Advertisement

Space Science Reviews

, 214:13 | Cite as

The Ionospheric Connection Explorer Mission: Mission Goals and Design

  • T. J. Immel
  • S. L. England
  • S. B. Mende
  • R. A. Heelis
  • C. R. Englert
  • J. Edelstein
  • H. U. Frey
  • E. J. Korpela
  • E. R. Taylor
  • W. W. Craig
  • S. E. Harris
  • M. Bester
  • G. S. Bust
  • G. Crowley
  • J. M. Forbes
  • J.-C. Gérard
  • J. M. Harlander
  • J. D. Huba
  • B. Hubert
  • F. Kamalabadi
  • J. J. Makela
  • A. I. Maute
  • R. R. Meier
  • C. Raftery
  • P. Rochus
  • O. H. W. Siegmund
  • A. W. Stephan
  • G. R. Swenson
  • S. Frey
  • D. L. Hysell
  • A. Saito
  • K. A. Rider
  • M. M. Sirk
Article
Part of the following topical collections:
  1. The Ionospheric Connection Explorer (ICON) mission

Abstract

The Ionospheric Connection Explorer, or ICON, is a new NASA Explorer mission that will explore the boundary between Earth and space to understand the physical connection between our world and our space environment. This connection is made in the ionosphere, which has long been known to exhibit variability associated with the sun and solar wind. However, it has been recognized in the 21st century that equally significant changes in ionospheric conditions are apparently associated with energy and momentum propagating upward from our own atmosphere. ICON’s goal is to weigh the competing impacts of these two drivers as they influence our space environment. Here we describe the specific science objectives that address this goal, as well as the means by which they will be achieved. The instruments selected, the overall performance requirements of the science payload and the operational requirements are also described. ICON’s development began in 2013 and the mission is on track for launch in 2018. ICON is developed and managed by the Space Sciences Laboratory at the University of California, Berkeley, with key contributions from several partner institutions.

Keywords

Aeronomy Ionospheres Thermospheres Ion-Neutral Interactions Atmospheric Waves Geospace 

Notes

Acknowledgements

ICON is supported by NASA’s Explorers Program through contracts NNG12FA45C and NNG12FA42I. The authors wish to acknowledge the key contributions of Bill Donakowski (Payload Mechanical Engineer) and Bill Gibson (NASA Standing Review Board) who passed on before ICON was delivered. The discoveries of this mission will stand as a testament to their disciplined expertise and commitment to space science.

References

  1. P. Alken, A quiet time empirical model of equatorial vertical plasma drift in the Peruvian sector based on 150 km echoes. J. Geophys. Res. 114, 02308 (2009). doi: 10.1029/2008JA013751 CrossRefGoogle Scholar
  2. M. Blanc, A.D. Richmond, The ionospheric disturbance dynamo. J. Geophys. Res. 85, 1669–1688 (1980) ADSCrossRefGoogle Scholar
  3. S.W. Bougher, T.E. Cravens, J. Grebowsky, J. Luhmann, The aeronomy of Mars: characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Sci. Rev. 195, 423–456 (2015). doi: 10.1007/s11214-014-0053-7 ADSCrossRefGoogle Scholar
  4. S. Bowyer, J. Edelstein, M. Lampton, Very high sensitivity extreme ultraviolet spectrometer for diffuse radiation. Astrophys. J. 485(2), 523 (1997) ADSCrossRefGoogle Scholar
