Advertisement

Space Science Reviews

, 214:21 | Cite as

Extreme Space Weather Events: From Cradle to Grave

  • Pete Riley
  • Dan Baker
  • Ying D. Liu
  • Pekka Verronen
  • Howard Singer
  • Manuel Güdel
Article
Part of the following topical collections:
  1. The Scientific Foundation of Space Weather

Abstract

Extreme space weather events, while rare, can have a substantial impact on our technologically-dependent society. And, although such events have only occasionally been observed, through careful analysis of a wealth of space-based and ground-based observations, historical records, and extrapolations from more moderate events, we have developed a basic picture of the components required to produce them. Several key issues, however, remain unresolved. For example, what limits are imposed on the maximum size of such events? What are the likely societal consequences of a so-called “100-year” solar storm? In this review, we summarize our current scientific understanding about extreme space weather events as we follow several examples from the Sun, through the solar corona and inner heliosphere, across the magnetospheric boundary, into the ionosphere and atmosphere, into the Earth’s lithosphere, and, finally, its impact on man-made structures and activities, such as spacecraft, GPS signals, radio communication, and the electric power grid. We describe preliminary attempts to provide probabilistic forecasts of extreme space weather phenomena, and we conclude by identifying several key areas that must be addressed if we are better able to understand, and, ultimately, predict extreme space weather events.

Keywords

Extreme space weather events Coronal mass ejections Geomagnetic storms Carrington event 

Notes

Acknowledgements

The authors would like to thank the International Space Science Institute (ISSI) for their gracious hospitality while hosting our team for a workshop on space weather. PR would also like to acknowledge support from NASA’s Living with a Star program. Finally, we would like to extend our sincerest thanks to a reviewer who provided extremely detailed and constructive comments on a draft of the paper.

