Space Science Reviews

, 214:19 | Cite as

OSIRIS-REx Contamination Control Strategy and Implementation

  • J. P. Dworkin
  • L. A. Adelman
  • T. Ajluni
  • A. V. Andronikov
  • J. C. Aponte
  • A. E. Bartels
  • E. Beshore
  • E. B. Bierhaus
  • J. R. Brucato
  • B. H. Bryan
  • A. S. Burton
  • M. P. Callahan
  • S. L. Castro-Wallace
  • B. C. Clark
  • S. J. Clemett
  • H. C. ConnollyJr.
  • W. E. Cutlip
  • S. M. Daly
  • V. E. Elliott
  • J. E. Elsila
  • H. L. Enos
  • D. F. Everett
  • I. A. Franchi
  • D. P. Glavin
  • H. V. Graham
  • J. E. Hendershot
  • J. W. Harris
  • S. L. Hill
  • A. R. Hildebrand
  • G. O. Jayne
  • R. W. JenkensJr.
  • K. S. Johnson
  • J. S. Kirsch
  • D. S. Lauretta
  • A. S. Lewis
  • J. J. Loiacono
  • C. C. Lorentson
  • J. R. Marshall
  • M. G. Martin
  • L. L. Matthias
  • H. L. McLain
  • S. R. Messenger
  • R. G. Mink
  • J. L. Moore
  • K. Nakamura-Messenger
  • J. A. NuthIII
  • C. V. Owens
  • C. L. Parish
  • B. D. Perkins
  • M. S. Pryzby
  • C. A. Reigle
  • K. Righter
  • B. Rizk
  • J. F. Russell
  • S. A. Sandford
  • J. P. Schepis
  • J. Songer
  • M. F. Sovinski
  • S. E. Stahl
  • K. Thomas-Keprta
  • J. M. Vellinga
  • M. S. Walker
Article
Part of the following topical collections:
  1. OSIRIS-REx

Abstract

OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and <180 ng/cm2 of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.

