Skip to main content
Log in

Neutrinos from Supernovae

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Neutrinos are fundamental particles in the collapse of massive stars. Because of their weakly interacting nature, neutrinos can travel undisturbed through the stellar core and be direct probes of the still uncertain and fascinating supernova mechanism. Intriguing recent developments on the role of neutrinos during the stellar collapse are reviewed, as well as our current understanding of the flavor conversions in the stellar envelope. The detection perspectives of the next burst and of the diffuse supernova background will be also outlined. High-energy neutrinos in the GeV-PeV range can follow the MeV neutrino emission. Various scenarios concerning the production of high-energy neutrinos are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • S. Abbar, H. Duan, Neutrino flavor instabilities in a time-dependent supernova model. Phys. Lett. B 751, 43–47 (2015)

    Article  ADS  Google Scholar 

  • F. An et al., Neutrino physics with JUNO. J. Phys. G 43(3), 030401 (2016)

    Article  ADS  Google Scholar 

  • S. Ando, J.F. Beacom, Revealing the supernova-gamma-ray burst connection with TeV neutrinos. Phys. Rev. Lett. 95, 061103 (2005). astro-ph/0502521

    Article  ADS  Google Scholar 

  • H. Andresen, B. Mueller, E. Mueller, H.T. Janka, Gravitational wave signals from 3D neutrino hydrodynamics simulations of core-collapse supernovae. Mon. Not. R. Astron. Soc. 468(2), 2032–2051 (2017)

    Article  ADS  Google Scholar 

  • P. Antonioli et al., SNEWS: the supernova early warning system. New J. Phys. 6, 114 (2004)

    Article  ADS  Google Scholar 

  • K. Asano, T. Terasawa, Slow heating model of gamma-ray burst: photon spectrum and delayed emission. Astrophys. J. 705, 1714–1720 (2009). 0905.1392

    Article  ADS  Google Scholar 

  • J.N. Bahcall, P. Mészáros, 5-GeV to 10-GeV neutrinos from gamma-ray burst fireballs. Phys. Rev. Lett. 85, 1362–1365 (2000). hep-ph/0004019

    Article  ADS  Google Scholar 

  • I. Bartos, B. Dasgupta, S. Marka, Probing the structure of jet driven core-collapse supernova and long gamma ray burst progenitors with high energy neutrinos. Phys. Rev. D 86, 083007 (2012). 1206.0764

    Article  ADS  Google Scholar 

  • I. Bartos, A.M. Beloborodov, K. Hurley, S. Márka, Detection prospects for GeV neutrinos from collisionally heated gamma-ray bursts with IceCube/DeepCore. Phys. Rev. Lett. 110(24), 241101 (2013). 1301.4232

    Article  ADS  Google Scholar 

  • J.F. Beacom, The diffuse supernova neutrino background. Annu. Rev. Nucl. Part. Sci. 60, 439–462 (2010)

    Article  ADS  Google Scholar 

  • J.F. Beacom, P. Vogel, Can a supernova be located by its neutrinos? Phys. Rev. D 60, 033007 (1999)

    Article  ADS  Google Scholar 

  • J.H. Beall, W. Bednarek, Neutrinos from early phase, pulsar driven supernovae. Astrophys. J. 569, 343–348 (2002). astro-ph/0108447

    Article  ADS  Google Scholar 

  • A.M. Beloborodov, Collisional mechanism for GRB emission. Mon. Not. R. Astron. Soc. 407, 1033 (2010). 0907.0732

    Article  ADS  Google Scholar 

  • H.A. Bethe, W.R. James, Revival of a stalled supernova shock by neutrino heating. Astrophys. J. 295, 14–23 (1985)

    Article  ADS  Google Scholar 

  • A. Bhattacharya, R. Enberg, M.H. Reno, I. Sarcevic, Charm decay in slow-jet supernovae as the origin of the IceCube ultra-high energy neutrino events. J. Cosmol. Astropart. Phys. 1506(06), 034 (2015). 1407.2985