  5. J. Burt, B. Smith, The deep space climate observatory: the DSCOVR mission, in Aerospace Conference, 2012 IEEE (IEEE Publications, New York, New York, 2012), pp. 1–13 Google Scholar
  6. G.S. Bust, T.W. Garner, T.L. Gaussiran, Ionospheric data assimilation three-dimensional (IDA3D): a global, multisensor, electron density specification algorithm. J. Geophys. Res. 109, 11312 (2004). doi: 10.1029/2003JA010234 CrossRefGoogle Scholar
  7. G.S. Bust, S. Datta-Barua, Scientific investigations using IDA4D and EMPIRE, in Modeling the Ionosphere–Thermosphere System, ed. by J. Huba, R. Schunk, G. Khazanov (Wiley, Chichester, 2014). doi: 10.1002/9781118704417.ch23 Google Scholar
  8. S. Chapman, The solar and lunar diurnal variation of the Earth’s magnetism. Philos. Trans. R. Soc. 218(A), 1–118 (1919) ADSCrossRefGoogle Scholar
  9. S. Chapman, R. Lindzen, in Atmospheric Tides. Thermal and Gravitational (Reidel, Dordrecht, 1970) Google Scholar
  10. A.B. Christensen, L.J. Paxton, S. Avery, J. Craven, G. Crowley, D.C. Humm, H. Kil, R.R. Meier, C.-I. Meng, D. Morrison, B.S. Ogorzalek, P. Straus, D.J. Strickland, R.M. Swenson, R.L. Walterscheid, B. Wolven, Y. Zhang, Initial observations with the global ultraviolet imager (GUVI) in the NASA TIMED satellite mission. J. Geophys. Res. 108 (2003). doi: 10.1029/2003JA009918, pp. 16
  11. G.D. Earle, M.C. Kelley, Spectral studies of the sources of ionospheric electric fields. J. Geophys. Res. 92, 213–224 (1987). doi: 10.1029/JA092iA01p00213 ADSCrossRefGoogle Scholar
  12. S.L. England, A review of the effects of non-migrating atmospheric tides on the Earth’s low-latitude ionosphere. Space Sci. Rev. 168, 211–236 (2012). doi: 10.1007/s11214-011-9842-4 ADSCrossRefGoogle Scholar
  13. S.L. England, T.J. Immel, E. Sagawa, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, Effect of atmospheric tides on the morphology of the quiet time, postsunset equatorial ionospheric anomaly. J. Geophys. Res. 111, 10–19 (2006a). doi: 10.1029/2006JA011795 CrossRefGoogle Scholar
  14. S.L. England, S. Maus, T.J. Immel, S.B. Mende, Longitudinal variation of the E-region electric fields caused by atmospheric tides. Geophys. Res. Lett. 33, 21105 (2006b). doi: 10.1029/2006GL027465 ADSCrossRefGoogle Scholar
  15. S.L. England, T.J. Immel, J.D. Huba, Modeling the longitudinal variation in the post-sunset far-ultraviolet OI airglow using the SAMI2 model. J. Geophys. Res. 113, 01309 (2008). doi: 10.1029/2007JA012536 CrossRefGoogle Scholar
  16. S.L. England, X. Zhang, T.J. Immel, J.M. Forbes, R. DeMajistre, The effect of non-migrating tides on the morphology of the equatorial ionospheric anomaly: seasonal variability. Earth Planets Space 61, 493–503 (2009). doi: 10.1186/BF03353166 ADSCrossRefGoogle Scholar
  17. S.L. England, T.J. Immel, J.D. Huba, M.E. Hagan, A. Maute, R. DeMajistre, Modeling of multiple effects of atmospheric tides on the ionosphere: an examination of possible coupling mechanisms responsible for the longitudinal structure of the equatorial ionosphere. J. Geophys. Res. 115, 05308 (2010). doi: 10.1029/2009JA014894 CrossRefGoogle Scholar