Keywords

OSIRIS-REx Bennu Asteroid Sample Return Contamination 

Acronyms

AAM3

Asteroid Approach Maneuver 3

ACS

attitude control system

ARC

NASA Ames Research Center

ATLO

Assembly, Test, and Launch Operations

ATP

adenosine triphosphate

CCWG

Contamination Control Working Group

CDR

Critical Design Review

CEWG

Contamination Engineering Working Group

CFD

computational fluid dynamics

DAC

DSMC Analysis Code

DART™

Direct Analysis in Real Time

DNA

Deoxyribonucleic acid

DSMC

Direct Simulation Monte Carlo

DTGS

deuterated glycine trimer

EA

combustion elemental analyzer

EACA

\(\varepsilon\)-amino-\(n\)-caproic acid

EDL

Earth descent and landing

EDU

engineering design unit

EDX

energy dispersive X-ray spectroscopy

EMP

electron microprobe

FTIR

Fourier transform infrared spectroscopy

GC

gas chromatography

GC-IRMS

GC combustion isotope ratio MS

GSFC

NASA Goddard Space Flight Center

ICP-MS

inductively coupled plasma MS

IEST

Institute of Environmental Sciences and Technology

IRMS

isotope ratio mass spectrometer

ISO

International Organization for Standardization

JSC

NASA Johnson Space Center

KSC

NASA Kennedy Space Center

LA-ICPMS

laser ablation inductively coupled plasma MS

LC

liquid chromatography

LM

Lockheed Martin Space Systems

LPF

large payload fairing

MAVEN

Mars Atmosphere and Volatile EvolutioN Mission

MRD

mission requirement document

MS

mass spectrometry

NASA

National Aeronautics and Space Administration

NRC

National Research Council

NVR

nonvolatile residue

OCAMS

OSIRIS-REx Camera Suite

OCSSG

Mars Organic Contamination Science Steering Group

OLA

OSIRIS-REx Laser Altimeter

OSIRIS-REx

Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer

OTES

OSIRIS-REx Thermal Emission Spectrometer

OTU

operational taxonomic unit

OVIRS

OSIRIS-REx Visible and Infrared Spectrometer

PDR

preliminary design review

PFTE

polytetrafluoroethylene

PHSF

KSC Payload Hazardous Servicing Facility

PI

principal investigator

ppb

parts per billion

ppm

parts per million

REXIS

Regolith X-ray Imaging Spectrometer

SEM

scanning electron microscopy

SRC

sample return capsule

TAG

touch-and-go

TAGSAM

touch-and-go sample acquisition mechanism

TEM

transmission electron microscopy

ToF-SIMS

time-of-flight secondary ion MS

UHP

ultrahigh purity

ULA

United Launch Alliance

UV

ultraviolet

VC-HS

visibly clean-highly sensitive

VIF

Atlas V vehicle integration facility

XANES

X-ray absorption near edge structure

μ-L2MS

microprobe two-step laser desorption/laser ionization MS

Notes

Acknowledgements

This material is based upon work supported by the National Aeronautics and Space Administration under Contracts NNH09ZDA007O, NNG12FD66C, and NNM10AA11C issued through the New Frontiers Program. We wish to thank the hundreds of people and their families who labored and sacrificed to make OSIRIS-REx a reality.

Supplementary material

11214_2017_439_MOESM1_ESM.pdf (1.2 mb)
(PDF 1.2 MB)
11214_2017_439_MOESM2_ESM.pdf (218 kb)
(PDF 218 kB)
11214_2017_439_MOESM3_ESM.xlsx (1.6 mb)
(XLSX 1.6 MB)

