova physics. Mon. Not. R. Astron. Soc. 445, L99 (2014). 1409.0006 ADSCrossRefGoogle Scholar
  43. S. Horiuchi, K. Sumiyoshi, K. Nakamura, T. Fischer, A. Summa, T. Takiwaki, H.T. Janka, K. Kotake, Diffuse supernova neutrino background from extensive core-collapse simulations of \(8\mbox{--}100~{\mathrm{M}}_{\odot}\) progenitors (2017). 1709.06567
  44. F. Iocco, K. Murase, S. Nagataki, P.D. Serpico, High energy neutrino signals from the epoch of reionization. Astrophys. J. 675, 937–945 (2008). 0707.0515 ADSCrossRefGoogle Scholar
  45. I. Izaguirre, G. Raffelt, I. Tamborra, Fast pairwise conversion of supernova neutrinos: a dispersion-relation approach. Phys. Rev. Lett. 118(2), 021101 (2017) ADSCrossRefGoogle Scholar
  46. H.T. Janka, Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012) ADSCrossRefGoogle Scholar
  47. H.T. Janka, Neutrino emission from supernovae (2017). 1702.08713
  48. H.T. Janka, T. Melson, A. Summa, Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Part. Sci. 66, 341–375 (2016) ADSCrossRefGoogle Scholar
  49. M. Kachelriess, R. Tomàs, R. Buras, H.T. Janka, A. Marek, M. Rampp, Exploiting the neutronization burst of a galactic supernova. Phys. Rev. D 71, 063003 (2005) ADSCrossRefGoogle Scholar
  50. K. Kashiyama, E. Quataert, Fast luminous blue transients from newborn black holes. Mon. Not. R. Astron. Soc. 451(3), 2656–2662 (2015). 1504.05582 ADSCrossRefGoogle Scholar
  51. K. Kashiyama, K. Murase, P. Mészáros, Neutron-proton-converter acceleration mechanism at subphotospheres of relativistic outflows. Phys. Rev. Lett. 111, 131103 (2013). 1304.1945 ADSCrossRefGoogle Scholar
  52. K. Kashiyama, K. Hotokezaka, K. Murase, Radio transients from newborn black holes (2017). 1710.10765
  53. B. Katz, N. Sapir, E. Waxman, X-rays, gamma-rays and neutrinos from collisionless shocks in supernova wind breakouts (2011). 1106.1898
  54. S. Kobayashi, P. Meszaros, Gravitational radiation from gamma-ray burst progenitors. Astrophys. J. 589, 861–870 (2003). astro-ph/0210211 ADSCrossRefGoogle Scholar
  55. R.F. Lang, C. McCabe, S. Reichard, M. Selvi, I. Tamborra, Supernova neutrino physics with xenon dark matter detectors: a timely perspective. Phys. Rev. D 94(10), 103009 (2016) ADSCrossRefGoogle Scholar
  56. E.J. Lentz, S.W. Bruenn, W.R. Hix, A. Mezzacappa, O.E.B. Messer, E. Endeve, J.M. Blondin, J.A. Harris, P. Marronetti, K.N. Yakunin, Three-dimensional core-collapse supernova simulated using a \(15~M_{\odot}\) progenitor. Astrophys. J. 807(2), L31 (2015) ADSCrossRefGoogle Scholar
  57. A. Levinson, O. Bromberg, Relativistic photon mediated shocks. Phys. Rev. Lett. 100, 131101 (2008). 0711.3281 ADSCrossRefGoogle Scholar
  58. C. Lunardini, Diffuse supernova neutrinos at underground laboratories. Astropart. Phys. 79, 49–77 (2016) ADSCrossRefGoogle Scholar
  59. C. Lunardini, I. Tamborra, Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence. J. Cosmol. Astropart. Phys. 1207, 012 (2012) ADSCrossRefGoogle Scholar
  60. A. MacFadyen, S.E. Woosley, Collapsars: gamma-ray bursts and explosions in ‘failed supernovae’. Astrophys. J. 524, 262 (1999). astro-ph/9810274 ADSCrossRefGoogle Scholar
  61. T. Matsumoto, D. Nakauchi, K. Ioka, A. Heger, T. Nakamura, Can direct collapse black holes launch gamma-ray bursts and grow to supermassive black holes? Astrophys. J. 810(1), 64 (2015). 1506.05802 ADSCrossRefGoogle Scholar
