Advertisement

Space Science Reviews

, 214:37 | Cite as

Touch And Go Camera System (TAGCAMS) for the OSIRIS-REx Asteroid Sample Return Mission

  • B. J. BosEmail author
  • M. A. Ravine
  • M. Caplinger
  • J. A. Schaffner
  • J. V. Ladewig
  • R. D. Olds
  • C. D. Norman
  • D. Huish
  • M. Hughes
  • S. K. Anderson
  • D. A. Lorenz
  • A. May
  • C. D. Jackman
  • D. Nelson
  • M. Moreau
  • D. Kubitschek
  • K. Getzandanner
  • K. E. Gordon
  • A. Eberhardt
  • D. S. Lauretta
Article
Part of the following topical collections:
  1. OSIRIS-REx

Abstract

NASA’s OSIRIS-REx asteroid sample return mission spacecraft includes the Touch And Go Camera System (TAGCAMS) three camera-head instrument. The purpose of TAGCAMS is to provide imagery during the mission to facilitate navigation to the target asteroid, confirm acquisition of the asteroid sample, and document asteroid sample stowage. The cameras were designed and constructed by Malin Space Science Systems (MSSS) based on requirements developed by Lockheed Martin and NASA. All three of the cameras are mounted to the spacecraft nadir deck and provide images in the visible part of the spectrum, 400–700 nm. Two of the TAGCAMS cameras, NavCam 1 and NavCam 2, serve as fully redundant navigation cameras to support optical navigation and natural feature tracking. Their boresights are aligned in the nadir direction with small angular offsets for operational convenience. The third TAGCAMS camera, StowCam, provides imagery to assist with and confirm proper stowage of the asteroid sample. Its boresight is pointed at the OSIRIS-REx sample return capsule located on the spacecraft deck. All three cameras have at their heart a \(2592 \times 1944~\mbox{pixel}\) complementary metal oxide semiconductor (CMOS) detector array that provides up to 12-bit pixel depth. All cameras also share the same lens design and a camera field of view of roughly \(44^{\circ} \times 32^{\circ}\) with a pixel scale of 0.28 mrad/pixel. The StowCam lens is focused to image features on the spacecraft deck, while both NavCam lens focus positions are optimized for imaging at infinity. A brief description of the TAGCAMS instrument and how it is used to support critical OSIRIS-REx operations is provided.

Keywords

Bennu Cameras Spacecraft Remote sensing Instruments Imaging systems Planetary missions Asteroid Sample return 

Acronym List

ADC

analog to digital converter

CCTM

Camera Calibration Toolbox for Matlab

CM

center of mass

CMOS

complementary metal oxide semiconductor

DN

digital number

DTM

digital terrain map

DVR

digital video recorder

EM

engineering model

EMC

electromagnetic compatibility

EMI

electromagnetic interference

EPROMS

erasable programmable read-only memory

FDS

flight dynamics system

FITS

Flexible Image Transport System

FPGA

field programmable gate array

GDS

ground data system

KXIMP

KinetX Star-Based Image Processing Suite

LED

light-emitting diode

LIDAR

light detection and ranging

LVDS

low voltage differential signaling

MFOV

medium field of view

MSA

mission support area

MSSS

Malin Space Science Systems

MTF

modulation transfer function

NFT

natural feature tracking

OCAMS

OSIRIS-REx camera suite

OD

orbit determination

ODM

orbit departure maneuver

OpNav

optical navigation

OSIRIS-REx

Origins Spectral Interpretation Resource Identification Security Regolith Explorer

PDS

Planetary Data System

QTH

quartz-tungsten-halogen

RAL

Reverberant Acoustics Laboratory

SNR

signal-to-noise ratio

SOSC

Space Operations Simulation Center

SPOC

science processing and operations center

SRC

sample return capsule

SVT

spacecraft verification tests

TAG

touch and go

TAGCAMS

Touch And Go Camera System

Notes

Acknowledgements

This material is based upon work supported by NASA under Contracts NNM10AA11C, NNG12FD66C and NNG13FC02C issued through the New Frontiers Program. Copy editing and indexing provided by Mamassian Editorial Services.

References

  1. H.N. Becker, M.D. Dolphin, D.O. Thorbourn, J.W. Alexander, P.M. Salomon, Commercial sensor survey radiation testing progress report. Jet Propulsion Laboratory Publication 08-22 (April 2008) Google Scholar
  2. K. Berry, B. Sutter, A. May, K. Williams, B.W. Barbee, M. Beckman, B. Williams, OSIRIS-REx Touch-And-Go (TAG) mission design and analysis, in 36th Annual AAS Guidance and Control Conference, 13-095 1–6 February (2013) Google Scholar
  3. J.Y. Bouguet, Camera Calibration Toolbox for Matlab. Computer Vision Research Group, Dept. of Electrical Engineering, California Institute of Technology (2014). http://www.vision.caltech.edu/bouguetj/calib_doc/. Accessed 30 December 2016
  4. P.R. Christensen, B.M. Jakosky, H.H. Kieffer, M.C. Malin, H.Y. Mcsween Jr., K. Nealson, G.L. Mehall, S.H. Silverman, S. Ferry, M. Caplinger, M. Ravine, The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey mission. Space Sci. Rev. 110, 85–130 (2004) ADSCrossRefGoogle Scholar
  5. K.S. Edgett, R.A. Yingst, M.A. Ravine, M.A. Caplinger, J.N. Maki, F.T. Ghaemi, J.A. Schaffner, J.F. Bell III, L.J. Edwards, K.E. Herkenhoff, E. Heydari, L.C. KahMark, T. Lemmon, M.E. Minitti, T.S. Olson et al., Curiosity’s Mars Hand Lens Imager (MAHLI) investigation. Space Sci. Rev. 170, 259–317 (2012) ADSCrossRefGoogle Scholar
  6. European Cooperation for Space Standardization, SpaceWire—Links, nodes, routers and networks. Space Engineering, ECSS-E-ST-50-12C (31 July 2008) Google Scholar
  7. R.W. Gaskell, O.S. Barnouin-Jha, D.J. Scheeres, A.S. Konopliv, T. Mukai, S. Abe, J. Saito, M. Ishiguro, T. Kubota, T. Hashimoto, J. Kawaguchi, M. Yoshikawa, K. Shirakawa, T. Kominato, N. Hirata, H. Demura, Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. 43(6), 1049–1061 (2008) ADSCrossRefGoogle Scholar
  8. C.D. Jackman, D.S. Nelson, W.M. Owen Jr., M.W. Buie, S.A. Stern, H.A. Weaver, L.A. Young, K. Ennico, C.B. Olkin, New Horizons optical navigation on approach to Pluto, in Advances in the Astronautical Sciences Guidance, Navigation and Control, vol. 157 (2016), pp. 16–083 Google Scholar
  9. J.R. Janesick, DN to \(\lambda\) (SPIE Press, Bellingham, 2007), pp. 1–258 Google Scholar
  10. D.S. Lauretta, S.S. Balram-Knutson, E. Beshore, W.V. Boynton, C. Drouet d’Aubigny, D.N. DellaGiustina, H.L. Enos, D.R. Gholish, C.W. Hergenrother, E.S. Howell, C.A. Johnson, E.T. Morton, M.C. Nolan, B. Rizk, H.L. Roper, A.E. Bartels, B.J. Bos, J.P. Dworkin, D.E. Highsmith, M.C. Moreau, D.A. Lorenz, L.F. Lim, R. Mink, J.A. Nuth, D.C. Reuter, A.A. Simon, E.B. Bierhaus, B.H. Bryan, R. Ballouz, O.S. Barnouin, R.P. Binzel, W.F. Bottke, V.E. Hamilton, K.J. Walsh, S.R. Chesley, P.R. Christensen, B.E. Clark, H.C. Connolly, M.K. Crombie, M.G. Daly, J.P. Emery, T.J. McCoy, J.W. McMahon, D.J. Scheeres, S. Messenger, K. Nakamura-Messenger, K. Righter, S.A. Sandford, OSIRIS-REx: sample return from asteroid (101955) Bennu. Space Sci. Rev. 212(1–2), 925–984 (2017, this issue).  https://doi.org/10.1007/s11214-017-0405-1 ADSCrossRefGoogle Scholar
  11. M.C. Malin, J.F. Bell, B.A. Cantor, M.A. Caplinger, W.M. Calvin, R.T. Clancy, K.S. Edgett, L. Edwards, R.M. Haberle, P.B. James, S.W. Lee, M.A. Ravine, P.C. Thomas, M.J. Wolff, Context Camera investigation on board the Mars Reconnaissance Orbiter. J. Geophys. Res. 112, E05S04 (2007) ADSCrossRefGoogle Scholar
  12. C. Mario, C. Debrunner, Robustness and performance impacts of optical-based feature tracking to OSIRIS-REx asteroid sample collection mission, in 39th Annual AAS Guidance and Control Conference, 16-087, 5–10 February (2016) Google Scholar
  13. Z. Milenkovich, C. D’Souza, The Space Operations Simulation Center (SOSC) and closed-loop hardware testing for Orion rendezvous system design, in AIAA Guidance, Navigation, and Control Conference, 13–16 August (2012), pp. 1–16 Google Scholar
  14. R. Olds, A. May, C. Mario, R. Hamilton, C. Debrunner, K. Anderson, The application of optical based feature tracking to OSIRIS-REx asteroid sample collection, in 38th Annual AAS Guidance and Control Conference, 15-124, 30 January–4 February (2015) Google Scholar
  15. OpenCV, Camera calibration and 3D construction. Open Source Computer Vision, OpenCV.org (2016). http://docs.opencv.org/2.4/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html. Accessed 30 December 2016
  16. B. Rizk et al., OCAMS: the OSIRIS-REx camera suite. Space Sci. Rev. (2017, this issue).  https://doi.org/10.1007/s11214-017-0460-7 Google Scholar
  17. M.S. Robinson, S.M. Brylow, M. Tschimmel, D. Humm, S.J. Lawrence, P.C. Thomas, B.W. Denevi, E. Bowman-Cisneros, J. Zerr, M.A. Ravine, M.A. Caplinger, F.T. Ghaemi, J.A. Schaffner, M.C. Malin, P. Mahanti, A. Bartels, J. Anderson, T.N. Tran, E.M. Eliason, A.S. McEwen, E. Turtle, B.L. Jolliff, H. Hiesinger, Lunar Reconnaissance Orbiter Camera (LROC) instrument overview. Space Sci. Rev. 150, 81–124 (2010) ADSCrossRefGoogle Scholar
  18. B. Williams, P. Antreasian, E. Carranza, C. Jackman, J. Leonard, D. Nelson, B. Page, D. Stanbridge, D. Wibben, K. Williams, M. Moreau, K. Berry, K. Getzandanner, A. Liounis, A. Mashiku, D. Highsmith, B. Sutter, D.S. Lauretta, OSIRIS-REx flight dynamics and navigation design. Space Sci. Rev. (2018, this issue) Google Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  • B. J. Bos
    • 1
    Email author
  • M. A. Ravine
    • 2
  • M. Caplinger
    • 2
  • J. A. Schaffner
    • 2
  • J. V. Ladewig
    • 3
  • R. D. Olds
    • 3
  • C. D. Norman
    • 3
  • D. Huish
    • 3
  • M. Hughes
    • 3
  • S. K. Anderson
    • 3
  • D. A. Lorenz
    • 1
  • A. May
    • 3
  • C. D. Jackman
    • 4
  • D. Nelson
    • 4
  • M. Moreau
    • 1
  • D. Kubitschek
    • 5
  • K. Getzandanner
    • 1
  • K. E. Gordon
    • 1
  • A. Eberhardt
    • 1
  • D. S. Lauretta
    • 6
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Malin Space Science SystemsSan DiegoUSA
  3. 3.Lockheed Martin Space SystemsLittletonUSA
  4. 4.KinetX Inc.Simi ValleyUSA
  5. 5.University of Colorado’s Laboratory for Atmospheric and Space PhysicsBoulderUSA
  6. 6.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA

Personalised recommendations