References

  1. L.J. Allamandola, Absorption and emission characteristics of interstellar dust, in Galactic and Extragalactic Infrared Spectroscopy, in Proceedings of the XVIth ESLAB Symposium, Toledo, Spain, December 6–8, 1982, ed. by M.F. Kessler J.P. Phillips (Springer, Dordrecht, 1984), pp. 5–35 Google Scholar
  2. L.J. Bement, Functional performance of pyrovalves. J. Spacecr. Rockets 34, 391–396 (1997) ADSCrossRefGoogle Scholar
  3. E.B. Bierhaus, B.C. Clark, J.W. Harris, K.S. Payne, R.D. Dubisher, D.W. Wurts, R.A. Hund, R.M. Kuhns, T.M. Linn, J.L. Wood, A.J. May, J.P. Dworkin, E. Beshore, D.S. Lauretta, The OSIRIS-REx touch-and-go sample acquisition mechanism (TAGSAM) and flight system. Space Sci. Rev. (2017, this issue) Google Scholar
  4. I. Boogers, W. Plugge, Y.Q. Stokkermans, A.L.L. Duchateau, Ultra-performance liquid chromatographic analysis of amino acids in protein hydrolysates using an automated pre-column derivatisation method. J. Chromatogr. A 1189, 406–409 (2008) CrossRefGoogle Scholar
  5. D.S. Burnett, The genesis solar wind sample return mission: past, present, and future. Meteorit. Planet. Sci. 48, 2351–2370 (2013) ADSCrossRefGoogle Scholar
  6. A.S. Burton, S. Grunsfeld, J.E. Elsila, D.P. Glavin, J.P. Dworkin, The effects of parent-body hydrothermal heating on amino acid abundances in CI-like chondrites. Polar Sci. 8, 255–263 (2014) ADSCrossRefGoogle Scholar
  7. A.S. Burton, J.C. Stern, J.E. Elsila, D.P. Glavin, J.P. Dworkin, Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 41, 5459–5472 (2012) CrossRefGoogle Scholar
  8. D.J. Carré, D.F. Hall, Contamination measurements during operation of hydrazine thrusters on the P78-2 (SCATHA) satellite. J. Spacecr. Rockets 20, 444–449 (1983) ADSCrossRefGoogle Scholar
  9. Q.H.S. Chan, Y. Chikaraishi, Y. Takano, N.O. Ogawa, N. Ohkouchi, Amino acid compositions in heated carbonaceous chondrites and their compound-specific nitrogen isotopic ratios. Earth, Planets Space 68, 7 (2016) ADSCrossRefGoogle Scholar
  10. J.E. Chirivella, Hydrazine Engine Plume Contamination Mapping. Final report AFRPL TR-75-16 (1975) Google Scholar
  11. P.R. Christensen, V.E. Hamilton, G.L. Mehall, D. Pelham, W. O’Donnell, S. Anwar, H. Bowles, S. Chase, J. Fahlgren, Z. Farkas, T. Fisher, O. James, I. Kubik, I. Lazbin, M. Miner, M. Rassas, L. Schulze, K. Shamordola, T. Tourville, G. West, R. Woodward, D. Lauretta, The OSIRIS-REx thermal emission spectrometer (OTES) instrument. Space Sci. Rev. (2017, this issue) Google Scholar
  12. B.E. Clark, R.P. Binzel, E.S. Howell, E.A. Cloutis, M. Ockert-Bell, P. Christensen, M.A. Barucci, F. DeMeo, D.S. Lauretta, H. Connolly, A. Soderberg, C. Hergenrother, L. Lim, J. Emery, M. Mueller, Asteroid (101955) 1999 RQ36: spectroscopy from 0.4 to 2.4 μm and meteorite analogs. Icarus 216, 462–475 (2011) ADSCrossRefGoogle Scholar
  13. S. Clark, One of NASA’s cleanest spacecraft ever is ready to fly. Spaceflight Now. Spaceflight Now Inc. (2016a) Google Scholar
  14. S. Clark, Quick work saved the OSIRIS-REx asteroid mission from nearby explosion. Spaceflight Now. Spaceflight Now Inc. (2016b) Google Scholar
  15. R.C. Edgar, B.J. Haas, J.C. Clemente, C. Quince, R. Knight, UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011) CrossRefGoogle Scholar
  16. J.E. Elsila, D.P. Glavin, J.P. Dworkin, Cometary glycine detected in samples returned by Stardust. Meteorit. Planet. Sci. 44, 1323–1330 (2009) ADSCrossRefGoogle Scholar
  17. J.K. Friedel, E. Scheller, Composition of hydrolysable amino acids in soil organic matter and soil microbial biomass. Soil Biol. Biochem. 34, 315–325 (2002) CrossRefGoogle Scholar
  18. D.P. Glavin, M.P. Callahan, J.P. Dworkin, J.E. Elsila, The effects of parent body processes on amino acids in carbonaceous chondrites. Meteorit. Planet. Sci. 45, 1948–1972 (2010) ADSCrossRefGoogle Scholar