  62. T. Melson, H.T. Janka, R. Bollig, F. Hanke, A. Marek, B. Mueller, Neutrino-driven explosion of a 20 solar-mass star in three dimensions enabled by strange-quark contributions to neutrino-nucleon scattering. Astrophys. J. 808(2), L42 (2015) ADSCrossRefGoogle Scholar
  63. P. Meszaros, M.J. Rees, Multi GeV neutrinos from internal dissipation in GRB fireballs. Astrophys. J. 541, L5–L8 (2000). astro-ph/0007102 ADSCrossRefGoogle Scholar
  64. P. Mészáros, E. Waxman, TeV neutrinos from successful and choked gamma-ray bursts. Phys. Rev. Lett. 87, 171102 (2001). astro-ph/0103275 ADSCrossRefGoogle Scholar
  65. S.P. Mikheev, A.Yu. Smirnov, Neutrino oscillations in a variable density medium and neutrino bursts due to the gravitational collapse of stars. Sov. Phys. JETP 64, 4–7 (1986). Zh. Eksp. Teor. Fiz. 91, 7 (1986). 0706.0454 Google Scholar
  66. A. Mirizzi, I. Tamborra, H.T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Huedepohl, S. Chakraborty, Supernova neutrinos: production, oscillations and detection. Riv. Nuovo Cimento 39(1–2), 1–112 (2016) Google Scholar
  67. A. Mizuta, K. Ioka, Opening angles of collapsar jets. Astrophys. J. 777, 162 (2013). 1304.0163 ADSCrossRefGoogle Scholar
  68. V. Morozova, A.L. Piro, S. Valenti, Unifying type II supernova light curves with dense circumstellar material. Astrophys. J. 838(1), 28 (2017). 1610.08054 ADSCrossRefGoogle Scholar
  69. T. Muehlbeier, H. Nunokawa, R. Zukanovich Funchal, Revisiting the triangulation method for pointing to supernova and failed supernova with neutrinos. Phys. Rev. D 88, 085010 (2013) ADSCrossRefGoogle Scholar
  70. K. Murase, Detecting high-energy neutrinos from the next galactic supernova (2017). 1705.04750
  71. K. Murase, K. Ioka, TeV-PeV neutrinos from low-power gamma-ray burst jets inside stars. Phys. Rev. Lett. 111(12), 121102 (2013). 1306.2274 ADSCrossRefGoogle Scholar
  72. K. Murase, K. Ioka, S. Nagataki, T. Nakamura, High energy neutrinos and cosmic-rays from low-luminosity gamma-ray bursts? Astrophys. J. 651, L5–L8 (2006). astro-ph/0607104 ADSCrossRefGoogle Scholar
  73. K. Murase, P. Mészáros, B. Zhang, Probing the birth of fast rotating magnetars through high-energy neutrinos. Phys. Rev. D 79, 103001 (2009). 0904.2509 ADSCrossRefGoogle Scholar
  74. K. Murase, T.A. Thompson, B.C. Lacki, J.F. Beacom, New class of high-energy transients from crashes of supernova ejecta with massive circumstellar material shells. Phys. Rev. D 84, 043003 (2011). 1012.2834 ADSCrossRefGoogle Scholar
  75. K. Murase, K. Asano, T. Terasawa, P. Meszaros, The role of stochastic acceleration in the prompt emission of gamma-ray bursts: application to hadronic injection. Astrophys. J. 746, 164 (2012). 1107.5575 ADSCrossRefGoogle Scholar
  76. K. Murase, K. Kashiyama, P. Mészáros, Subphotospheric neutrinos from gamma-ray bursts: the role of neutrons. Phys. Rev. Lett. 111, 131102 (2013). 1301.4236 ADSCrossRefGoogle Scholar
  77. K. Murase, B. Dasgupta, T.A. Thompson, Quasithermal neutrinos from rotating protoneutron stars born during core collapse of massive stars. Phys. Rev. D 89(4), 043012 (2014a). 1303.2612 ADSCrossRefGoogle Scholar