  18. C.R. Englert, J.M. Harlander, C.M. Brown, K.D. Marr, I.J. Miller, J.E. Stump, J. Hancock, J.Q. Peterson, J. Kumler, W.H. Morrow, T.A. Mooney, S. Ellis, S.B. Mende, S.E. Harris, M.H. Stevens, J.J. Makela, B.J. Harding, T.J. Immel, Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): instrument design and calibration. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0358-4 Google Scholar
  19. J.A. Fejer, Semidiurnal currents and electron drifts in the ionosphere. J. Atmos. Terr. Phys. 4, 184–203 (1953). doi: 10.1016/0021-9169(53)90054-3 ADSCrossRefGoogle Scholar
  20. J.M. Forbes, The upper mesosphere and lower thermosphere: a review of experiment and theory, in Tidal and Planetary Waves, ed. by R.M. Johnson, T.L. Killeen Geophys. Monogr. Ser., vol. 87 (American Geophys. Union Press, Washington, D.C., 1995) Google Scholar
  21. J.M. Forbes, M.E. Hagan, Thermospheric extensions of the classical expansion functions for semidiurnal tides. J. Geophys. Res. 87, 5253–5259 (1982). doi: 10.1029/JA087iA07p05253 ADSCrossRefGoogle Scholar
  22. J.M. Forbes, X. Zhang, M.E. Hagan, S.L. England, G. Liu, F. Gasperini, On the specification of upward-propagating tides for ICON science investigations. Space Sci. Rev. (2017), this issue. doi: 10.1007/s11214-017-0401-5 Google Scholar
  23. T.J. Fuller-Rowell, D. Rees, H. Rishbeth, A.G. Burns, T.L. Killeen, R.G. Roble, Modelling of composition changes during F-region storms—a reassessment. J. Atmos. Terr. Phys. 53, 541–550 (1991) ADSCrossRefGoogle Scholar
  24. T.J. Fuller-Rowell, G.H. Millward, A.D. Richmond, M.V. Codrescu, Storm-time changes in the upper atmosphere at low latitudes. J. Atmos. Sol.-Terr. Phys. 64, 1383–1391 (2002) ADSCrossRefGoogle Scholar
  25. L.P. Goncharenko, J.L. Chau, H.-L. Liu, A.J. Coster, Unexpected connections between the stratosphere and ionosphere. Geophys. Res. Lett. 37, 10101 (2010). doi: 10.1029/2010GL043125 ADSCrossRefGoogle Scholar
  26. M.E. Hagan, J.M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., Atmos. 107, 6-1 (2002). doi: 10.1029/2001JD001236 CrossRefGoogle Scholar
  27. M.E. Hagan, A. Maute, R.G. Roble, A.D. Richmond, T.J. Immel, S.L. England, The effects of deep tropical clouds on the Earth’s ionosphere. Geophys. Res. Lett. 34, 20109 (2007). doi: 10.1029/2007GL030142 ADSCrossRefGoogle Scholar
  28. L.A. Hall, H.E. Hinteregger, Solar radiation in the extreme ultraviolet and its variation with solar rotation. J. Geophys. Res. 75, 6959–6965 (1970). doi: 10.1029/JA075i034p06959 ADSCrossRefGoogle Scholar
  29. B.J. Harding, J.J. Makela, C.R. Englert, K.D. Marr, J.M. Harlander, S.L. England, T.J. Immel, The MIGHTI wind retrieval algorithm: Description and verification. Space Sci. Rev. 212(1–2), 585–600 (2017), this issue. doi: 10.1007/s11214-017-0359-3 ADSCrossRefGoogle Scholar
  30. J.M. Harlander, C.R. Englert, C.M. Brown, K.D. Marr, I.J. Miller, V. Zastera, B.W. Bach, S.B. Mende, Michelson interferometer for global high-resolution thermospheric imaging (MIGHTI): monolithic interferometer design and test. Space Sci. Rev. (2017). doi: 10.1007/s11214-017-0374-4 Google Scholar