    Article  ADS  Google Scholar 

  • K. Blum, D. Kushnir, Neutrino signal of collapse-induced thermonuclear supernovae: the case for prompt black hole formation in SN1987A. Astrophys. J. 828(1), 31 (2016). 1601.03422

    Article  ADS  Google Scholar 

  • O. Bromberg, E. Nakar, T. Piran, R. Sari, The propagation of relativistic jets in external media. Astrophys. J. 740, 100 (2011). 1107.1326

    Article  ADS  Google Scholar 

  • A.M. Bykov, P. Meszaros, Electron acceleration and efficiency in nonthermal gamma-ray sources. Astrophys. J. 461, L37–L40 (1996). astro-ph/9602016

    Article  ADS  Google Scholar 

  • S. Chakraborty, R. Hansen, I. Izaguirre, G. Raffelt, Collective neutrino flavor conversion: recent developments. Nucl. Phys. B 908, 366–381 (2016a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • S. Chakraborty, R.S. Hansen, I. Izaguirre, G. Raffelt, Self-induced neutrino flavor conversion without flavor mixing. J. Cosmol. Astropart. Phys. 1603(03), 042 (2016b)

    Article  ADS  MATH  Google Scholar 

  • R.A. Chevalier, Self-similar solutions for the interaction of stellar ejecta with an external medium. Astrophys. J. 258, 790–797 (1982)

    Article  ADS  Google Scholar 

  • R.A. Chevalier, C. Fransson, Thermal and non-thermal emission from circumstellar interaction (2016). 1612.07459

  • R.A. Chevalier, C.M. Irwin, Shock breakout in dense mass loss: luminous supernovae. Astrophys. J. 729, L6 (2011). 1101.1111

    Article  ADS  Google Scholar 

  • B. Dasgupta, E.P. O’Connor, C.D. Ott, The role of collective neutrino flavor oscillations in core-collapse supernova shock revival. Phys. Rev. D 85, 065008 (2012)

    Article  ADS  Google Scholar 

  • B. Dasgupta, A. Mirizzi, M. Sen, Fast neutrino flavor conversions near the supernova core with realistic flavor-dependent angular distributions. J. Cosmol. Astropart. Phys. 1702(02), 019 (2017)

    Article  ADS  Google Scholar 

  • E.V. Derishev, V.V. Kocharovsky, V.V. Kocharovsky, The neutron component in fireballs of gamma-ray bursts: dynamics and observable imprints. Astrophys. J. 521, 640–649 (1999)

    Article  ADS  Google Scholar 

  • E.V. Derishev, F.A. Aharonian, V.V. Kocharovsky, V.V. Kocharovsky, Particle acceleration through multiple conversions from charged into neutral state and back. Phys. Rev. D 68, 043003 (2003). astro-ph/0301263

    Article  ADS  Google Scholar 

  • A.S. Dighe, A.Yu. Smirnov, Identifying the neutrino mass spectrum from the neutrino burst from a supernova. Phys. Rev. D 62, 033007 (2000)

    Article  ADS  Google Scholar 

  • H. Duan, S. Shalgar, Flavor instabilities in the neutrino line model. Phys. Lett. B 747, 139–143 (2015)

    Article  ADS  Google Scholar 

  • H. Duan, G.M. Fuller, J. Carlson, Y.Z. Qian, Simulation of coherent non-linear neutrino flavor transformation in the supernova environment. 1. Correlated neutrino trajectories. Phys. Rev. D 74, 105014 (2006)

    Article  ADS  Google Scholar 

  • H. Duan, G.M. Fuller, Y.Z. Qian, Collective neutrino oscillations. Annu. Rev. Nucl. Part. Sci. 60, 569–594 (2010)

    Article  ADS  Google Scholar 

  • H. Duan, A. Friedland, G.C. McLaughlin, R. Surman, The influence of collective neutrino oscillations on a supernova r-process. J. Phys. G 38, 035201 (2011)

    Article  ADS  Google Scholar 

  • R. Enberg, M.H. Reno, I. Sarcevic, High energy neutrinos from charm in astrophysical sources. Phys. Rev. D 79, 053006 (2009). 0808.2807