  19. D.P. Glavin, J.P. Dworkin, A. Aubrey, O. Botta, J.H. Doty III., Z. Martins, J.L. Bada, Amino acid analyses of Antarctic CM2 meteorites using liquid chromatography-time of flight-mass spectrometry. Meteorit. Planet. Sci. 41, 889–902 (2006) ADSCrossRefGoogle Scholar
  20. D.P. Glavin, J.P. Dworkin, S.A. Sandford, Detection of cometary amines in samples returned by Stardust. Meteorit. Planet. Sci. 43, 399–413 (2008) ADSCrossRefGoogle Scholar
  21. M. Groethe, S. McDougle, R. Saulsberry, Measurement of debris in the flow from pyrotechnic reaction using an instrumented Hopkinson pressure bar, in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics, 2008) Google Scholar
  22. D.M. Hudgins, S.A. Sandford, L.J. Allamandola, Infrared spectroscopy of polycyclic aromatic hydrocarbon cations. 1. Matrix-isolated naphthalene and perdeuterated naphthalene. J. Phys. Chem. 98, 4243–4253 (1994) CrossRefGoogle Scholar
  23. IEST, IEST-STD-CC1246D: Product Cleanliness Levels and Contamination Control Program (Institute for Environmental Science and Technology, Rolling Meadows, IL, 2002) Google Scholar
  24. J.F. Kerridge, Carbon, hydrogen and nitrogen in carbonaceous chondrites: abundances and isotopic compositions in bulk samples. Geochim. Cosmochim. Acta 49, 1707–1714 (1985) ADSCrossRefGoogle Scholar
  25. V. Kolb, J. Dworkin, S. Miller, Alternative bases in the RNA World: the prebiotic synthesis of urazole and its ribosides. J. Mol. Evol. 38, 549–557 (1994) ADSCrossRefGoogle Scholar
  26. D.S. Lauretta, S.S. Balram-Knutson, E. Beshore, W.V. Boynton, C. Drouet d’Aubigny, D.N. DellaGiustina, H.L. Enos, D.R. Gholish, C.W. Hergenrother, E.S. Howell, C.A. Johnson, E.T. Morton, M.C. Nolan, B. Rizk, H.L. Roper, A.E. Bartels, B.J. Bos, J.P. Dworkin, D.E. Highsmith, M.C. Moreau, D.A. Lorenz, L.F. Lim, R. Mink, J.A. Nuth, D.C. Reuter, A.A. Simon, E.B. Bierhaus, B.H. Bryan, R. Ballouz, O.S. Barnouin, R.P. Binzel, W.F. Bottke, V.E. Hamilton, K.J. Walsh, S.R. Chesley, P.R. Christensen, B.E. Clark, H.C. Connolly, M.K. Crombie, M.G. Daly, J.P. Emery, T.J. McCoy, J.W. McMahon, D.J. Scheeres, S. Messenger, K. Nakamura-Messenger, K. Righter, S.A. Sandford, OSIRIS-REx: sample return from asteroid (101955) Bennu. Space Sci. Rev. 212(1–2), 925–984 (2017) ADSCrossRefGoogle Scholar
  27. M.T. La Duc, P. Vaishampayan, H.R. Nilsson, T. Torok, K. Venkateswaran, Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars. Appl. Environ. Microbiol. 78, 5912–5922 (2012) CrossRefGoogle Scholar
  28. K.B. Loftin, Development of Novel DART™ TOFMS Analytical Techniques for the Identification of Organic Contamination on Spaceflight-Related Substrates and Aqueous Media. Doctoral Dissertation, University of Central Florida, Orlando, 2009 Google Scholar
  29. P.R. Mahaffy, D.W. Beaty, M.S. Anderson, G. Aveni, J.L. Bada, S.J. Clemett, D.J. Des Marais, S. Douglas, J.P. Dworkin, R.G. Kern, D.A. Papanastassiou, F.D. Palluconi, J.J. Simmonds, A. Steele, J.H. Waite, A.P. Zent, E. Stansbery, Report of the organic contamination science steering group, in 37th Annual Lunar and Planetary Science Conference, ed. by S. Mackwell (2004) Google Scholar
  30. A. Mahnert, P. Vaishampayan, A.J. Probst, A. Auerbach, C. Moissl-Eichinger, K. Venkateswaran, G. Berg, Cleanroom maintenance significantly reduces abundance but not diversity of indoor microbiomes. PLoS ONE 10, e0134848 (2015) CrossRefGoogle Scholar
  31. R.A. Masterson, M. Chodas, L. Bayley, B. Allen, J. Hong, P. Biswas, C. McMenamin, K. Stout, E. Bokhour, H. Bralower, D. Carte, S. Chen, M. Jones, S. Kissel, H. Schmidt, M. Smith, G. Sondecker, L.F. Lim, J. Grindlay, R.P. Binzel, Regolith X-ay Imaging Spectrometer (REXIS) aboard the OSIRIS-REx Asteroid Sample Return mission. Space Sci. Rev. (2017, this issue) Google Scholar
  32. T.P. Mawhinney, R.S. Robinett, A. Atalay, M.A. Madson, Analysis of amino acids as their tert.-butyldimethylsilyl derivatives by gas-liquid chromatography and mass spectrometry. J. Chromatogr. 358, 231–242 (1986) CrossRefGoogle Scholar
  33. NASA, NPR 8020.12D: planetary protection provisions for robotic extraterrestrial missions. Directorate, Science Mission, NASA Procedural Requirements, NPR 8020.12D 2011. http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=8020&s=12D
  34. NASA, SN-C-0005 revision D: space shuttle contamination control requirements, Lyndon B. Johnson Space Center (1998). https://prod.nais.nasa.gov/eps/eps_data/123414-DRAFT-001-005.pdf
  35. National Research Council (U.S.), Task group on organic environments in the solar system. Exploring Organic Environments in the Solar System, National Academies Press, Washington, DC (2007) Google Scholar
  36. F.C. Neidhardt, J.L. Ingraham, M. Schaechter, Physiology of the Bacterial Cell: A Molecular Approach (Sinauer Associates, Sunderland, 1990) Google Scholar
  37. S. Pizzarello, Y. Huang, M.R. Alexandre, Molecular asymmetry in extraterrestrial chemistry: insights from a pristine meteorite. Proc. Natl. Acad. Sci. USA 105, 3700–3704 (2008) ADSCrossRefGoogle Scholar
  38. D.H. Plemmons, M. Mehta, B.C. Clark, S.P. Kounaves, L.L. Peach, N.O. Renno, L. Tamppari, S.M.M. Young, Effects of the Phoenix Lander descent thruster plume on the Martian surface. J. Geophys. Res., Planets 113, E00A11 (2008). doi: 10.1029/2007JE003059 ADSCrossRefGoogle Scholar
  39. S.A. Sandford, S. Bajt, S.J. Clemett, G.D. Cody, G. Cooper, B.T. Degregorio, V. de Vera, J.P. Dworkin, J.E. Elsila, G.J. Flynn, D.P. Glavin, A. Lanzirotti, T. Limero, M.P. Martin, C.J. Snead, M.K. Spencer, T. Stephan, A. Westphal, S. Wirick, R.N. Zare, M.E. Zolensky, Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2. Meteorit. Planet. Sci. 45, 406–433 (2010) ADSCrossRefGoogle Scholar
  40. B. Schläppi, K. Altwegg, H. Balsiger, M. Hässig, A. Jäckel, P. Wurz, B. Fiethe, M. Rubin, S.A. Fuselier, J.J. Berthelier, J. De Keyser, H. Rème, U. Mall, Influence of spacecraft outgassing on the exploration of tenuous atmospheres with in situ mass spectrometry. J. Geophys. Res. Space Phys. 115, A12313 (2010). doi: 10.1029/2010JA015734 ADSCrossRefGoogle Scholar
  41. S.A. Smith, J.N. Benardini III, D. Anderl, M. Ford, E. Wear, M. Schrader, W. Schubert, L. DeVeaux, A. Paszczynski, S.E. Childers, Identification and characterization of early mission phase microorganisms residing on the Mars science laboratory and assessment of their potential to survive Mars-like conditions. Astrobiology 17(3), 253–265 (2017). doi: 10.1089/ast.2015.1417 ADSCrossRefGoogle Scholar
  42. P. Tsou, D.E. Brownlee, S.A. Sandford, F. Hörz, M.E. Zolensky, Wild 2 and interstellar sample collection and Earth return. J. Geophys. Res., Planets 108(E10), 8113 (2003). doi: 10.1029/2003JE002109 ADSCrossRefGoogle Scholar
  43. Z. Weijun, J. David, O. Yoshihiro, I.K. Ralf, Formation of nitrogen and hydrogen-bearing molecules in solid ammonia and implications for solar system and interstellar ices. Astrophys. J. 674, 1242–1250 (2008) CrossRefGoogle Scholar
  44. B. Williams, P. Antreasian, E. Carranza, C. Jackman, J. Leonard, D. Nelson, B. Page, D. Stanbridge, D. Wibben, K. Williams, M. Moreau, K. Berry, K. Getzandanner, A. Liounis, A. Mashiku, D. Highsmith, B. Sutter, D.S. Lauretta, OSIRIS-REx flight dynamics and navigation design. Space Sci. Rev. (2017, this issue) Google Scholar
  45. S. Woods, R. Saulsberry, C. Keddy, H. Julien, Estimation of temperature and other properties in pyrotechnic reactions using pressure measurements and application of thermodynamic equilibrium code, in 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, American Institute of Aeronautics and Astronautics (2008) Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017 (outside the USA) 2017

Authors and Affiliations

  • J. P. Dworkin
    • 1
  • L. A. Adelman
    • 1
    • 2
  • T. Ajluni
    • 1
    • 2
  • A. V. Andronikov
    • 3
  • J. C. Aponte
    • 1
    • 4
  • A. E. Bartels
    • 1
  • E. Beshore
    • 5
  • E. B. Bierhaus
    • 6
  • J. R. Brucato
    • 7
  • B. H. Bryan
    • 6
  • A. S. Burton
    • 8
  • M. P. Callahan
    • 9
  • S. L. Castro-Wallace
    • 8
  • B. C. Clark
    • 10
  • S. J. Clemett
    • 11
    • 8
  • H. C. ConnollyJr.
    • 12
  • W. E. Cutlip
    • 1
  • S. M. Daly
    • 13
  • V. E. Elliott
    • 1
  • J. E. Elsila
    • 1
  • H. L. Enos
    • 5
  • D. F. Everett
    • 1
  • I. A. Franchi
    • 14
  • D. P. Glavin
    • 1
  • H. V. Graham
    • 1
    • 15
  • J. E. Hendershot
    • 1
    • 16
  • J. W. Harris
    • 6
  • S. L. Hill
    • 11
    • 13
  • A. R. Hildebrand
    • 17
  • G. O. Jayne
    • 1
    • 2
  • R. W. JenkensJr.
    • 1
  • K. S. Johnson
    • 6
  • J. S. Kirsch
    • 11
    • 13
  • D. S. Lauretta
    • 5
  • A. S. Lewis
    • 1
  • J. J. Loiacono
    • 1
  • C. C. Lorentson
    • 1
  • J. R. Marshall
    • 18
  • M. G. Martin
    • 1
    • 4
  • L. L. Matthias
    • 13
    • 19
  • H. L. McLain
    • 1
    • 4
  • S. R. Messenger
    • 8
  • R. G. Mink
    • 1
  • J. L. Moore
    • 6
  • K. Nakamura-Messenger
    • 8
  • J. A. NuthIII
    • 1
  • C. V. Owens
    • 13
  • C. L. Parish
    • 6
  • B. D. Perkins
    • 13
  • M. S. Pryzby
    • 1
    • 20
  • C. A. Reigle
    • 6
  • K. Righter
    • 8
  • B. Rizk
    • 5
  • J. F. Russell
    • 6
  • S. A. Sandford
    • 21
  • J. P. Schepis
    • 1
  • J. Songer
    • 6
  • M. F. Sovinski
    • 1
  • S. E. Stahl
    • 22
    • 8
  • K. Thomas-Keprta
    • 11
    • 8
  • J. M. Vellinga
    • 6
  • M. S. Walker
    • 1
  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Arctic Slope Research CorporationBeltsvilleUSA
  3. 3.Czech Geological SurveyPragueCzech Republic
  4. 4.Catholic University of AmericaWashingtonUSA
  5. 5.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  6. 6.Lockheed Martin Space SystemsLittletonUSA
  7. 7.INAF Astrophysical Observatory of ArcetriFlorenceItaly
  8. 8.NASA Johnson Space CenterHoustonUSA
  9. 9.Boise State UniversityBoiseUSA
  10. 10.Space Science InstituteBoulderUSA
  11. 11.Jacobs TechnologyTullahomaUSA
  12. 12.Rowan UniversityGlassboroUSA
  13. 13.NASA Kennedy Space CenterTitusvilleUSA
  14. 14.The Open UniversityMilton KeynesUK
  15. 15.University of MarylandCollege ParkUSA
  16. 16.Ball AerospaceBoulderUSA
  17. 17.University of CalgaryCalgaryCanada
  18. 18.SETI InstituteMountain ViewUSA
  19. 19.AnalexTitusvilleUSA
  20. 20.ATA AerospaceAlbuquerqueUSA
  21. 21.NASA Ames Research CenterMoffett FieldUSA
  22. 22.JES Tech.HoustonUSA

Personalised recommendations