  31. W.A. Hartman, R.A. Heelis, Longitudinal variations in the equatorial vertical drift in the topside ionosphere. J. Geophys. Res. 112 (2007). doi: 10.1029/2006JA011773
  32. R.A. Heelis, Electrodynamics in the low and middle latitude ionosphere: a tutorial. J. Atmos. Terr. Phys. 66, 825–838 (2004). doi: 10.1016/j.jastp.2004.01.034 ADSCrossRefGoogle Scholar
  33. R.A. Heelis, R. Stoneback, G.D. Earle, R.A. Haaser, M.A. Abdu, Medium-scale equatorial plasma irregularities observed by coupled ion-neutral dynamics investigation sensors aboard the communication navigation outage forecast system in a prolonged solar minimum. J. Geophys. Res. 115, 10321 (2010). doi: 10.1029/2010JA015596 CrossRefGoogle Scholar
  34. R.A. Heelis, R.A. Stoneback, M.D. Perdue, M.P. Depew, Z.A. Morgan, M.D. Mankey, C.R. Lippincott, L.L. Harmon, B.J. Holt, Ion velocity measurements for the Ionospheric Connections Explorer. Space Sci. Rev. (2017), this issue. doi: 10.1007/s11214-017-0383-3 Google Scholar
  35. C.O. Hines, Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 38, 1441–1481 (1960) ADSCrossRefGoogle Scholar
  36. C.O. Hines, The upper atmosphere in motion. Q. J. R. Meteorol. Soc. 89, 1–42 (1963). doi: 10.1002/qj.49708937902 ADSCrossRefGoogle Scholar
  37. C.O. Hines, Diurnal tide in the upper atmosphere. J. Geophys. Res. 71, 1453–1459 (1966). doi: 10.1029/JZ071i005p01453 ADSCrossRefGoogle Scholar
  38. C.-S. Huang, F.J. Rich, W.J. Burke, Storm time electric fields in the equatorial ionosphere observed near the dusk meridian. J. Geophys. Res. 115, 08313 (2010). doi: 10.1029/2009JA015150 CrossRefGoogle Scholar
  39. J.D. Huba, G. Joyce, S. Sazykin, R. Wolf, R. Spiro, Simulation study of penetration electric field effects on the low- to mid-latitude ionosphere. Geophys. Res. Lett. 32 (2005). doi: 10.1029/2005GL024162
  40. J.D. Huba, A. Maute, G. Crowley, SAMI3-ICON: model of the ionosphere/plasmasphere system. Space Sci. Rev. (2017), this issue. doi: 10.1007/s11214-017-0415-z Google Scholar
  41. T.J. Immel, G. Crowley, J.D. Craven, R.G. Roble, Dayside enhancements of thermospheric O/N2 following magnetic storm onset. J. Geophys. Res. 106, 15471–15488 (2001) ADSCrossRefGoogle Scholar
  42. T.J. Immel, S.B. Mende, H.U. Frey, N. Østgaard, G.R. Gladstone, Effect of the 14 July 2000 solar flare on Earth’s FUV emissions. J. Geophys. Res. 180, 1155 (2003). doi: 10.1029/2001JA009060 CrossRefGoogle Scholar
  43. T.J. Immel, E. Sagawa, S.L. England, S.B. Henderson, M.E. Hagan, S.B. Mende, H.U. Frey, C.M. Swenson, L.J. Paxton, The control of equatorial ionospheric morphology by atmospheric tides. Geophys. Res. Lett. 33, 15108 (2006). doi: 10.1029/2006GL026161 ADSCrossRefGoogle Scholar
  44. T.J. Immel, S.L. England, X. Zhang, J.M. Forbes, R. DeMajistre, Upward propagating tidal effects across the E- and F-regions of the ionosphere. Earth Planets Space 61, 505–512 (2009) ADSCrossRefGoogle Scholar