    Article  ADS  Google Scholar 

  • T. Ertl, H.T. Janka, S.E. Woosley, T. Sukhbold, M. Ugliano, A two-parameter criterion for classifying the explodability of massive stars by the neutrino-driven mechanism. Astrophys. J. 818(2), 124 (2016)

    Article  ADS  Google Scholar 

  • A. Esteban-Pretel, A. Mirizzi, S. Pastor, R. Tomàs, G.G. Raffelt, P.D. Serpico, G. Sigl, Role of dense matter in collective supernova neutrino transformations. Phys. Rev. D 78, 085012 (2008)

    Article  ADS  Google Scholar 

  • K. Fang, K. Kotera, K. Murase, A.V. Olinto, Testing the newborn pulsar origin of ultrahigh energy cosmic rays with EeV neutrinos. Phys. Rev. D 90(10), 103005 (2014). 1311.2044

    Article  ADS  Google Scholar 

  • P. Fernández, GADZOOKS! (SuperK-Gd): status and physics potential (2016). PoS ICRC2015:1131

  • G. Fogli, E. Lisi, A. Marrone, I. Tamborra, Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns. J. Cosmol. Astropart. Phys. 0910, 002 (2009)

    Article  ADS  Google Scholar 

  • G.L. Fogli, E. Lisi, A. Marrone, A. Mirizzi, I. Tamborra, Low-energy spectral features of supernova (anti)neutrinos in inverted hierarchy. Phys. Rev. D 78, 097301 (2008)

    Article  ADS  Google Scholar 

  • T.K. Gaisser, T. Stanev, Energetic (>GeV) neutrinos as a probe of acceleration in the new supernova. Phys. Rev. Lett. 58, 1695 (1987). Erratum: Phys. Rev. Lett. 59, 844(E) (1987)

    Article  ADS  Google Scholar 

  • F. Halzen, G.G. Raffelt, Reconstructing the supernova bounce time with neutrinos in IceCube. Phys. Rev. D 80, 087301 (2009)

    Article  ADS  Google Scholar 

  • S. Horiuchi, K. Nakamura, T. Takiwaki, K. Kotake, M. Tanaka, The red supergiant and supernova rate problems: implications for core-collapse supernova physics. Mon. Not. R. Astron. Soc. 445, L99 (2014). 1409.0006

    Article  ADS  Google Scholar 

  • S. Horiuchi, K. Sumiyoshi, K. Nakamura, T. Fischer, A. Summa, T. Takiwaki, H.T. Janka, K. Kotake, Diffuse supernova neutrino background from extensive core-collapse simulations of \(8\mbox{--}100~{\mathrm{M}}_{\odot}\) progenitors (2017). 1709.06567

  • F. Iocco, K. Murase, S. Nagataki, P.D. Serpico, High energy neutrino signals from the epoch of reionization. Astrophys. J. 675, 937–945 (2008). 0707.0515

    Article  ADS  Google Scholar 

  • I. Izaguirre, G. Raffelt, I. Tamborra, Fast pairwise conversion of supernova neutrinos: a dispersion-relation approach. Phys. Rev. Lett. 118(2), 021101 (2017)

    Article  ADS  Google Scholar 

  • H.T. Janka, Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci. 62, 407–451 (2012)

    Article  ADS  Google Scholar 

  • H.T. Janka, Neutrino emission from supernovae (2017). 1702.08713

  • H.T. Janka, T. Melson, A. Summa, Physics of core-collapse supernovae in three dimensions: a sneak preview. Annu. Rev. Nucl. Part. Sci. 66, 341–375 (2016)

    Article  ADS  Google Scholar 

  • M. Kachelriess, R. Tomàs, R. Buras, H.T. Janka, A. Marek, M. Rampp, Exploiting the neutronization burst of a galactic supernova. Phys. Rev. D 71, 063003 (2005)