  78. K. Murase, T.A. Thompson, E.O. Ofek, Probing cosmic-ray ion acceleration with radio-submm and gamma-ray emission from interaction-powered supernovae. Mon. Not. R. Astron. Soc. 440(3), 2528–2543 (2014b). 1311.6778 ADSCrossRefGoogle Scholar
  79. K. Nakazato, Imprint of explosion mechanism on supernova relic neutrinos. Phys. Rev. D 88(8), 083012 (2013). 1306.4526 ADSCrossRefGoogle Scholar
  80. E. O’Connor, C.D. Ott, Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011) ADSCrossRefGoogle Scholar
  81. E. Pllumbi, I. Tamborra, S. Wanajo, H.T. Janka, L. Huedepohl, Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova. Astrophys. J. 808(2), 188 (2015) ADSCrossRefGoogle Scholar
  82. Y.Z. Qian, S.E. Woosley, Nucleosynthesis in neutrino driven winds: 1. The physical conditions. Astrophys. J. 471, 331–351 (1996). astro-ph/9611094 ADSCrossRefGoogle Scholar
  83. G. Raffelt, S. Sarikas, D. de Sousa Seixas, Axial symmetry breaking in self-induced flavor conversion of supernova neutrino fluxes. Phys. Rev. Lett. 111(9), 091101 (2013) ADSCrossRefGoogle Scholar
  84. G.G. Raffelt, What have we learned from SN 1987A? Mod. Phys. Lett. A 5, 2581–2592 (1990) ADSCrossRefGoogle Scholar
  85. S. Razzaque, P. Meszaros, E. Waxman, Neutrino tomography of gamma-ray bursts and massive stellar collapses. Phys. Rev. D 68, 083001 (2003). astro-ph/0303505 ADSCrossRefGoogle Scholar
  86. S. Razzaque, P. Meszaros, E. Waxman, TeV neutrinos from core collapse supernovae and hypernovae. Phys. Rev. Lett. 93, 181101 (2004). Erratum: Phys. Rev. Lett. 94, 109903 (2005). astro-ph/0407064 ADSCrossRefGoogle Scholar
  87. M.J. Rees, P. Meszaros, Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. 430, L93–L96 (1994). astro-ph/9404038 ADSCrossRefGoogle Scholar
  88. M.J. Rees, P. Meszaros, Dissipative photosphere models of gamma-ray bursts and x-ray flashes. Astrophys. J. 628, 847–852 (2005). astro-ph/0412702 ADSCrossRefGoogle Scholar
  89. L.F. Roberts, C.D. Ott, R. Haas, E.P. O’Connor, P. Diener, E. Schnetter, General-relativistic three-dimensional multi-group neutrino radiation-hydrodynamics simulations of core-collapse supernovae. Astrophys. J. 831, 98 (2016). 1604.07848 ADSCrossRefGoogle Scholar
  90. R.F. Sawyer, Speed-up of neutrino transformations in a supernova environment. Phys. Rev. D 72, 045003 (2005) ADSCrossRefGoogle Scholar
  91. R.F. Sawyer, Neutrino cloud instabilities just above the neutrino sphere of a supernova. Phys. Rev. Lett. 116(8), 081101 (2016) ADSCrossRefGoogle Scholar
  92. K. Scholberg, Supernova neutrino detection. Annu. Rev. Nucl. Part. Sci. 62, 81–103 (2012) ADSCrossRefGoogle Scholar
  93. N. Senno, K. Murase, P. Mészáros, Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources. Phys. Rev. D 93(8), 083003 (2016). 1512.08513 ADSCrossRefGoogle Scholar
  94. P.D. Serpico, S. Chakraborty, T. Fischer, L. Huedepohl, H.T. Janka, A. Mirizzi, Probing the neutrino mass hierarchy with the rise time of a supernova burst. Phys. Rev. D 85, 085031 (2012) ADSCrossRefGoogle Scholar
  95. N. Smith, Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014). 1402.1237 ADSCrossRefGoogle Scholar
  96. T. Sukhbold, T. Ertl, S.E. Woosley, J.M. Brown, H.T. Janka, Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys. J. 821(1), 38 (2016) ADSCrossRefGoogle Scholar