  45. B.M. Jakosky, R.P. Lin, J.M. Grebowsky, J.G. Luhmann, D.F. Mitchell, G. Beutelschies, T. Priser, M. Acuna, L. Andersson, D. Baird, D. Baker, R. Bartlett, M. Benna, S. Bougher, D. Brain, D. Carson, S. Cauffman, P. Chamberlin, J.-Y. Chaufray, O. Cheatom, J. Clarke, J. Connerney, T. Cravens, D. Curtis, G. Delory, S. Demcak, A. DeWolfe, F. Eparvier, R. Ergun, A. Eriksson, J. Espley, X. Fang, D. Folta, J. Fox, C. Gomez-Rosa, S. Habenicht, J. Halekas, G. Holsclaw, M. Houghton, R. Howard, M. Jarosz, N. Jedrich, M. Johnson, W. Kasprzak, M. Kelley, T. King, M. Lankton, D. Larson, F. Leblanc, F. Lefevre, R. Lillis, P. Mahaffy, C. Mazelle, W. McClintock, J. McFadden, D.L. Mitchell, F. Montmessin, J. Morrissey, W. Peterson, W. Possel, J.-A. Sauvaud, N. Schneider, W. Sidney, S. Sparacino, A.I.F. Stewart, R. Tolson, D. Toublanc, C. Waters, T. Woods, R. Yelle, R. Zurek, The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev. 195, 3–48 (2015). doi: 10.1007/s11214-015-0139-x ADSCrossRefGoogle Scholar
  46. F. Kamalabadi, J. Qin, B. Harding, D. Iliou, J. Makela, R.R. Meier, S.L. England, H.U. Frey, S.B. Mende, T.J. Immel, Inferring nighttime ionospheric parameters with the Far Ultraviolet Imager onboard the Ionospheric Connection Explorer. Space Sci. Rev. (2017), this issue Google Scholar
  47. S. Kato, Horizontal wind systems in the ionospheric E region deduced from the dynamo theory of geomagnetic Sq variation, Part II. J. Geomagn. Geoelectr. 8, 24–37 (1956) ADSCrossRefGoogle Scholar
  48. S. Kato, Diurnal atmospheric oscillation, 1, eigenvalues and Hough functions. J. Geophys. Res. 71, 3201–3209 (1966) ADSCrossRefGoogle Scholar
  49. M.C. Kelley, The Earth’s Ionosphere, Plasma Physics and Electrodynamics, 1st edn. (Academic Press, Inc., San Diego, 1989) Google Scholar
  50. M.C. Kelley, R.R. Ilma, M. Nicolls, P. Erickson, L. Goncharenko, J.L. Chau, N. Aponte, J.U. Kozyra, Spectacular low- and mid-latitude electrical fields and neutral winds during a superstorm. J. Atmos. Sol.-Terr. Phys. 72, 285–291 (2010). doi: 10.1016/j.jastp.2008.12.006 ADSCrossRefGoogle Scholar
  51. H. Kil, S.-J. Oh, M.C. Kelley, L.J. Paxton, S.L. England, E. Talaat, K.-W. Min, S.-Y. Su, Longitudinal structure of the vertical E × B drift and ion density seen from ROCSAT-1. Geophys. Res. Lett. 34, 14110 (2007). doi: 10.1029/2007GL030018 ADSCrossRefGoogle Scholar
  52. M.O. Lampton, O.H.W. Siegmund, R. Raffanti, Delay line anodes for microchannel plate spectrometers. Rev. Sci. Instrum. 58, 2298–2305 (1987) ADSCrossRefGoogle Scholar
  53. M.F. Larsen, Winds and shears in the mesosphere and lower thermosphere: results from four decades of chemical release wind measurements. J. Geophys. Res. 107, 1215 (2002). doi: 10.1029/2001JA000218 Google Scholar
  54. C.H. Lin, W. Wang, M.E. Hagan, C.C. Hsiao, T.J. Immel, M.L. Hsu, J.Y. Liu, L.J. Paxton, T.W. Fang, C.H. Liu, Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: three-dimensional electron density structures. Geophys. Res. Lett. 34, 11112 (2007). doi: 10.1029/2007GL029265 ADSCrossRefGoogle Scholar
  55. H. Lühr, K. Häusler, C. Stolle, Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides. Geophys. Res. Lett. 34, 16102 (2007). doi: 10.1029/2007GL030639 ADSCrossRefGoogle Scholar