References

  1. J. Allen, H. Sauer, L. Frank, P. Reiff, Effects of the March 1989 solar activity. Eos 70(46), 1479–1488 (1989) CrossRefADSGoogle Scholar
  2. D.N. Baker, S. Kanekal, J.B. Blake, B. Klecker, G. Rostoker, Satellite anomalies linked to electron increase in the magnetosphere. Eos 75(35), 401–405 (1994) CrossRefADSGoogle Scholar
  3. D.N. Baker, J.H. Allen, S.G. Kanekal, G.D. Reeves, Disturbed space environment may have been related to pager satellite failure. Eos 79(40), 477–483 (1998) CrossRefADSGoogle Scholar
  4. D.N. Baker, X. Li, A. Pulkkinen, C.M. Ngwira, M.L. Mays, A.B. Galvin, K.D.C. Simunac, A major solar eruptive event in July 2012: defining extreme space weather scenarios. Space Weather 11(10), 585–591 (2013) CrossRefADSGoogle Scholar
  5. M. Calisto, P.T. Verronen, E. Rozanov, T. Peter, Influence of a Carrington-like event on the atmospheric chemistry, temperature and dynamics. Atmos. Chem. Phys. 12(18), 8679–8686 (2012) CrossRefADSGoogle Scholar
  6. P. Cannon, M. Angling, L. Barclay, C. Curry, C. Dyer, R. Edwards, G. Greene, M. Hapgood, R.B. Horne, D. Jackson et al., Extreme space weather: impacts on engineered systems and infrastructure. Royal Academy of Engineering (2013) Google Scholar
  7. R.C. Carrington, Description of a singular appearance seen in the Sun on September 1, 1859. Mon. Not. R. Astron. Soc. 20, 13–15 (1859) CrossRefADSGoogle Scholar
  8. E.W. Cliver, W.F. Dietrich, The 1859 space weather event revisited: limits of extreme activity. J. Space Weather Space Clim. 3, 31 (2013) CrossRefADSGoogle Scholar
  9. P.J. Crutzen, I.S.A. Isaksen, G.C. Reid, Solar proton events: stratospheric sources of nitric oxide. Science 189(4201), 457–459 (1975) CrossRefADSGoogle Scholar
  10. K.A. Duderstadt, J.E. Dibb, N.A. Schwadron, H.E. Spence, S.C. Solomon, V.A. Yudin, C.H. Jackman, C.E. Randall, Nitrate ion spikes in ice cores not suitable as proxies for solar proton events. J. Geophys. Res. Atmos. 121(6), 2994–3016 (2016) CrossRefADSGoogle Scholar
  11. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47 (1961) CrossRefADSGoogle Scholar
  12. V.V. Hambaryan, R. Neuhäuser, A galactic short gamma-ray burst as cause for the 14c peak in ad 774/5. Mon. Not. R. Astron. Soc. 430(1), 32–36 (2013) CrossRefADSGoogle Scholar
  13. M.R. Hayashi, K. Shibata, R. Matsumoto, Astrophys. J. 468, L37 (1996) CrossRefADSGoogle Scholar
  14. H. Hu, Y.D. Liu, R. Wang, C. Möstl, Z. Yang, Sun-to-Earth characteristics of the 2012 July 12 coronal mass ejection and associated geo-effectiveness. Astrophys. J. 829(2), 97 (2016) CrossRefADSGoogle Scholar
  15. K.E.J. Huttunen, S.P. Kilpua, A. Pulkkinen, A. Viljanen, E. Tanskanen, Solar wind drivers of large geomagnetically induced currents during the solar cycle 23. Space Weather 6(10), S10002 (2008) CrossRefADSGoogle Scholar
  16. C.H. Jackman, R.D. McPeters, The effect of solar proton events on ozone and other constituents, in Solar Variability and Its Effects on Climate (2004) Google Scholar
  17. C.H. Jackman, E.L. Fleming, S. Chandra, D.B. Considine, J.E. Rosenfield, Past, present, and future modeled ozone trends with comparisons to observed trends. J. Geophys. Res., Atmos. 101(D22), 28753–28767 (1996) CrossRefADSGoogle Scholar
  18. C.H. Jackman, R.D. McPeters, G.J. Labow, E.L. Fleming, C.J. Praderas, J.M. Russell, Northern Hemisphere atmospheric effects due to the July 2000 solar proton event. Geophys. Res. Lett. 28(15), 2883–2886 (2001) CrossRefADSGoogle Scholar
  19. C.H. Jackman, R.G. Roble, E.L. Fleming, Mesospheric dynamical changes induced by the solar proton events in October–November 2003. Geophys. Res. Lett. 34(4), L04812 (2007) CrossRefADSGoogle Scholar
  20. C.H. Jackman, D.R. Marsh, F.M. Vitt, R.R. Garcia, E.L. Fleming, G.J. Labow, C.E. Randall, M. López-Puertas, B. Funke, T. von Clarmann et al., Short-and medium-term atmospheric constituent effects of very large solar proton events. Atmos. Chem. Phys. 8(3), 765–785 (2008) CrossRefADSGoogle Scholar
  21. C.H. Jackman, D.R. Marsh, F.M. Vitt, R.R. Garcia, C.E. Randall, E.L. Fleming, S.M. Frith, Long-term middle atmospheric influence of very large solar proton events. J. Geophys. Res., Atmos. 114(D11), D11304 (2009) CrossRefADSGoogle Scholar
  22. C.H. Jackman, D.R. Marsh, F.M. Vitt, R.G. Roble, C.E. Randall, P.F. Bernath, B. Funke, M. López-Puertas, S. Versick, G.P. Stiller et al., Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005. Atmos. Chem. Phys. 11(13), 6153–6166 (2011) CrossRefADSGoogle Scholar
  23. S. Jonas, W. Murtagh, M. Bonadonna, Released for public comment: space weather benchmarks and operations-to-research plan. Space Weather 15(2), 282 (2017) CrossRefADSGoogle Scholar
  24. J.G. Kappenman, Geomagnetic disturbances and impacts upon power system operation, in Electric Power Generation, Transmission, and Distribution 3rd edn. (CRC Press, Boca Raton, 2012), pp. 1–22 Google Scholar
  25. C. Karoff, M.F. Knudsen, P. De Cat, A. Bonanno, A. Fogtmann-Schulz, J. Fu, A. Frasca, F. Inceoglu, J. Olsen, Y. Zhang et al., Observational evidence for enhanced magnetic activity of superflare stars. Nat. Commun. 7, 11058 (2016) CrossRefADSGoogle Scholar
  26. J. Linker, T. Torok, C. Downs, R. Lionello, V. Titov, R.M. Caplan, Z. Mikić, P. Riley, MHD simulation of the Bastille day event, in AIP Conference Proceedings, vol. 1720 (AIP Publishing, New York, 2016) Google Scholar
  27. Y.D. Liu, J.G. Luhmann, P. Kajdič, E.K.J. Kilpua, N. Lugaz, N.V. Nitta, C. Möstl, B. Lavraud, S.D. Bale, C.J. Farrugia et al., Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat. Commun. 5, 3481 (2014) ADSGoogle Scholar
  28. Y.D. Liu, H. Hu, R. Wang, Z. Yang, B. Zhu, Y.A. Liu, J.G. Luhmann, J.D. Richardson, Plasma and magnetic field characteristics of solar coronal mass ejections in relation to geomagnetic storm intensity and variability. Astrophys. J. Lett. 809(2), 34 (2015) CrossRefADSGoogle Scholar
  29. J.J. Love, Credible occurrence probabilities for extreme geophysical events: earthquakes, volcanic eruptions, magnetic storms. Geophys. Res. Lett. 39, 10301 (2012).  https://doi.org/10.1029/2012GL051431 ADSGoogle Scholar
  30. J.J. Love, E.J. Rigler, A. Pulkkinen, P. Riley, On the lognormality of historical magnetic storm intensity statistics: implications for extreme-event probabilities. Geophys. Res. Lett. 42(16), 6544–6553 (2015) CrossRefADSGoogle Scholar
  31. J.J. Love, A. Pulkkinen, P.A. Bedrosian, S. Jonas, A. Kelbert, E.J. Rigler, C.A. Finn, C.C. Balch, R. Rutledge, R.M. Waggel et al., Geoelectric hazard maps for the continental united states. Geophys. Res. Lett. 43(18), 9415–9424 (2016) CrossRefADSGoogle Scholar
  32. H. Maehara, T. Shibayama, S. Notsu, Y. Notsu, T. Nagao, S. Kusaba, S. Honda, D. Nogami, K. Shibata, Superflares on solar-type stars. Nature 485(7399), 478–481 (2012) CrossRefADSGoogle Scholar
  33. H. Maehara, T. Shibayama, Y. Notsu, S. Notsu, S. Honda, D. Nogami, K. Shibata, Statistical properties of superflares on solar-type stars based on 1-min cadence data. Earth Planets Space 67(1), 1 (2015) CrossRefGoogle Scholar