  97. K. Sumiyoshi, S. Yamada, H. Suzuki, S. Chiba, Neutrino signals from the formation of black hole: a probe of equation of state of dense matter. Phys. Rev. Lett. 97, 091101 (2006). astro-ph/0608509 ADSCrossRefGoogle Scholar
  98. Y. Suwa, K. Murase, Probing the central engine of long gamma-ray bursts and hypernovae with gravitational waves. Phys. Rev. D 80, 123008 (2009). 0906.3833 ADSCrossRefGoogle Scholar
  99. L.G. Sveshnikova, The knee in galactic cosmic ray spectrum and variety in supernovae. Astron. Astrophys. 409, 799–808 (2003). astro-ph/0303159 ADSCrossRefGoogle Scholar
  100. T. Takiwaki, K. Kotake, Y. Suwa, Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows. Mon. Not. R. Astron. Soc. 461(1), L112–L116 (2016) ADSCrossRefGoogle Scholar
  101. I. Tamborra, S. Ando, Inspecting the supernova-gamma-ray-burst connection with high-energy neutrinos. Phys. Rev. D 93(5), 053010 (2016). 1512.01559 ADSCrossRefGoogle Scholar
  102. I. Tamborra, F. Hanke, B. Mueller, H.T. Janka, G. Raffelt, Neutrino signature of supernova hydrodynamical instabilities in three dimensions. Phys. Rev. Lett. 111(12), 121104 (2013) ADSCrossRefGoogle Scholar
  103. I. Tamborra, F. Hanke, H.T. Janka, B. Mueller, G.G. Raffelt, A. Marek, Self-sustained asymmetry of lepton-number emission: a new phenomenon during the supernova shock-accretion phase in three dimensions. Astrophys. J. 792(2), 96 (2014a) ADSCrossRefGoogle Scholar
  104. I. Tamborra, G. Raffelt, F. Hanke, H.T. Janka, B. Mueller, Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations. Phys. Rev. D 90(4), 045032 (2014b) ADSCrossRefGoogle Scholar
  105. I. Tamborra, L. Huedepohl, G. Raffelt, H.T. Janka, Flavor-dependent neutrino angular distribution in core-collapse supernovae. Astrophys. J. 839, 132 (2017) ADSCrossRefGoogle Scholar
  106. T.A. Thompson, P. Chang, E. Quataert, Magnetar spindown, hyper-energetic supernovae, and gamma ray bursts. Astrophys. J. 611, 380–393 (2004). astro-ph/0401555 ADSCrossRefGoogle Scholar
  107. R. Tomàs, D. Semikoz, G.G. Raffelt, M. Kachelriess, A.S. Dighe, Supernova pointing with low-energy and high-energy neutrino detectors. Phys. Rev. D 68, 093013 (2003) ADSCrossRefGoogle Scholar
  108. I. Vurm, A.M. Beloborodov, J. Poutanen, Gamma-ray bursts from magnetized collisionally-heated jets. Astrophys. J. 738, 77 (2011). 1104.0394 ADSCrossRefGoogle Scholar
  109. J. Wallace, A. Burrows, J.C. Dolence, Detecting the supernova breakout burst in terrestrial neutrino detectors. Astrophys. J. 817(2), 182 (2016) ADSCrossRefGoogle Scholar
  110. E. Waxman, B. Katz, Shock breakout theory (2016). 1607.01293
  111. O. Yaron et al., Confined dense circumstellar material surrounding a regular type II supernova: the unique flash-spectroscopy event of SN 2013fs. Nat. Phys. 13, 510 (2017). 1701.02596 CrossRefGoogle Scholar
  112. V.N. Zirakashvili, V.S. Ptuskin, Type IIn supernovae as sources of high energy astrophysical neutrinos. Astropart. Phys. 78, 28–34 (2016). 1510.08387 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Niels Bohr InstituteCopenhagenDenmark
  2. 2.Department of Physics; Department of Astronomy & Astrophysics; Center for Particle and Gravitational AstrophysicsThe Pennsylvania State UniversityPennsylvaniaUSA

Personalised recommendations