  56. N. Maruyama, A.D. Richmond, T.J. Fuller-Rowell, M.V. Codrescu, S. Sazykin, F.R. Tof- foletto, R.W. Spiro, G.H. Millward, Interaction between direct penetration and disturbance dynamo electric fields in the storm-time equatorial ionosphere. Geophys. Res. Lett. 32, 17105 (2005). doi: 10.1029/2005GL023763 ADSCrossRefGoogle Scholar
  57. N. Maruyama, S. Sazykin, R.W. Spiro, D. Anderson, A. Anghel, R.A. Wolf, F.R. Toffoletto, T.J. Fuller-Rowell, M.V. Codrescu, A.D. Richmond, G.H. Millward, Modeling storm-time electrodynamics of the low-latitude ionosphere thermosphere system: can long lasting disturbance electric fields be accounted for? J. Atmos. Sol.-Terr. Phys. 69, 1182–1199 (2007). doi: 10.1016/j.jastp.2006.08.020 ADSCrossRefGoogle Scholar
  58. A. Maute, Thermosphere–ionosphere-electrodynamics general circulation model for the Ionospheric Connection Explorer: TIEGCM-ICON. Space Sci. Rev. (2017), this issue. doi: 10.1007/s11214-017-0330-3 Google Scholar
  59. H.G. Mayr, P. Bauer, H.C. Brinton, L.H. Brace, W.E. Potter, Diurnal and seasonal variations in atomic and molecular oxygen inferred from Atmosphere Explorer-C. Geophys. Res. Lett. 3, 77–80 (1976) ADSCrossRefGoogle Scholar
  60. S.B. Mende, Observing the magnetosphere through global auroral imaging: 2. Observing techniques. J. Geophys. Res. 121, 10 (2016). doi: 10.1002/2016JA022607 Google Scholar
  61. S.B. Mende, H. Heetderks, H.U. Frey, M. Stock, M. Lampton, S.P. Geller, R. Abiad, O.H.W. Siegmund, S. Habraken, E. Renotte, C. Jamar, P. Rochus, J.-C. Gérard, R. Sigler, H. Lauche, Far ultraviolet imaging from the IMAGE spacecraft. 3. Spectral imaging of Lyman-\(\alpha\) and OI 135.6 nm. Space Sci. Rev. 91, 287–318 (2000) ADSCrossRefGoogle Scholar
  62. S.B. Mende, H.U. Frey, K. Rider, C. Chou, S.E. Harris, O.H.W. Siegmund, S.L. England, C.W. Wilkins, W.W. Craig, P. Turin, N. Darling, T.J. Immel, J. Loicq, P. Blain, E. Syrstadt, B. Thompson, R. Burt, J. Champagne, P. Sevilla, S. Ellis, The Far Ultra-Violet imager on the ICON mission. Space Sci. Rev. (2017), this issue. doi: 10.1007/s11214-017-0386-0 Google Scholar
  63. C.G. Park, D.L. Carpenter, D.B. Wiggin, Electron density in the plasmasphere – Whistler data on solar cycle, annual, and diurnal variations. J. Geophys. Res. 83, 3137–3144 (1978). doi: 10.1029/JA083iA07p03137 ADSCrossRefGoogle Scholar
  64. N.M. Pedatella, J. Oberheide, E.K. Sutton, H.-L. Liu, J.L. Anderson, K. Raeder, Short-term nonmigrating tide variability in the mesosphere, thermosphere, and ionosphere. J. Geophys. Res. 121, 3621–3633 (2016). doi: 10.1002/2016JA022528 CrossRefGoogle Scholar
  65. A.D. Richmond, Modeling equatorial ionospheric electric fields. J. Atmos. Terr. Phys. 57, 1103–1115 (1995). doi: 10.1016/0021-9169(94)00126-9 ADSCrossRefGoogle Scholar
  66. A.D. Richmond, E.C. Ridley, R.G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19, 601–604 (1992) ADSCrossRefGoogle Scholar
  67. K. Rider, T.J. Immel, E.R. Taylor, W.W. Craig, ICON: where Earth’s weather meets space weather, in 2015 IEEE Aerospace Conference (IEEE, New York, 2015), pp. 1–10. doi: 10.1109/AERO.2015.7119120 Google Scholar
  68. H. Rishbeth, Thermospheric winds and the F-region, a review. J. Atmos. Terr. Phys. 34, 1–47 (1972) ADSCrossRefGoogle Scholar