  34. K.G. McCracken, G.A.M. Dreschhoff, E.J. Zeller, D.F. Smart, M.A. Shea, Solar cosmic ray events for the period 1561–1994: 1. Identification in polar ice, 1561–1950. J. Geophys. Res. 106(15), 21585–21598 (2001). 2001JGR...10621585M CrossRefADSGoogle Scholar
  35. D. McMorrow, Impacts of Severe Space Weather on the Electric Grid (JASON, Virginia, 2011) Google Scholar
  36. F. Miyake, K. Nagaya, K. Masuda, T. Nakamura, A signature of cosmic-ray increase in AD 774–775 from tree rings in Japan. Nature 486(7402), 240–242 (2012) ADSGoogle Scholar
  37. F. Miyake, K. Masuda, T. Nakamura, Another rapid event in the carbon-14 content of tree rings. Nat. Commun. 4, 1748 (2013) CrossRefADSGoogle Scholar
  38. F. Miyake, K. Masuda, M. Hakozaki, T. Nakamura, F. Tokanai, K. Kato, K. Kimura, T. Mitsutani, Verification of the cosmic-ray event in AD 993–994 by using a Japanese Hinoki tree. Radiocarbon 56(3), 1189–1194 (2014) CrossRefGoogle Scholar
  39. C.M. Ngwira, A. Pulkkinen, M.M. Kuznetsova, A. Glocer, Modeling extreme Carrington-type space weather events using three-dimensional global MHD simulations. J. Geophys. Res. Space Phys. 119(6), 4456–4474 (2014) CrossRefADSGoogle Scholar
  40. N.V. Nitta, M.J. Aschwanden, P.F. Boerner, S.L. Freeland, J.R. Lemen, J-P. Wuelser, Soft \(x\)-ray fluxes of major flares far behind the limb as estimated using STEREO EUV images. Sol. Phys. 288(1), 241–254 (2013) CrossRefADSGoogle Scholar
  41. NRC, Severe Space Weather Events—Understanding Societal and Economic Impacts: A Workshop Report (National Academies Press, Washington, DC, 2008) Google Scholar
  42. E.J. Oughton, A. Skelton, R.B. Horne, A.W. Thomson, C.T. Gaunt, Quantifying the daily economic impact of extreme space weather due to failure in electricity transmission infrastructure. Space Weather 15(1), 65–83 (2017) CrossRefADSGoogle Scholar
  43. R. Pirjola, Geomagnetically induced currents during magnetic storms. IEEE Trans. Plasma Sci. 28(6), 1867–1873 (2000) CrossRefADSGoogle Scholar
  44. A. Pulkkinen, Geomagnetically induced currents modeling and forecasting. Space Weather 13(11), 734–736 (2015) CrossRefADSGoogle Scholar
  45. A. Pulkkinen, E. Bernabeu, J. Eichner, A. Viljanen, C. Ngwira, Regional-scale high-latitude extreme geoelectric fields pertaining to geomagnetically induced currents. Earth Planets Space 67(1), 1–8 (2015) CrossRefGoogle Scholar
  46. P. Riley, CME dynamics in a structured solar wind, in Solar Wind Nine, Am. Inst. Phys. Conf. Proc., vol. 471, ed. by S.R. Habbal, R. Esser, V. Hollweg, P.A. Isenberg (1999), p. 131 Google Scholar
  47. P. Riley, On the probability of occurrence of extreme space weather events. Space Weather 10(2), S02012 (2012) CrossRefADSGoogle Scholar
  48. P. Riley, J.J. Love, Extreme geomagnetic storms: probabilistic forecasts and their uncertainties. Space Weather 15(1), 53–64 (2017) CrossRefADSGoogle Scholar
  49. P. Riley, J.T. Gosling, V.J. Pizzo, A two-dimensional simulation of the radial and latitudinal evolution of a solar wind disturbance driven by a fast, high-pressure coronal mass ejection. J. Geophys. Res. 102(A7), 14677 (1997) CrossRefADSGoogle Scholar
  50. P. Riley, C. Schatzman, H.V. Cane, I.G. Richardson, N. Gopalswamy, On the rates of coronal mass ejections: remote solar and in situ observations. Astrophys. J. 647, 648–653 (2006).  https://doi.org/10.1086/505383 CrossRefADSGoogle Scholar
  51. P. Riley, R. Lionello, J.A. Linker, Z. Mikic, J. Luhmann, J. Wijaya, Global MHD modeling of the solar corona and inner heliosphere for the whole heliosphere interval. Sol. Phys. 274, 361–3775 (2012).  https://doi.org/10.1007/s11207-010-9698-x CrossRefADSGoogle Scholar
  52. P. Riley, R.M. Caplan, J. Giacalone, D. Lario, Y. Liu, Properties of the fast forward shock driven by the July 23 2012 extreme coronal mass ejection. Astrophys. J. 819, 57 (2016).  https://doi.org/10.3847/0004-637X/819/1/57 CrossRefADSGoogle Scholar
  53. P. Riley, M. Ben-Nun, J.A. Linker, M.J. Owens, T.S. Horbury, Forecasting the properties of the solar wind using simple pattern recognition. Space Weather 15(3), 526–540 (2017) CrossRefADSGoogle Scholar
  54. C.J. Rodger, M.A. Clilverd, P.T. Verronen, T. Ulich, M.J. Jarvis, E. Turunen, Dynamic geomagnetic rigidity cutoff variations during a solar proton event. J. Geophys. Res. Space Phys. 111(A4), A04222 (2006) CrossRefADSGoogle Scholar
  55. C.T. Russell, R.A. Mewaldt, J.G. Luhmann, G.M. Mason, T.T. von Rosenvinge, C.M.S. Cohen, R.A. Leske, R. Gomez-Herrero, A. Klassen, A.B. Galvin, K.D.C. Simunac, The very unusual interplanetary coronal mass ejection of 2012 July 23: a blast wave mediated by solar energetic particles. Astrophys. J. 770, 38 (2013).  https://doi.org/10.1088/0004-637X/770/1/38 CrossRefADSGoogle Scholar
  56. A. Ruzmaikin, J. Feynman, I. Jun, Distribution of extreme solar energetic proton fluxes. J. Atmos. Sol.-Terr. Phys. 73, 300–307 (2011).  https://doi.org/10.1016/j.jastp.2009.12.016 CrossRefADSGoogle Scholar
  57. A. Seppälä, P.T. Verronen, E. Kyrölä, S. Hassinen, L. Backman, A. Hauchecorne, J.L. Bertaux, D. Fussen, Solar proton events of October–November 2003: ozone depletion in the Northern Hemisphere polar winter as seen by GOMOS/Envisat. Geophys. Res. Lett. 31(19), L19107 (2004) CrossRefADSGoogle Scholar
  58. M.A. Shea, D.F. Smart, Space weather and the ground-level solar proton events of the 23rd solar cycle. Space Sci. Rev. 171(1–4), 161–188 (2012) CrossRefADSGoogle Scholar
  59. M.A. Shea, D.F. Smart, K.G. McCracken, G.A.M. Dreschhoff, H.E. Spence, Solar proton events for 450 years: the Carrington event in perspective. Adv. Space Res. 38, 232–238 (2006).  https://doi.org/10.1016/j.asr.2005.02.100 CrossRefADSGoogle Scholar
  60. K. Shibata, H. Isobe, A. Hillier, A.R. Choudhuri, H. Maehara, T.T. Ishii, T. Shibayama, S. Notsu, Y. Notsu, T. Nagao et al., Can superflares occur on our Sun? Publ. Astron. Soc. Jpn. 65(3), 49 (2013) CrossRefADSGoogle Scholar
  61. B.-M. Sinnhuber, M. Weber, A. Amankwah, J.P. Burrows, Total ozone during the unusual Antarctic winter of 2002. Geophys. Res. Lett. 30(11), 1580 (2003) CrossRefADSGoogle Scholar
  62. G. Siscoe, N.U. Crooker, C.R. Clauer, Dst of the Carrington storm of 1859. Adv. Space Res. 38, 173–179 (2006).  https://doi.org/10.1016/j.asr.2005.02.102 CrossRefADSGoogle Scholar
  63. W. Swider, T.J. Keneshea, Decrease of ozone and atomic oxygen in the lower mesosphere during a PCA event. Planet. Space Sci. 21(11), 1969–1973 (1973) CrossRefADSGoogle Scholar
  64. N.N. Taleb, The Black Swan: The Impact of the Highly Improbable (Random House, New York, 2007) Google Scholar
  65. B.C. Thomas, C.H. Jackman, A. Melott, L Modeling atmospheric effects of the September 1859 solar flare. Geophys. Res. Lett. 34(6), L06810 (2007) CrossRefADSGoogle Scholar
  66. F. Toffoletto, R. Wolf, J. Yang, Dst during extreme events—how low can it get? in AGU Fall Meeting Abstracts (2016) Google Scholar
  67. US Dept. of Commerce NOAA, Space Weather Prediction Center, Solar proton events affecting the earth environment (2010) (accessed July 11, 2017). ftp://ftp.swpc.noaa.gov/pub/indices/SPE.txt
  68. I.G. Usoskin, G.A. Kovaltsov, Occurrence of extreme solar particle events: assessment from historical proxy data. Astrophys. J. 757(1), 92 (2012) CrossRefADSGoogle Scholar
  69. S. Vennerstrom, L. Lefevre, M. Dumbović, N. Crosby, O. Malandraki, I. Patsou, F. Clette, A. Veronig, B. Vršnak, K. Leer, T. Moretto, Extreme geomagnetic storms—1868–2010. Sol. Phys. 291, 1447–1481 (2016).  https://doi.org/10.1007/s11207-016-0897-y CrossRefADSGoogle Scholar
  70. P.T. Verronen, R. Lehmann, Analysis and parameterisation of ionic reactions affecting middle atmospheric HOx and NOy during solar proton events. Ann. Geophys. 31, 909–956 (2013) CrossRefADSGoogle Scholar
  71. P.T. Verronen, A. Seppälä, E. Kyrölä, J. Tamminen, H.M. Pickett, E. Turunen, Production of odd hydrogen in the mesosphere during the January 2005 solar proton event. Geophys. Res. Lett. 33(24), L24811 (2006) CrossRefADSGoogle Scholar
  72. P.T. Verronen, C.J. Rodger, M.A. Clilverd, H.M. Pickett, E. Turunen, Latitudinal extent of the January 2005 solar proton event in the Northern Hemisphere from satellite observations of hydroxyl. Ann. Geophys. 25, 2203–2215 (2007) CrossRefADSGoogle Scholar
  73. F.M. Vitt, C.H. Jackman, A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth’s middle atmosphere as calculated using a two-dimensional model. J. Geophys. Res., Atmos. 101(D3), 6729–6739 (1996) CrossRefADSGoogle Scholar
  74. B. Vršnak, D. Maričić, A.L. Stanger, A.M. Veronig, M. Temmer, D. Roša, Acceleration phase of coronal mass ejections: I. Temporal and spatial scales. Sol. Phys. 241(1), 85–98 (2007) CrossRefADSGoogle Scholar
  75. D.F. Webb, J.H. Allen, Spacecraft and ground anomalies related to the October-November 2003 solar activity. Space Weather 2(3) (2004) Google Scholar
  76. E.W. Wolff, A.E. Jones, S.J.-B. Bauguitte, R.A. Salmon, The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements. Atmos. Chem. Phys. 8(18), 5627–5634 (2008).  https://doi.org/10.5194/acp-8-5627-2008. http://www.atmos-chem-phys.net/8/5627/2008/ CrossRefADSGoogle Scholar
  77. R.C. Whitten, I.G. Poppoff, Physics of the Lower Ionosphere (Prentice Hall, New York, 1965) Google Scholar
  78. J.J. Zhang, C. Wang, T.R. Sun, Y.D. Liu, Risk assessment of the extreme interplanetary shock of 23 July 2012 on low-latitude power networks. Space Weather 14(3), 259–270 (2016) CrossRefADSGoogle Scholar
  79. B. Zhu, Y.D. Liu, J.G. Luhmann, H. Hu, R. Wang, Z. Yang, Solar energetic particle event associated with the 2012 July 23 extreme solar storm. Astrophys. J. 827(2), 146 (2016) CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Pete Riley
    • 1
  • Dan Baker
    • 2
  • Ying D. Liu
    • 3
    • 4
  • Pekka Verronen
    • 5
  • Howard Singer
    • 6
  • Manuel Güdel
    • 7
  1. 1.Predictive Science Inc.San DiegoUSA
  2. 2.LASPUniversity of ColoradoBoulderUSA
  3. 3.State Key Laboratory of Space Weather, National Space Science CenterChinese Academy of SciencesBeijingChina
  4. 4.University of Chinese Academy of SciencesBeijingChina
  5. 5.Finnish Meteorological InstituteHelsinkiFinland
  6. 6.NOAASpace Weather Prediction CenterBoulderUSA
  7. 7.Department of AstrophysicsUniversity of ViennaViennaAustria

Personalised recommendations