    Article  ADS  Google Scholar 

  • K. Kashiyama, E. Quataert, Fast luminous blue transients from newborn black holes. Mon. Not. R. Astron. Soc. 451(3), 2656–2662 (2015). 1504.05582

    Article  ADS  Google Scholar 

  • K. Kashiyama, K. Murase, P. Mészáros, Neutron-proton-converter acceleration mechanism at subphotospheres of relativistic outflows. Phys. Rev. Lett. 111, 131103 (2013). 1304.1945

    Article  ADS  Google Scholar 

  • K. Kashiyama, K. Hotokezaka, K. Murase, Radio transients from newborn black holes (2017). 1710.10765

  • B. Katz, N. Sapir, E. Waxman, X-rays, gamma-rays and neutrinos from collisionless shocks in supernova wind breakouts (2011). 1106.1898

  • S. Kobayashi, P. Meszaros, Gravitational radiation from gamma-ray burst progenitors. Astrophys. J. 589, 861–870 (2003). astro-ph/0210211

    Article  ADS  Google Scholar 

  • R.F. Lang, C. McCabe, S. Reichard, M. Selvi, I. Tamborra, Supernova neutrino physics with xenon dark matter detectors: a timely perspective. Phys. Rev. D 94(10), 103009 (2016)

    Article  ADS  Google Scholar 

  • E.J. Lentz, S.W. Bruenn, W.R. Hix, A. Mezzacappa, O.E.B. Messer, E. Endeve, J.M. Blondin, J.A. Harris, P. Marronetti, K.N. Yakunin, Three-dimensional core-collapse supernova simulated using a \(15~M_{\odot}\) progenitor. Astrophys. J. 807(2), L31 (2015)

    Article  ADS  Google Scholar 

  • A. Levinson, O. Bromberg, Relativistic photon mediated shocks. Phys. Rev. Lett. 100, 131101 (2008). 0711.3281

    Article  ADS  Google Scholar 

  • C. Lunardini, Diffuse supernova neutrinos at underground laboratories. Astropart. Phys. 79, 49–77 (2016)

    Article  ADS  Google Scholar 

  • C. Lunardini, I. Tamborra, Diffuse supernova neutrinos: oscillation effects, stellar cooling and progenitor mass dependence. J. Cosmol. Astropart. Phys. 1207, 012 (2012)

    Article  ADS  Google Scholar 

  • A. MacFadyen, S.E. Woosley, Collapsars: gamma-ray bursts and explosions in ‘failed supernovae’. Astrophys. J. 524, 262 (1999). astro-ph/9810274

    Article  ADS  Google Scholar 

  • T. Matsumoto, D. Nakauchi, K. Ioka, A. Heger, T. Nakamura, Can direct collapse black holes launch gamma-ray bursts and grow to supermassive black holes? Astrophys. J. 810(1), 64 (2015). 1506.05802

    Article  ADS  Google Scholar 

  • T. Melson, H.T. Janka, R. Bollig, F. Hanke, A. Marek, B. Mueller, Neutrino-driven explosion of a 20 solar-mass star in three dimensions enabled by strange-quark contributions to neutrino-nucleon scattering. Astrophys. J. 808(2), L42 (2015)

    Article  ADS  Google Scholar 

  • P. Meszaros, M.J. Rees, Multi GeV neutrinos from internal dissipation in GRB fireballs. Astrophys. J. 541, L5–L8 (2000). astro-ph/0007102

    Article  ADS  Google Scholar 

  • P. Mészáros, E. Waxman, TeV neutrinos from successful and choked gamma-ray bursts. Phys. Rev. Lett. 87, 171102 (2001). astro-ph/0103275

    Article  ADS  Google Scholar 

  • S.P. Mikheev, A.Yu. Smirnov, Neutrino oscillations in a variable density medium and neutrino bursts due to the gravitational collapse of stars. Sov. Phys. JETP 64, 4–7 (1986). Zh. Eksp. Teor. Fiz. 91, 7 (1986). 0706.0454

    Google Scholar 

  • A. Mirizzi, I. Tamborra, H.T. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Huedepohl, S. Chakraborty, Supernova neutrinos: production, oscillations and detection. Riv. Nuovo Cimento 39(1–2), 1–112 (2016)

    Google Scholar 

  • A. Mizuta, K. Ioka, Opening angles of collapsar jets. Astrophys. J. 777, 162 (2013). 1304.0163

    Article  ADS  Google Scholar 

  • V. Morozova, A.L. Piro, S. Valenti, Unifying type II supernova light curves with dense circumstellar material. Astrophys. J. 838(1), 28 (2017). 1610.08054

    Article  ADS  Google Scholar 

  • T. Muehlbeier, H. Nunokawa, R. Zukanovich Funchal, Revisiting the triangulation method for pointing to supernova and failed supernova with neutrinos. Phys. Rev. D 88, 085010 (2013)

    Article  ADS  Google Scholar 

  • K. Murase, Detecting high-energy neutrinos from the next galactic supernova (2017). 1705.04750

  • K. Murase, K. Ioka, TeV-PeV neutrinos from low-power gamma-ray burst jets inside stars. Phys. Rev. Lett. 111(12), 121102 (2013). 1306.2274

    Article  ADS  Google Scholar 

  • K. Murase, K. Ioka, S. Nagataki, T. Nakamura, High energy neutrinos and cosmic-rays from low-luminosity gamma-ray bursts? Astrophys. J. 651, L5–L8 (2006). astro-ph/0607104

    Article  ADS  Google Scholar 

  • K. Murase, P. Mészáros, B. Zhang, Probing the birth of fast rotating magnetars through high-energy neutrinos. Phys. Rev. D 79, 103001 (2009). 0904.2509

    Article  ADS  Google Scholar 

  • K. Murase, T.A. Thompson, B.C. Lacki, J.F. Beacom, New class of high-energy transients from crashes of supernova ejecta with massive circumstellar material shells. Phys. Rev. D 84, 043003 (2011). 1012.2834

    Article  ADS  Google Scholar 

  • K. Murase, K. Asano, T. Terasawa, P. Meszaros, The role of stochastic acceleration in the prompt emission of gamma-ray bursts: application to hadronic injection. Astrophys. J. 746, 164 (2012). 1107.5575

    Article  ADS  Google Scholar 

  • K. Murase, K. Kashiyama, P. Mészáros, Subphotospheric neutrinos from gamma-ray bursts: the role of neutrons. Phys. Rev. Lett. 111, 131102 (2013). 1301.4236

    Article  ADS  Google Scholar 

  • K. Murase, B. Dasgupta, T.A. Thompson, Quasithermal neutrinos from rotating protoneutron stars born during core collapse of massive stars. Phys. Rev. D 89(4), 043012 (2014a). 1303.2612

    Article  ADS  Google Scholar 

  • K. Murase, T.A. Thompson, E.O. Ofek, Probing cosmic-ray ion acceleration with radio-submm and gamma-ray emission from interaction-powered supernovae. Mon. Not. R. Astron. Soc. 440(3), 2528–2543 (2014b). 1311.6778

    Article  ADS  Google Scholar 

  • K. Nakazato, Imprint of explosion mechanism on supernova relic neutrinos. Phys. Rev. D 88(8), 083012 (2013). 1306.4526

    Article  ADS  Google Scholar 

  • E. O’Connor, C.D. Ott, Black hole formation in failing core-collapse supernovae. Astrophys. J. 730, 70 (2011)

    Article  ADS  Google Scholar 

  • E. Pllumbi, I. Tamborra, S. Wanajo, H.T. Janka, L. Huedepohl, Impact of neutrino flavor oscillations on the neutrino-driven wind nucleosynthesis of an electron-capture supernova. Astrophys. J. 808(2), 188 (2015)

    Article  ADS  Google Scholar 

  • Y.Z. Qian, S.E. Woosley, Nucleosynthesis in neutrino driven winds: 1. The physical conditions. Astrophys. J. 471, 331–351 (1996). astro-ph/9611094

    Article  ADS  Google Scholar 

  • G. Raffelt, S. Sarikas, D. de Sousa Seixas, Axial symmetry breaking in self-induced flavor conversion of supernova neutrino fluxes. Phys. Rev. Lett. 111(9), 091101 (2013)

    Article  ADS  Google Scholar 

  • G.G. Raffelt, What have we learned from SN 1987A? Mod. Phys. Lett. A 5, 2581–2592 (1990)

    Article  ADS  Google Scholar 

  • S. Razzaque, P. Meszaros, E. Waxman, Neutrino tomography of gamma-ray bursts and massive stellar collapses. Phys. Rev. D 68, 083001 (2003). astro-ph/0303505

    Article  ADS  Google Scholar 

  • S. Razzaque, P. Meszaros, E. Waxman, TeV neutrinos from core collapse supernovae and hypernovae. Phys. Rev. Lett. 93, 181101 (2004). Erratum: Phys. Rev. Lett. 94, 109903 (2005). astro-ph/0407064

    Article  ADS  Google Scholar 

  • M.J. Rees, P. Meszaros, Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. 430, L93–L96 (1994). astro-ph/9404038

    Article  ADS  Google Scholar 

  • M.J. Rees, P. Meszaros, Dissipative photosphere models of gamma-ray bursts and x-ray flashes. Astrophys. J. 628, 847–852 (2005). astro-ph/0412702

    Article  ADS  Google Scholar 

  • L.F. Roberts, C.D. Ott, R. Haas, E.P. O’Connor, P. Diener, E. Schnetter, General-relativistic three-dimensional multi-group neutrino radiation-hydrodynamics simulations of core-collapse supernovae. Astrophys. J. 831, 98 (2016). 1604.07848

    Article  ADS  Google Scholar 

  • R.F. Sawyer, Speed-up of neutrino transformations in a supernova environment. Phys. Rev. D 72, 045003 (2005)

    Article  ADS  Google Scholar 

  • R.F. Sawyer, Neutrino cloud instabilities just above the neutrino sphere of a supernova. Phys. Rev. Lett. 116(8), 081101 (2016)

    Article  ADS  Google Scholar 

  • K. Scholberg, Supernova neutrino detection. Annu. Rev. Nucl. Part. Sci. 62, 81–103 (2012)

    Article  ADS  Google Scholar 

  • N. Senno, K. Murase, P. Mészáros, Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources. Phys. Rev. D 93(8), 083003 (2016). 1512.08513

    Article  ADS  Google Scholar 

  • P.D. Serpico, S. Chakraborty, T. Fischer, L. Huedepohl, H.T. Janka, A. Mirizzi, Probing the neutrino mass hierarchy with the rise time of a supernova burst. Phys. Rev. D 85, 085031 (2012)

    Article  ADS  Google Scholar 

  • N. Smith, Mass loss: its effect on the evolution and fate of high-mass stars. Annu. Rev. Astron. Astrophys. 52, 487–528 (2014). 1402.1237

    Article  ADS  Google Scholar 

  • T. Sukhbold, T. Ertl, S.E. Woosley, J.M. Brown, H.T. Janka, Core-collapse supernovae from 9 to 120 solar masses based on neutrino-powered explosions. Astrophys. J. 821(1), 38 (2016)

    Article  ADS  Google Scholar 

  • K. Sumiyoshi, S. Yamada, H. Suzuki, S. Chiba, Neutrino signals from the formation of black hole: a probe of equation of state of dense matter. Phys. Rev. Lett. 97, 091101 (2006). astro-ph/0608509

    Article  ADS  Google Scholar 

  • Y. Suwa, K. Murase, Probing the central engine of long gamma-ray bursts and hypernovae with gravitational waves. Phys. Rev. D 80, 123008 (2009). 0906.3833

    Article  ADS  Google Scholar 

  • L.G. Sveshnikova, The knee in galactic cosmic ray spectrum and variety in supernovae. Astron. Astrophys. 409, 799–808 (2003). astro-ph/0303159

    Article  ADS  Google Scholar 

  • T. Takiwaki, K. Kotake, Y. Suwa, Three-dimensional simulations of rapidly rotating core-collapse supernovae: finding a neutrino-powered explosion aided by non-axisymmetric flows. Mon. Not. R. Astron. Soc. 461(1), L112–L116 (2016)

    Article  ADS  Google Scholar 

  • I. Tamborra, S. Ando, Inspecting the supernova-gamma-ray-burst connection with high-energy neutrinos. Phys. Rev. D 93(5), 053010 (2016). 1512.01559

    Article  ADS  Google Scholar 

  • I. Tamborra, F. Hanke, B. Mueller, H.T. Janka, G. Raffelt, Neutrino signature of supernova hydrodynamical instabilities in three dimensions. Phys. Rev. Lett. 111(12), 121104 (2013)

    Article  ADS  Google Scholar 

  • I. Tamborra, F. Hanke, H.T. Janka, B. Mueller, G.G. Raffelt, A. Marek, Self-sustained asymmetry of lepton-number emission: a new phenomenon during the supernova shock-accretion phase in three dimensions. Astrophys. J. 792(2), 96 (2014a)

    Article  ADS  Google Scholar 

  • I. Tamborra, G. Raffelt, F. Hanke, H.T. Janka, B. Mueller, Neutrino emission characteristics and detection opportunities based on three-dimensional supernova simulations. Phys. Rev. D 90(4), 045032 (2014b)

    Article  ADS  Google Scholar 

  • I. Tamborra, L. Huedepohl, G. Raffelt, H.T. Janka, Flavor-dependent neutrino angular distribution in core-collapse supernovae. Astrophys. J. 839, 132 (2017)

    Article  ADS  Google Scholar 

  • T.A. Thompson, P. Chang, E. Quataert, Magnetar spindown, hyper-energetic supernovae, and gamma ray bursts. Astrophys. J. 611, 380–393 (2004). astro-ph/0401555

    Article  ADS  Google Scholar 

  • R. Tomàs, D. Semikoz, G.G. Raffelt, M. Kachelriess, A.S. Dighe, Supernova pointing with low-energy and high-energy neutrino detectors. Phys. Rev. D 68, 093013 (2003)

    Article  ADS  Google Scholar 

  • I. Vurm, A.M. Beloborodov, J. Poutanen, Gamma-ray bursts from magnetized collisionally-heated jets. Astrophys. J. 738, 77 (2011). 1104.0394

    Article  ADS  Google Scholar 

  • J. Wallace, A. Burrows, J.C. Dolence, Detecting the supernova breakout burst in terrestrial neutrino detectors. Astrophys. J. 817(2), 182 (2016)

    Article  ADS  Google Scholar 

  • E. Waxman, B. Katz, Shock breakout theory (2016). 1607.01293

  • O. Yaron et al., Confined dense circumstellar material surrounding a regular type II supernova: the unique flash-spectroscopy event of SN 2013fs. Nat. Phys. 13, 510 (2017). 1701.02596

    Article  Google Scholar 

  • V.N. Zirakashvili, V.S. Ptuskin, Type IIn supernovae as sources of high energy astrophysical neutrinos. Astropart. Phys. 78, 28–34 (2016). 1510.08387

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the organizers of the ISSI SN Workshop held in October 2016 for their kind invitation and warm hospitality. I.T. acknowledges support from the Knud Højgaard Foundation, the Villum Foundation (Project No. 13164) and the Danish National Research Foundation (DNRF91). The work of K.M. is supported by Alfred P. Sloan Foundation and NSF Grant No. PHY-1620777.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Tamborra.

Additional information

Supernovae

Edited by Andrei Bykov, Roger Chevalier, John Raymond, Friedrich-Karl Thielemann, Maurizio Falanga and Rudolf von Steiger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamborra, I., Murase, K. Neutrinos from Supernovae. Space Sci Rev 214, 31 (2018). https://doi.org/10.1007/s11214-018-0468-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0468-7

Keywords

Navigation