  69. H. Rishbeth, T.J. Fuller-Rowell, D. Rees, Diffusive equilibrium and vertical motion in the thermosphere during a severe magnetic storm: a computational study. Planet. Space Sci. 35, 1157–1165 (1987). doi: 10.1016/0032-0633(87)90022-5 ADSCrossRefGoogle Scholar
  70. R.G. Roble, G.G. Shepherd, An analysis of wind imaging interferometer observations of O(1S) equatorial emission rates using the thermosphere–ionosphere–mesosphere-electrodynamics general circulation model. J. Geophys. Res. 102, 2467–2474 (1997) ADSCrossRefGoogle Scholar
  71. R.G. Roble, E.C. Ridley, A.D. Richmond, R.E. Dickinson, A coupled thermo- sphere/ionosphere general circulation model. Geophys. Res. Lett. 15, 1325–1328 (1988) ADSCrossRefGoogle Scholar
  72. E. Sagawa, T.J. Immel, H.U. Frey, S.B. Mende, Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV. J. Geophys. Res. 110, 11302 (2005) CrossRefGoogle Scholar
  73. R.W. Schunk, A.F. Nagy, Electron temperature in the f region of the ionosphere: theory and observation. Rev. Geophys. 16, 355–399 (1978) ADSCrossRefGoogle Scholar
  74. M.M. Sirk, E.J. Korpela, Y. Ishikawa, J. Edelstein, E.H. Wishnow, C. Smith, J. McCauley, J.B. McPhate, J. Curtis, T. Curtis, S.R. Gibson, S. Jelinsky, J.A. Lynn, M. Marckwordt, N. Miller, M. Raffanti, W. Van Shourt, A.W. Stephan, T.J. Immel, Design and performance of the ICON EUV spectrograph. Space Sci. Rev. (2017), this issue. doi: 10.1007/s11214-017-0384-2 Google Scholar
  75. T.G. Slanger, G. Black, Electronic-to-vibrational energy transfer efficiency in the O(1D)-N2 and O(1D)-CO systems. J. Chem. Phys. 60, 468–477 (1974). doi: 10.1063/1.1681064 ADSCrossRefGoogle Scholar
  76. T.G. Slanger, G. Black, O/1S/ quenching by O/3P/. J. Chem. Phys. 64, 3763–3766 (1976). doi: 10.1063/1.432691 ADSCrossRefGoogle Scholar
  77. J.J. Sojka, J. Jensen, M. David, R.W. Schunk, T. Woods, F. Eparvier, Modeling the ionospheric E and F1 regions: using SDO-EVE observations as the solar irradiance driver. J. Geophys. Res. 118, 5379–5391 (2013). doi: 10.1002/jgra.50480 CrossRefGoogle Scholar
  78. A.W. Stephan, E.J. Korpela, M.M. Sirk, S.L. England, T.J. Immel, Daytime ionosphere retrieval algorithm for the Ionospheric Connection Explorer (ICON). Space Sci. Rev. (2017a), this issue. doi: 10.1007/s11214-017-0385-1 Google Scholar
  79. A.W. Stephan, R.R. Meier, S.L. England, H.U. Frey, S.B. Mende, T.J. Immel, Daytime O/N2 retrieval algorithm for the Ionospheric Connection Explorer (ICON). Space Sci. Rev. (2017b), this issue Google Scholar
  80. M.H. Stevens, C.R. Englert, J.M. Harlander, S.L. England, K.D. Marr, J.M. Harlander, C.M. Brown, T.J. Immel, Retrieval of lower thermospheric temperatures from O2 A band emission: The MIGHTI experiment on ICON. Space Sci. Rev. (2017), this issue. doi: 10.1007/s11214-017-0434-9 Google Scholar
  81. E.R. Talaat, R.S. Lieberman, Direct observations of nonmigrating diurnal tides in the equatorial thermosphere. Geophys. Res. Lett. 37, 04803 (2010). doi: 10.1029/2009GL041845 ADSCrossRefGoogle Scholar
  82. F. Toffoletto, S. Sazykin, R. Spiro, R. Wolf, Inner magnetospheric modeling with the Rice Convection Model. Space Sci. Rev. 107, 175–196 (2003). doi: 10.1023/A:1025532008047 ADSCrossRefGoogle Scholar
  83. M.R. Torr, D.G. Torr, R.A. Ong, H.E. Hinteregger, Ionization frequencies for major thermospheric constituents as a function of Solar Cycle 21. Geophys. Res. Lett. 6, 771–774 (1979). doi: 10.1029/GL006i010p00771 ADSCrossRefGoogle Scholar
  84. B. Tsurutani, A. Mannucci, B. Iijima, M.A. Abdu, J.H.A. Sobral, W. Gonzalez, F. Guarnieri, T. Tsuda, A. Saito, K. Yumoto, B. Fejer, T.J. Fuller-Rowell, J. Kozyra, J.C. Foster, A. Coster, V.M. Vasyliunas, Global dayside ionospheric uplift and enhancement associated with interplanetary electric fields. J. Geophys. Res. 109(A18), 8302 (2004). doi: 10.1029/2003JA010342 CrossRefGoogle Scholar
  85. E.H. Vestine, Winds in the upper atmosphere deduced from the dynamo theory of geomagnetic disturbance. J. Geophys. Res. 59(1), 93–128 (1954) ADSCrossRefGoogle Scholar
  86. H. Volland, H.G. Mayr, Theoretical aspects of tidal and planetary wave propagation at thermospheric heights. Rev. Geophys. Space Phys. 15, 203–226 (1977). doi: 10.1029/RG015i002p00203 ADSCrossRefGoogle Scholar
  87. C.W. Wilkins, S.B. Mende, H.U. Frey, Time-delay integration imaging with ICON’s Far-Ultraviolet spectrograph. Space Sci. Rev. (2017), this issue Google Scholar
  88. R.F. Woodman, R.G. Rastogi, C. Calderon, Solar cycle effects on the electric fields in the equatorial ionosphere. J. Geophys. Res. 82, 5257–5261 (1977). doi: 10.1029/JA082i032p05257 ADSCrossRefGoogle Scholar
  89. Y. Zhang, S. England, L.J. Paxton, Thermospheric composition variations due to nonmigrating tides and their effect on ionosphere. Geophys. Res. Lett. 37, 17103 (2010). doi: 10.1029/2010GL044313 ADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • T. J. Immel
    • 1
  • S. L. England
    • 15
  • S. B. Mende
    • 1
  • R. A. Heelis
    • 2
  • C. R. Englert
    • 3
  • J. Edelstein
    • 1
  • H. U. Frey
    • 1
  • E. J. Korpela
    • 1
  • E. R. Taylor
    • 1
  • W. W. Craig
    • 1
  • S. E. Harris
    • 1
  • M. Bester
    • 1
  • G. S. Bust
    • 4
  • G. Crowley
    • 5
  • J. M. Forbes
    • 6
  • J.-C. Gérard
    • 7
  • J. M. Harlander
    • 8
  • J. D. Huba
    • 3
  • B. Hubert
    • 7
  • F. Kamalabadi
    • 9
  • J. J. Makela
    • 9
  • A. I. Maute
    • 10
  • R. R. Meier
    • 11
  • C. Raftery
    • 1
    • 12
  • P. Rochus
    • 7
  • O. H. W. Siegmund
    • 1
  • A. W. Stephan
    • 3
  • G. R. Swenson
    • 9
  • S. Frey
    • 1
  • D. L. Hysell
    • 13
  • A. Saito
    • 14
  • K. A. Rider
    • 1
  • M. M. Sirk
    • 1
  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.University of Texas at DallasDallasUSA
  3. 3.Naval Research LaboratoryWashingtonUSA
  4. 4.Applied Physics LaboratoryLaurelUSA
  5. 5.ASTRABoulderUSA
  6. 6.University of ColoradoBoulderUSA
  7. 7.University of LiègeLiègeBelgium
  8. 8.St Cloud State UniversitySt. CloudUSA
  9. 9.University of IllinoisChampaign-UrbanaUSA
  10. 10.National Center for Atmospheric ResearchBoulderUSA
  11. 11.George Mason UniversityFairfaxUSA
  12. 12.National Solar ObservatoryBoulderUSA
  13. 13.Cornell UniversityIthacaUSA
  14. 14.Kyoto UniversityKyotoJapan
  15. 15.Virginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations