Space Science Reviews

, 214:10 | Cite as

Composition and Chemistry of the Neutral Atmosphere of Venus

  • Emmanuel MarcqEmail author
  • Franklin P. Mills
  • Christopher D. Parkinson
  • Ann Carine Vandaele
Part of the following topical collections:
  1. Venus III


This paper deals with the composition and chemical processes occurring in the neutral atmosphere of Venus. Since the last synthesis, observers as well as modellers have emphasised the spatial and temporal variability of minor species, going beyond a static and uniform picture that may have prevailed in the past. The outline of this paper acknowledges this situation and follows closely the different dimensions along which variability in composition can be observed: vertical, latitudinal, longitudinal, temporal. The strong differences between the atmosphere below and above the cloud layers also dictate the structure of this paper. Observational constraints, obtained from both Earth and Venus Express, as well as 1D, 2D and 3D models results obtained since 1997 are also extensively referred and commented by the authors. An non-exhaustive list of topics included follows: modelled and observed latitudinal and vertical profiles of CO and OCS below the clouds of Venus; vertical profiles of CO and SO2 above the clouds as observed by solar occultation and modelled; temporal and spatial variability of sulphur oxides above the clouds. As a conclusion, open questions and topics of interest for further studies are discussed.


Venus atmosphere Atmospheric composition Spectroscopy Chemical modeling 



The research program was supported in Belgium by the Belgian Federal Science Policy Office and the European Space Agency (ESA, PRODEX program, contracts C 90268, 90113, and 17645). We also recognize the support from the FP7 EuroVenus project (G.A. 606798), from the “Interuniversity Attraction Poles” program financed by the Belgian government (Planet TOPERS), and from the BRAIN research grant BR/143/A2/SCOOP of the Belgian Federal Science Policy Office.

The authors also wish to thank the International Space Science Institute (ISSI) for their fruitful support, in particular to the members of the ISSI International Team “Sulfur Dioxide variability in the Venus atmosphere” which met during 2013–2015 in the facilities of ISSI in Bern, Switzerland.


  1. D.A. Allen, J.W. Crawford, Cloud structure on the dark side of Venus. Nature 307, 222–224 (1984). doi: 10.1038/307222a0 ADSCrossRefGoogle Scholar
  2. G. Arney, V. Meadows, D. Crisp, S.J. Schmidt, J. Bailey, T. Robinson, Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near-infrared spectral windows. J. Geophys. Res., Planets 119, 1860–1891 (2014). doi: 10.1002/2014JE004662 ADSCrossRefGoogle Scholar
  3. J. Bailey, A comparison of water vapor line parameters for modeling the Venus deep atmosphere. Icarus 201, 444–453 (2009). doi: 10.1016/j.icarus.2009.01.013 ADSCrossRefGoogle Scholar
  4. R.J. Barber, J. Tennyson, G.J. Harris, R.N. Tolchenov, A high-accuracy computed water line list. Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006). doi: 10.1111/j.1365-2966.2006.10184.x ADSCrossRefGoogle Scholar
  5. E.S. Barker, Detection of SO2 in the UV spectrum of Venus. Geophys. Res. Lett. 6, 117–120 (1979). doi: 10.1029/GL006i002p00117 ADSCrossRefGoogle Scholar
  6. J.K. Barstow, C.C.C. Tsang, C.F. Wilson, P.G.J. Irwin, F.W. Taylor, K. McGouldrick, P. Drossart, G. Piccioni, S. Tellmann, Models of the global cloud structure on Venus derived from Venus Express observations. Icarus 217, 542–560 (2012). doi: 10.1016/j.icarus.2011.05.018 ADSCrossRefGoogle Scholar
  7. E.J. Barton, C. Hill, S.N. Yurchenko, J. Tennyson, A.S. Dudaryonok, N.N. Lavrentieva, Pressure-dependent water absorption cross sections for exoplanets and other atmospheres. J. Quant. Spectrosc. Radiat. Transf. 187, 453–460 (2017). doi: 10.1016/j.jqsrt.2016.10.024 ADSCrossRefGoogle Scholar
  8. D. Belyaev, O. Korablev, A. Fedorova, J.-L. Bertaux, A.-C. Vandaele, F. Montmessin, A. Mahieux, V. Wilquet, R. Drummond, First observations of SO2 above Venus’ clouds by means of solar occultation in the infrared. J. Geophys. Res., Planets 113, E00B25 (2008). doi: 10.1029/2008JE003143 CrossRefGoogle Scholar
  9. D.A. Belyaev, F. Montmessin, J.-L. Bertaux, A. Mahieux, A. Fedorova, O.I. Korablev, E. Marcq, Y.L. Yung, X. Zhang, Vertical profiling of SO2 and SO above Venus’ clouds by SPICAV/SOIR solar occultations. Icarus 217, 740–751 (2012). doi: 10.1016/j.icarus.2011.09.025 ADSCrossRefGoogle Scholar
  10. J.-L. Bertaux, T. Widemann, A. Hauchecorne, V.I. Moroz, A.P. Ekonomov, VEGA 1 and VEGA 2 entry probes: an investigation of local UV absorption (220–400 nm) in the atmosphere of Venus (SO2, aerosols, cloud structure). J. Geophys. Res. 101, 12709–12746 (1996). doi: 10.1029/96JE00466 ADSCrossRefGoogle Scholar
  11. J.-L. Bertaux, A.-C. Vandaele, O. Korablev, E. Villard, A. Fedorova, D. Fussen, E. Quémerais, D. Belyaev, A. Mahieux, F. Montmessin, C. Muller, E. Neefs, D. Nevejans, V. Wilquet, J.P. Dubois, A. Hauchecorne, A. Stepanov, I. Vinogradov, A. Rodin, J.-L. Bertaux, D. Nevejans, O. Korablev, F. Montmessin, A.-C. Vandaele, A. Fedorova, M. Cabane, E. Chassefière, J.Y. Chaufray, E. Dimarellis, J.P. Dubois, A. Hauchecorne, F. Leblanc, F. Lefèvre, P. Rannou, E. Quémerais, E. Villard, D. Fussen, C. Muller, E. Neefs, E. van Ransbeeck, V. Wilquet, A. Rodin, A. Stepanov, I. Vinogradov, L. Zasova, F. Forget, S. Lebonnois, D. Titov, S. Rafkin, G. Durry, J.C. Gérard, B. Sandel, A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature 450, 646–649 (2007a). doi: 10.1038/nature05974 ADSCrossRefGoogle Scholar
  12. J.-L. Bertaux, D. Nevejans, O. Korablev, E. Villard, E. Quémerais, E. Neefs, F. Montmessin, F. Leblanc, J.P. Dubois, E. Dimarellis, A. Hauchecorne, F. Lefèvre, P. Rannou, J.Y. Chaufray, M. Cabane, G. Cernogora, G. Souchon, F. Semelin, A. Reberac, E. Van Ransbeek, S. Berkenbosch, R. Clairquin, C. Muller, F. Forget, F. Hourdin, O. Talagrand, A. Rodin, A. Fedorova, A. Stepanov, I. Vinogradov, A. Kiselev, Y. Kalinnikov, G. Durry, B. Sandel, A. Stern, J.C. Gérard, SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 1673–1700 (2007b). doi: 10.1016/j.pss.2007.01.016 ADSCrossRefGoogle Scholar
  13. B. Bézard, C. de Bergh, Composition of the atmosphere of Venus below the clouds. J. Geophys. Res., Planets 112, 4 (2007). doi: 10.1029/2006JE002794 CrossRefGoogle Scholar
  14. B. Bézard, C. de Bergh, D. Crisp, J.-P. Maillard, The deep atmosphere of Venus revealed by high-resolution nightside spectra. Nature 345, 508–511 (1990). doi: 10.1038/345508a0 ADSCrossRefGoogle Scholar
  15. B. Bézard, C.C.C. Tsang, R.W. Carlson, G. Piccioni, E. Marcq, P. Drossart, Water vapor abundance near the surface of Venus from Venus Express/VIRTIS observations. J. Geophys. Res., Planets 114, E00B39 (2009). doi: 10.1029/2008JE003251 CrossRefGoogle Scholar
  16. B. Bézard, A. Fedorova, J.-L. Bertaux, A. Rodin, O. Korablev, The 1.10- and \(1.18\mbox{-}\upmu\mbox{m}\) nightside windows of Venus observed by SPICAV-IR aboard Venus Express. Icarus 216, 173–183 (2011). doi: 10.1016/j.icarus.2011.08.025 ADSCrossRefGoogle Scholar
  17. G.L. Bjoraker, H.P. Larson, M.J. Mumma, R. Timmermann, J.L. Montani, Airborne observations of the gas composition of Venus above the cloud tops: measurements of H2O, HDO, HF, and the \(\mathrm{D}/\mathrm{H}\) and \(^{18}\mathrm{O}/^{16}\mathrm{O}\) isotopic ratios, in AAS/Division for Planetary Sciences Meeting Abstracts #24. Bulletin of the American Astronomical Society, vol. 24, 1992, p. 995 Google Scholar
  18. D. Blackie, R. Blackwell-Whitehead, G. Stark, J.C. Pickering, P.L. Smith, J. Rufus, A.P. Thorne, High-resolution photoabsorption cross-section measurements of SO2 at 198 K from 213 to 325 nm. J. Geophys. Res., Planets 116, 3006 (2011). doi: 10.1029/2010JE003707 ADSCrossRefGoogle Scholar
  19. K. Bogumil, J. Orphal, T. Homann, S. Voigt, P. Spietz, O.C. Fleischmann, A. Vogel, M. Hartmann, H. Kromminga, H. Bovensmann, J. Frerick, J.P. Burrows, Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. J. Photochem. Photobiol. A, Chem. 157, 167–184 (2003) CrossRefGoogle Scholar
  20. S.W. Bougher, J.C. Gerard, A.I.F. Stewart, C.G. Fessen, The Venus nitric oxide night airglow—model calculations based on the Venus Thermospheric General Circulation Model. J. Geophys. Res. 95, 6271–6284 (1990). doi: 10.1029/JA095iA05p06271 ADSCrossRefGoogle Scholar
  21. S.W. Bougher, A.S. Brecht, R. Schulte, J. Fischer, C.D. Parkinson, A. Mahieux, V. Wilquet, A. Vandaele, Upper atmosphere temperature structure at the Venusian terminators: a comparison of SOIR and VTGCM results. Planet. Space Sci. 113, 336–346 (2015). doi: 10.1016/j.pss.2015.01.012 ADSCrossRefGoogle Scholar
  22. A.S. Brecht, S.W. Bougher, J.-C. Gérard, C.D. Parkinson, S. Rafkin, B. Foster, Understanding the variability of nightside temperatures, NO UV and O2 IR nightglow emissions in the Venus upper atmosphere. J. Geophys. Res., Planets 116, 8004 (2011). doi: 10.1029/2010JE003770 ADSCrossRefGoogle Scholar
  23. J.B. Burkholder, S.P. Sander, J. Abbatt, J.R. Barker, R.E. Huie, C.E. Kolb, M.J. Kurylo, V.L. Orkin, D.M. Wilmouth, P.H. Wine, Chemical kinetics and photochemical data for use in atmospheric studies evaluation number 18, JPL Publication 15-10, Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, 2015 Google Scholar
  24. R.W. Carlson, L.W. Kamp, K.H. Baines, J.B. Pollack, D.H. Grinspoon, T. Encrenaz, P. Drossart, F.W. Taylor, Variations in Venus cloud particle properties: a new view of Venus’s cloud morphology as observed by Galileo Near-Infrared Mapping Spectrometer. Planet. Space Sci. 41, 477–485 (1993). doi: 10.1016/0032-0633(93)90030-6 ADSGoogle Scholar
  25. S. Chamberlain, J. Bailey, D. Crisp, V. Meadows, Ground-based near-infrared observations of water vapour in the Venus troposphere. Icarus 222, 364–378 (2013). doi: 10.1016/j.icarus.2012.11.014 ADSCrossRefGoogle Scholar
  26. S. Chamberlain, V. Wilquet, A. Mahieux, S. Robert, I. Thomas, A.C. Vandaele, J.-L. Bertaux, Venus water vapour profiles obtained by SOIR/VEx. Geophys. Res. Abs. 17 (2015) Google Scholar
  27. E. Chassefière, R. Wieler, B. Marty, F. Leblanc, The evolution of Venus: present state of knowledge and future exploration. Planet. Space Sci. 63, 15–23 (2012). doi: 10.1016/j.pss.2011.04.007 ADSCrossRefGoogle Scholar
  28. B.-M. Cheng, E.P. Chew, C.-P. Liu, M. Bahou, Y.-P. Lee, Y.L. Yung, M.F. Gerstell, Photo-induced fractionation of water isotopomers in the Martian atmosphere. Geophys. Res. Lett. 26, 3657–3660 (1999). doi: 10.1029/1999GL008367 ADSCrossRefGoogle Scholar
  29. R.T. Clancy, D.O. Muhleman, Diurnal CO variations in the Venus mesosphere from CO microwave spectra. Icarus 64, 157–182 (1985). doi: 10.1016/0019-1035(85)90084-3 ADSCrossRefGoogle Scholar
  30. R.T. Clancy, D.O. Muhleman, Long-term (1979–1990) changes in the thermal, dynamical, and compositional structure of the Venus mesosphere as inferred from microwave spectral line observations of 12CO, 13CO, and C18O. Icarus 89, 129–146 (1991). doi: 10.1016/0019-1035(91)90093-9 ADSCrossRefGoogle Scholar
  31. R.T. Clancy, B.J. Sandor, G.H. Moriarty-Schieven, Venus upper atmospheric CO, temperature, and winds across the afternoon/evening terminator from June 2007 JCMT sub-millimeter line observations. Planet. Space Sci. 56, 1344–1354 (2008). doi: 10.1016/j.pss.2008.05.007 ADSCrossRefGoogle Scholar
  32. R.T. Clancy, B.J. Sandor, G. Moriarty-Schieven, Thermal structure and CO distribution for the Venus mesosphere/lower thermosphere: 2001–2009 inferior conjunction sub-millimeter CO absorption line observations. Icarus 217, 779–793 (2012). doi: 10.1016/j.icarus.2011.05.032 ADSCrossRefGoogle Scholar
  33. A.D. Collard, F.W. Taylor, S.B. Calcutt, R.W. Carlson, L.W. Kamp, K.H. Baines, T. Encrenaz, P. Drossart, E. Lellouch, B. Bézard, Latitudinal distribution of carbon monoxide in the deep atmosphere of Venus. Planet. Space Sci. 41, 487–494 (1993). doi: 10.1016/0032-0633(93)90033-X ADSCrossRefGoogle Scholar
  34. P. Connes, J. Connes, W.S. Benedict, L.D. Kaplan, Traces of HCl and HF in the atmosphere of Venus. Astrophys. J. 147, 1230–1237 (1967). doi: 10.1086/149124 ADSCrossRefGoogle Scholar
  35. P. Connes, J. Connes, L.D. Kaplan, W.S. Benedict, Carbon monoxide in the Venus atmosphere. Astrophys. J. 152, 731–743 (1968). doi: 10.1086/149590 ADSCrossRefGoogle Scholar
  36. P. Connes, J.F. Noxon, W.A. Traub, N.P. Carleton, O2 \(^{1} \Delta\) emission in the day and night airglow of Venus. Astrophys. J. Lett. 233, 29–32 (1979). doi: 10.1086/183070 ADSCrossRefGoogle Scholar
  37. R.R. Conway, R.P. McCoy, C.A. Barth, A.L. Lane, IUE detection of sulfur dioxide in the atmosphere of Venus. Geophys. Res. Lett. 6, 629–631 (1979). doi: 10.1029/GL006i007p00629 ADSCrossRefGoogle Scholar
  38. A. Coradini, F. Capaccioni, P. Drossart, A. Semery, G. Arnold, U. Schade, F. Angrilli, M.A. Barucci, G. Bellucci, G. Bianchini, J.P. Bibring, A. Blanco, M. Blecka, D. Bockelee-Morvan, R. Bonsignori, M. Bouye, E. Bussoletti, M.T. Capria, R. Carlson, U. Carsenty, P. Cerroni, L. Colangeli, M. Combes, M. Combi, J. Crovisier, M. Dami, M.C. DeSanctis, A.M. DiLellis, E. Dotto, T. Encrenaz, E. Epifani, S. Erard, S. Espinasse, A. Fave, C. Federico, U. Fink, S. Fonti, V. Formisano, Y. Hello, H. Hirsch, G. Huntzinger, R. Knoll, D. Kouach, W.H. Ip, P. Irwin, J. Kachlicki, Y. Langevin, G. Magni, T. McCord, V. Mennella, H. Michaelis, G. Mondello, S. Mottola, G. Neukum, V. Orofino, R. Orosei, P. Palumbo, G. Peter, B. Pforte, G. Piccioni, J.M. Reess, E. Ress, B. Saggin, B. Schmitt, D. Stefanovitch, A. Stern, F. Taylor, D. Tiphene, G. Tozzi, VIRTIS: an imaging spectrometer for the ROSETTA mission. Planet. Space Sci. 46, 1291–1304 (1998) ADSCrossRefGoogle Scholar
  39. V. Cottini, N.I. Ignatiev, G. Piccioni, P. Drossart, D. Grassi, W.J. Markiewicz, Water vapor near the cloud tops of Venus from Venus Express/VIRTIS dayside data. Icarus 217, 561–569 (2012). doi: 10.1016/j.icarus.2011.06.018 ADSCrossRefGoogle Scholar
  40. V. Cottini, N.I. Ignatiev, G. Piccioni, P. Drossart, Water vapor near Venus cloud tops from VIRTIS-H/Venus express observations 2006–2011. Planet. Space Sci. (2015) Google Scholar
  41. D.V. Cotton, J. Bailey, D. Crisp, V.S. Meadows, The distribution of carbon monoxide in the lower atmosphere of Venus. Icarus 217, 570–584 (2012). doi: 10.1016/j.icarus.2011.05.020 ADSCrossRefGoogle Scholar
  42. C. de Bergh, B. Bézard, T. Owen, D. Crisp, J.-P. Maillard, B.L. Lutz, Deuterium on Venus—observations from Earth. Science 251, 547–549 (1991). doi: 10.1126/science.251.4993.547 ADSCrossRefGoogle Scholar
  43. C. de Bergh, B. Bézard, D. Crisp, J.P. Maillard, T. Owen, J. Pollack, D. Grinspoon, Water in the deep atmosphere of Venus from high-resolution spectra of the night side. Adv. Space Res. 15, 79 (1995). doi: 10.1016/0273-1177(94)00067-B ADSCrossRefGoogle Scholar
  44. C. de Bergh, V.I. Moroz, F.W. Taylor, D. Crisp, B. Bézard, L.V. Zasova, The composition of the atmosphere of Venus below 100 km altitude: an overview. Planet. Space Sci. 54, 1389–1397 (2006). doi: 10.1016/j.pss.2006.04.020 ADSCrossRefGoogle Scholar
  45. M.L. Delitsky, K.H. Baines, Storms on Venus: lightning-induced chemistry and predicted products. Planet. Space Sci. (2015). doi: 10.1016/j.pss.2014.12.005 Google Scholar
  46. T.M. Donahue, New analysis of hydrogen and deuterium escape from Venus. Icarus 141, 226–235 (1999). doi: 10.1006/icar.1999.6186 ADSCrossRefGoogle Scholar
  47. T.M. Donahue, C.T. Russell, The Venus atmosphere and ionosphere and their interaction with the solar wind: an overview, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips, 1997, p. 3 Google Scholar
  48. P. Drossart, G. Piccioni, A. Adriani, F. Angrilli, G. Arnold, K.H. Baines, G. Bellucci, J. Benkhoff, B. Bézard, J.-P. Bibring, A. Blanco, M.I. Blecka, R.W. Carlson, A. Coradini, A. Di Lellis, T. Encrenaz, S. Erard, S. Fonti, V. Formisano, T. Fouchet, R. Garcia, R. Haus, J. Helbert, N.I. Ignatiev, P.G.J. Irwin, Y. Langevin, S. Lebonnois, M.A. Lopez-Valverde, D. Luz, L. Marinangeli, V. Orofino, A.V. Rodin, M.C. Roos-Serote, B. Saggin, A. Sanchez-Lavega, D.M. Stam, F.W. Taylor, D. Titov, G. Visconti, M. Zambelli, R. Hueso, C.C.C. Tsang, C.F. Wilson, T.Z. Afanasenko, Scientific goals for the observation of Venus by VIRTIS on ESA/Venus express mission. Planet. Space Sci. 55, 1653–1672 (2007). doi: 10.1016/j.pss.2007.01.003 ADSCrossRefGoogle Scholar
  49. S. Du, J.S. Francisco, B.C. Shepler, K.A. Peterson, Determination of the rate constant for sulfur recombination by quasiclassical trajectory calculations. J. Chem. Phys. 128(20), 204306 (2008). doi: 10.1063/1.2919569 ADSCrossRefGoogle Scholar
  50. T. Encrenaz, T.K. Greathouse, H. Roe, M. Richter, J. Lacy, B. Bézard, T. Fouchet, T. Widemann, HDO and SO2 thermal mapping on Venus: evidence for strong SO2 variability. Astron. Astrophys. 543, 153 (2012). doi: 10.1051/0004-6361/201219419 ADSCrossRefGoogle Scholar
  51. T. Encrenaz, T.K. Greathouse, M.J. Richter, J. Lacy, T. Widemann, B. Bézard, T. Fouchet, C. deWitt, S.K. Atreya, HDO and SO2 thermal mapping on Venus. II. The SO2 spatial distribution above and within the clouds. Astron. Astrophys. 559, 65 (2013). doi: 10.1051/0004-6361/201322264 ADSCrossRefGoogle Scholar
  52. T. Encrenaz, R. Moreno, A. Moullet, E. Lellouch, T. Fouchet, Submillimeter mapping of mesospheric minor species on Venus with ALMA. Planet. Space Sci. 113, 275–291 (2015). doi: 10.1016/j.pss.2015.01.011 ADSCrossRefGoogle Scholar
  53. T. Encrenaz, T.K. Greathouse, M.J. Richter, C. DeWitt, T. Widemann, B. Bézard, T. Fouchet, S.K. Atreya, H. Sagawa, HDO and SO2 thermal mapping on Venus. III. Short-term and long-term variations between 2012 and 2016. Astron. Astrophys. 595, 74 (2016). doi: 10.1051/0004-6361/201628999 ADSCrossRefGoogle Scholar
  54. L.W. Esposito, R.G. Knollenberg, M.I. Marov, O.B. Toon, R.P. Turco, The clouds are hazes of Venus, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 484–564 Google Scholar
  55. L.W. Esposito, M. Copley, R. Eckert, L. Gates, A.I.F. Stewart, H. Worden, Sulfur dioxide at the Venus cloud tops, 1978–1986. J. Geophys. Res. 93, 5267–5276 (1988). doi: 10.1029/JD093iD05p05267 ADSCrossRefGoogle Scholar
  56. L.W. Esposito, J.-L. Bertaux, V. Krasnopolsky, V.I. Moroz, L.V. Zasova, Chemistry of lower atmosphere and clouds, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips, 1997, p. 415 Google Scholar
  57. A. Fedorova, O. Korablev, A.C. Vandaele, J.-L. Bertaux, D. Belyaev, A. Mahieux, E. Neefs, V. Wilquet, R. Drummond, F. Montmessin, E. Villard, HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by solar occultation at infrared spectrometer on board Venus Express. J. Geophys. Res., Planets 113, E00B22 (2008). doi: 10.1029/2008JE003146 CrossRefGoogle Scholar
  58. A. Fedorova, B. Bézard, J.-L. Bertaux, O. Korablev, C. Wilson, The CO2 continuum absorption in the 1.10- and \(1.18\mbox{-}\upmu\mbox{m}\) windows on Venus from Maxwell Montes transits by SPICAV IR onboard Venus Express. Planet. Space Sci. 113, 66–77 (2015). doi: 10.1016/j.pss.2014.08.010 ADSCrossRefGoogle Scholar
  59. A. Fedorova, E. Marcq, M. Luginin, O. Korablev, J.-L. Bertaux, F. Montmessin, Variations of water vapor and cloud top altitude in the Venus’ mesosphere from SPICAV/VEx observations. Icarus 275, 143–162 (2016). doi: 10.1016/j.icarus.2016.04.010 ADSCrossRefGoogle Scholar
  60. B. Fegley Jr., A.H. Treiman, Chemistry of the surface and lower atmosphere of Venus. Sol. Syst. Res. 26, 97 (1992) ADSGoogle Scholar
  61. B. Fegley Jr., G. Klingelhöfer, K. Lodders, T. Widemann, Geochemistry of surface-atmosphere interactions on Venus, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips, 1997, p. 591 Google Scholar
  62. V. Formisano, F. Angrilli, G. Arnold, S. Atreya, K.H. Baines, G. Bellucci, B. Bézard, F. Billebaud, D. Biondi, M.I. Blecka, L. Colangeli, L. Comolli, D. Crisp, M. D’Amore, T. Encrenaz, A. Ekonomov, F. Esposito, C. Fiorenza, S. Fonti, M. Giuranna, D. Grassi, B. Grieger, A. Grigoriev, J. Helbert, H. Hirsch, N. Ignatiev, A. Jurewicz, I. Khatuntsev, S. Lebonnois, E. Lellouch, A. Mattana, A. Maturilli, E. Mencarelli, M. Michalska, J. Lopez Moreno, B. Moshkin, F. Nespoli, Y. Nikolsky, F. Nuccilli, P. Orleanski, E. Palomba, G. Piccioni, M. Rataj, G. Rinaldi, M. Rossi, B. Saggin, D. Stam, D. Titov, G. Visconti, L. Zasova, The Planetary Fourier Spectrometer (PFS) onboard the European Venus Express mission. Planet. Space Sci. 54, 1298–1314 (2006). doi: 10.1016/j.pss.2006.04.033 ADSCrossRefGoogle Scholar
  63. J.-C. Gérard, S.W. Bougher, M.A. López-Valverde, M. Pätzold, P. Drossart, G. Piccioni, Space Sci. Rev. 212, 1617–1683 (2017) ADSCrossRefGoogle Scholar
  64. G. Gilli, Carbon monoxide and temperature in the upper atmosphere of Venus through the analysis of limb observations by VIRTIS/Venus Express, PhD thesis, Instituto de Astrofísica de Andalucía, 2012 Google Scholar
  65. G. Gilli, M.A. López-Valverde, J. Peralta, S. Bougher, A. Brecht, P. Drossart, G. Piccioni, Carbon monoxide and temperature in the upper atmosphere of Venus from VIRTIS/Venus Express non-LTE limb measurements. Icarus 248, 478–498 (2015). doi: 10.1016/j.icarus.2014.10.047 ADSCrossRefGoogle Scholar
  66. C. Gillmann, E. Chassefière, P. Lognonné, A consistent picture of early hydrodynamic escape of Venus atmosphere explaining present Ne and Ar isotopic ratios and low oxygen atmospheric content. Earth Planet. Sci. Lett. 286, 503–513 (2009). doi: 10.1016/j.epsl.2009.07.016 ADSCrossRefGoogle Scholar
  67. D. Grassi, R. Politi, N.I. Ignatiev, C. Plainaki, S. Lebonnois, P. Wolkenberg, L. Montabone, A. Migliorini, G. Piccioni, P. Drossart, The Venus nighttime atmosphere as observed by the VIRTIS-M instrument. Average fields from the complete infrared data set. J. Geophys. Res., Planets 119, 837–849 (2014). doi: 10.1002/2013JE004586 ADSCrossRefGoogle Scholar
  68. D.H. Grinspoon, Implications of the high \(\mathrm{D}/\mathrm{H}\) ratio for the sources of water in Venus’ atmosphere. Nature 363, 428–431 (1993). doi: 10.1038/363428a0 ADSCrossRefGoogle Scholar
  69. D. Grinspoon, The surface and atmosphere of Venus: evolution and present state, in Towards Understanding the Climate of Venus (Springer, Berlin, 2013), pp. 17–22 CrossRefGoogle Scholar
  70. D.A. Gurnett, P. Zarka, R. Manning, W.S. Kurth, G.B. Hospodarsky, T.F. Averkamp, M.L. Kaiser, W.M. Farrell, Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning. Nature 409, 313–315 (2001) ADSCrossRefGoogle Scholar
  71. M.A. Gurwell, D.O. Muhleman, K.P. Shah, G.L. Berge, D.J. Rudy, A.W. Grossman, Observations of the CO bulge on Venus and implications for mesospheric winds. Icarus 115, 141–158 (1995). doi: 10.1006/icar.1995.1085 ADSCrossRefGoogle Scholar
  72. M.A. Gurwell, G.J. Melnick, V. Tolls, E.A. Bergin, B.M. Patten, SWAS observations of water vapor in the Venus mesosphere. Icarus 188, 288–304 (2007). doi: 10.1016/j.icarus.2006.12.004 ADSCrossRefGoogle Scholar
  73. G.L. Hashimoto, Y. Abe, Climate control on Venus: comparison of the carbonate and pyrite models. Planet. Space Sci. 53, 839–848 (2005). doi: 10.1016/j.pss.2005.01.005 ADSCrossRefGoogle Scholar
  74. G.L. Hashimoto, Y. Abe, S. Sasaki, CO2 amount on Venus constrained by a criterion of topographic-greenhouse instability. Geophys. Res. Lett. 24, 289–292 (1997). doi: 10.1029/96GL04006 ADSCrossRefGoogle Scholar
  75. R. Haus, D. Kappel, G. Arnold, Lower atmosphere minor gas abundances as retrieved from Venus Express VIRTIS-M-IR data at \(2.3~\upmu\mbox{m}\). Planet. Space Sci. 105, 159–174 (2015) ADSCrossRefGoogle Scholar
  76. H.-J. Hoffmann, K. Pelka, U. von Zahn, D. Krankowsky, D. Linkert, The Pioneer Venus Bus neutral gas mass spectrometer. IEEE Trans. Geosci. Remote Sens. 18, 122–126 (1980). doi: 10.1109/TGRS.1980.350294 ADSCrossRefGoogle Scholar
  77. Y. Hong, B. Fegley, Formation of carbonyl sulfide (OCS) from carbon monoxide and sulfur vapor and applications to Venus. Icarus 130, 495–504 (1997). doi: 10.1006/icar.1997.5824 ADSCrossRefGoogle Scholar
  78. O.I. Iakovlev, S.S. Matiugov, V.N. Gubenko, Venera-15 and -16 middle atmosphere profiles from radio occultations—polar and near-polar atmosphere of Venus. Icarus 94, 493–510 (1991). doi: 10.1016/0019-1035(91)90243-M ADSCrossRefGoogle Scholar
  79. N.I. Ignatiev, V.I. Moroz, B.E. Moshkin, A.P. Ekonomov, V.I. Gnedykh, A.V. Grigoriev, I.V. Khatuntsev, Water vapour in the lower atmosphere of Venus: a new analysis of optical spectra measured by entry probes. Planet. Space Sci. 45, 427–438 (1997). doi: 10.1016/S0032-0633(96)00143-2 ADSCrossRefGoogle Scholar
  80. P.G.J. Irwin, R. de Kok, A. Negrão, C.C.C. Tsang, C.F. Wilson, P. Drossart, G. Piccioni, D. Grassi, F.W. Taylor, Spatial variability of carbon monoxide in Venus’ mesosphere from Venus Express/Visible and Infrared Thermal Imaging Spectrometer measurements. J. Geophys. Res., Planets 113, E00B01 (2008). doi: 10.1029/2008JE003093 CrossRefGoogle Scholar
  81. V.G. Istomin, K.V. Grechnev, V.A. Kochnev, L.N. Ozerov, Composition of Venus lower atmosphere from mass-spectrometer data. Cosm. Res. 17, 581–584 (1980) ADSGoogle Scholar
  82. N. Iwagami, S. Ohtsuki, K. Tokuda, N. Ohira, Y. Kasaba, T. Imamura, H. Sagawa, G.L. Hashimoto, S. Takeuchi, M. Ueno, S. Okumura, Hemispheric distributions of HCl above and below the Venus’ clouds by ground-based \(1.7~\upmu\mbox{m}\) spectroscopy. Planet. Space Sci. 56, 1424–1434 (2008). doi: 10.1016/j.pss.2008.05.009 ADSCrossRefGoogle Scholar
  83. N. Iwagami, T. Yamaji, S. Ohtsuki, G.L. Hashimoto, Hemispherical distribution of CO above the Venus’ clouds by ground-based \(2.3~\upmu\mbox{m}\) spectroscopy. Icarus 207, 558–563 (2010). doi: 10.1016/j.icarus.2009.12.019 ADSCrossRefGoogle Scholar
  84. J.M. Jenkins, P.G. Steffes, D.P. Hinson, J.D. Twicken, G.L. Tyler, Radio occultation studies of the Venus atmosphere with the Magellan spacecraft. 2: Results from the October 1991 experiments. Icarus 110, 79–94 (1994). doi: 10.1006/icar.1994.1108 ADSCrossRefGoogle Scholar
  85. K.L. Jessup, E. Marcq, F. Mills, A. Mahieux, S. Limaye, M. Allen, J.-L. Bertaux, W. Markiewicz, T. Roman, A.C. Vandaele, W. Wilquet, Y.L. Yung, Coordinated Hubble Space Telescope and Venus Express observations of Venus’ upper cloud deck. Icarus 258, 309–336 (2015) ADSCrossRefGoogle Scholar
  86. R.K. Kakar, J.W. Waters, W.J. Wilson, Venus—microwave detection of carbon monoxide. Science 191, 379 (1976). doi: 10.1126/science.191.4225.379 ADSCrossRefGoogle Scholar
  87. J.F. Kasting, J.B. Pollack, Loss of water from Venus. I—Hydrodynamic escape of hydrogen. Icarus 53, 479–508 (1983). doi: 10.1016/0019-1035(83)90212-9 ADSCrossRefGoogle Scholar
  88. W.M. Kaula, Constraints on Venus evolution from radiogenic argon. Icarus 139, 32–39 (1999). doi: 10.1006/icar.1999.6082 ADSCrossRefGoogle Scholar
  89. R.B. Klemm, D.D. Davis, A flash photolysis-resonance fluorescence kinetics study of the reaction S(3P) + OCS. J. Phys. Chem. 78, 1137–1140 (1974) CrossRefGoogle Scholar
  90. A.J. Kliore, V.I. Moroz, G.M. Keating, The Venus International Reference Atmosphere. Advances in Space Research, vol. 5(11) (1985) Google Scholar
  91. M.A. Kolodner, P.G. Steffes, The microwave absorption and abundance of sulfuric acid vapor in the Venus atmosphere based on new laboratory measurements. Icarus 132, 151–169 (1998). doi: 10.1006/icar.1997.5887 ADSCrossRefGoogle Scholar
  92. V.A. Krasnopolsky, Lightnings and nitric oxide on Venus. Planet. Space Sci. 31, 1363–1369 (1983). doi: 10.1016/0032-0633(83)90072-7 ADSCrossRefGoogle Scholar
  93. V.A. Krasnopolsky, Photochemistry of the Atmospheres of Mars and Venus (Springer, Berlin, 1986) CrossRefGoogle Scholar
  94. V.A. Krasnopolsky, Uniqueness of a solution of a steady state photochemical problem: applications to Mars. J. Geophys. Res. 100, 3263–3276 (1995). doi: 10.1029/94JE03283 ADSCrossRefGoogle Scholar
  95. V.A. Krasnopolsky, A sensitive search for nitric oxide in the lower atmospheres of Venus and Mars: detection on Venus and upper limit for Mars. Icarus 182, 80–91 (2006a). doi: 10.1016/j.icarus.2005.12.003 ADSCrossRefGoogle Scholar
  96. V.A. Krasnopolsky, Chemical composition of Venus atmosphere and clouds: some unsolved problems. Planet. Space Sci. 54, 1352–1359 (2006b). doi: 10.1016/j.pss.2006.04.019 ADSCrossRefGoogle Scholar
  97. V.A. Krasnopolsky, Chemical kinetic model for the lower atmosphere of Venus. Icarus 191, 25–37 (2007). doi: 10.1016/j.icarus.2007.04.028 ADSCrossRefGoogle Scholar
  98. V.A. Krasnopolsky, High-resolution spectroscopy of Venus: detection of OCS, upper limit to H2S, and latitudinal variations of CO and HF in the upper cloud layer. Icarus 197, 377–385 (2008). doi: 10.1016/j.icarus.2008.05.020 ADSCrossRefGoogle Scholar
  99. V.A. Krasnopolsky, Spatially-resolved high-resolution spectroscopy of Venus 1. Variations of CO2, CO, HF, and HCl at the cloud tops. Icarus 208, 539–547 (2010a). doi: 10.1016/j.icarus.2010.02.012 ADSCrossRefGoogle Scholar
  100. V.A. Krasnopolsky, Spatially-resolved high-resolution spectroscopy of Venus 2. Variations of HDO, OCS, and SO2 at the cloud tops. Icarus 209, 314–322 (2010b). doi: 10.1016/j.icarus.2010.05.008 ADSCrossRefGoogle Scholar
  101. V.A. Krasnopolsky, Venus night airglow: ground-based detection of OH, observations of O2 emissions, and photochemical model. Icarus 207, 17–27 (2010c). doi: 10.1016/j.icarus.2009.10.019 ADSCrossRefGoogle Scholar
  102. V.A. Krasnopolsky, Atmospheric chemistry on Venus, Earth, and Mars: main features and comparison. Planet. Space Sci. 59, 952–964 (2011). doi: 10.1016/j.pss.2010.02.011 ADSCrossRefGoogle Scholar
  103. V.A. Krasnopolsky, A photochemical model for the Venus atmosphere at 47–112 km. Icarus 218, 230–246 (2012a). doi: 10.1016/j.icarus.2011.11.012 ADSCrossRefGoogle Scholar
  104. V.A. Krasnopolsky, Observation of DCl and upper limit to NH3 on Venus. Icarus 219, 244–249 (2012b). doi: 10.1016/j.icarus.2012.02.036 ADSCrossRefGoogle Scholar
  105. V.A. Krasnopolsky, Nighttime photochemical model and night airglow on Venus. Planet. Space Sci. 85, 78–88 (2013a). doi: 10.1016/j.pss.2013.05.022 ADSCrossRefGoogle Scholar
  106. V.A. Krasnopolsky, S3 and S4 abundances and improved chemical kinetic model for the lower atmosphere of Venus. Icarus 225, 570–580 (2013b). doi: 10.1016/j.icarus.2013.04.026 ADSCrossRefGoogle Scholar
  107. V.A. Krasnopolsky, Observations of CO dayglow at \(4.7~\upmu\mbox{m}\), CO mixing ratios, and temperatures at 74 and 104–111 km on Venus. Icarus 237, 340–349 (2014). doi: 10.1016/j.icarus.2014.04.043 ADSCrossRefGoogle Scholar
  108. V.A. Krasnopolsky, Vertical profiles of H2O, H2SO4, and sulfuric acid concentration at 45–75 km on Venus. Icarus 252, 327–333 (2015). doi: 10.1016/j.icarus.2015.01.024 ADSCrossRefGoogle Scholar
  109. V.A. Krasnopolsky, Sulfur aerosol in the clouds of Venus. Icarus 274, 33–36 (2016). doi: 10.1016/j.icarus.2016.03.010 ADSCrossRefGoogle Scholar
  110. V.A. Krasnopolsky, V.A. Parshev, Chemical composition of the atmosphere of Venus. Nature 292, 610–613 (1981a). doi: 10.1038/292610a0 ADSCrossRefGoogle Scholar
  111. V.A. Krasnopolsky, V.A. Parshev, Photochemistry of Venus’ atmosphere at altitudes over 50 km. I—Initial calculation data. Cosm. Res. 19, 61–74 (1981b) ADSGoogle Scholar
  112. V.A. Krasnopolsky, V.A. Parshev, Photochemistry of the Venus atmosphere, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), pp. 431–458 Google Scholar
  113. V.A. Krasnopolsky, J.B. Pollack, H2O–H2SO4 system in Venus’ clouds and OCS, CO, and H2SO4 profiles in Venus’ troposphere. Icarus 109, 58–78 (1994). doi: 10.1006/icar.1994.1077 ADSCrossRefGoogle Scholar
  114. V.A. Krasnopolsky, D.A. Belyaev, I.E. Gordon, G. Li, L.S. Rothman, Observations of \(\mathrm{D}/\mathrm{H}\) ratios in H2O, HCl, and HF on Venus and new DCl and DF line strengths. Icarus 224, 57–65 (2013). doi: 10.1016/j.icarus.2013.02.010 ADSCrossRefGoogle Scholar
  115. C. Lee, S.R. Lewis, P.L. Read, Superrotation in a Venus general circulation model. J. Geophys. Res., Planets 112, 4 (2007). doi: 10.1029/2006JE002874 Google Scholar
  116. J.S. Lewis, Venus: atmospheric and lithospheric composition. Earth Planet. Sci. Lett. 10, 73–80 (1970). doi: 10.1016/0012-821X(70)90066-X ADSCrossRefGoogle Scholar
  117. M.-C. Liang, Y.L. Yung, Sources of the oxygen isotopic anomaly in atmospheric N2O. J. Geophys. Res., Atmos. 112, 13307 (2007). doi: 10.1029/2006JD007876 ADSGoogle Scholar
  118. M.-C. Liang, Y.L. Yung, Modeling the distribution of H2O and HDO in the upper atmosphere of Venus. J. Geophys. Res., Planets 114, E00B28 (2009). doi: 10.1029/2008JE003095 Google Scholar
  119. M.-C. Liang, R.-L. Shia, A.Y.-T. Lee, M. Allen, A.J. Friedson, Y.L. Yung, Meridional transport in the stratosphere of Jupiter. Astrophys. J. Lett. 635, 177–180 (2005). doi: 10.1086/499624 ADSCrossRefGoogle Scholar
  120. S. Limaye et al., Space Sci. Rev. (2017 submitted for publication) Google Scholar
  121. V.M. Linkin, V.V. Kerzhanovich, A.N. Lipatov, A.A. Shurupov, A. Seiff, B. Ragent, R.E. Young, A.P. Ingersoll, D. Crisp, L.S. Elson, R.A. Preston, J.E. Blamont, Thermal structure of the Venus atmosphere in the middle cloud layer. Science 231, 1420–1422 (1986). doi: 10.1126/science.231.4744.1420 ADSCrossRefGoogle Scholar
  122. C.-W. Lu, Y.-J. Wu, Y.-P. Lee, R.S. Zhu, M.C. Lin, Experimental and theoretical investigation of rate coefficients of the reaction S(3P) + OCS in the temperature range of 298–985 K. J. Chem. Phys. 125(16), 164329 (2006). doi: 10.1063/1.2357739 ADSCrossRefGoogle Scholar
  123. A. Mahieux, A.C. Vandaele, E. Neefs, S. Robert, V. Wilquet, R. Drummond, A. Federova, J.L. Bertaux, Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: retrieval technique. J. Geophys. Res., Planets 115, 12014 (2010). doi: 10.1029/2010JE003589 ADSCrossRefGoogle Scholar
  124. A. Mahieux, A.C. Vandaele, S. Robert, V. Wilquet, R. Drummond, F. Montmessin, J.L. Bertaux, Densities and temperatures in the Venus mesosphere and lower thermosphere retrieved from SOIR on board Venus Express: carbon dioxide measurements at the Venus terminator. J. Geophys. Res., Planets 117, 7001 (2012). doi: 10.1029/2012JE004058 ADSCrossRefGoogle Scholar
  125. A. Mahieux, V. Wilquet, A.C. Vandaele, S. Robert, R. Drummond, S. Chamberlain, A. Grau Ribes, J.L. Bertaux, Hydrogen halides measurements in the Venus mesosphere retrieved from SOIR on board Venus Express. Planet. Space Sci. 113, 264–274 (2015a). doi: 10.1016/j.pss.2014.12.014 ADSCrossRefGoogle Scholar
  126. A. Mahieux, A.C. Vandaele, S.W. Bougher, R. Drummond, S. Robert, V. Wilquet, S. Chamberlain, A. Piccialli, F. Montmessin, S. Tellmann, M. Pätzold, B. Häusler, J.L. Bertaux, Update of the Venus density and temperature profiles at high altitude measured by SOIR on board Venus Express. Planet. Space Sci. 113, 309–320 (2015b). doi: 10.1016/j.pss.2015.02.002 ADSCrossRefGoogle Scholar
  127. A. Mahieux, A.C. Vandaele, S. Robert, V. Wilquet, R. Drummond, S. Chamberlain, D. Belyaev, J.L. Bertaux, Venus mesospheric sulfur dioxide measurement retrieved from SOIR on board Venus Express. Planet. Space Sci. 113, 193–204 (2015c). doi: 10.1016/j.pss.2014.12.011 ADSCrossRefGoogle Scholar
  128. B.S. Maiorov, N.I. Ignat’ev, V.I. Moroz, L.V. Zasova, B.E. Moshkin, I.V. Khatuntsev, A.P. Ekonomov, A new analysis of the spectra obtained by the Venera missions in the Venusian atmosphere. I. The analysis of the data received from the Venera-11 probe at altitudes below 37 km in the \(0.44\mbox{--}0.66~\upmu\mbox{m}\) wavelength range. Sol. Syst. Res. 39, 267–282 (2005). doi: 10.1007/s11208-005-0042-1 ADSCrossRefGoogle Scholar
  129. E. Marcq, Prelude to the Venus Express mission: a study of the atmosphere using infrared spectral imaging. Theses, Université Paris-Diderot - Paris VII, 2006.
  130. E. Marcq, S. Lebonnois, Simulations of the latitudinal variability of CO-like and OCS-like passive tracers below the clouds of Venus using the Laboratoire de Météorologie Dynamique GCM. J. Geophys. Res., Planets 118, 1983–1990 (2013). doi: 10.1002/jgre.20146 ADSCrossRefGoogle Scholar
  131. E. Marcq, B. Bézard, T. Encrenaz, M. Birlan, Latitudinal variations of CO and OCS in the lower atmosphere of Venus from near-infrared nightside spectro-imaging. Icarus 179, 375–386 (2005). doi: 10.1016/j.icarus.2005.06.018 ADSCrossRefGoogle Scholar
  132. E. Marcq, T. Encrenaz, B. Bézard, M. Birlan, Remote sensing of Venus’ lower atmosphere from ground-based IR spectroscopy: latitudinal and vertical distribution of minor species. Planet. Space Sci. 54, 1360–1370 (2006). doi: 10.1016/j.pss.2006.04.024 ADSCrossRefGoogle Scholar
  133. E. Marcq, B. Bézard, P. Drossart, G. Piccioni, J.M. Reess, F. Henry, A latitudinal survey of CO, OCS, H2O, and SO2 in the lower atmosphere of Venus: spectroscopic studies using VIRTIS-H. J. Geophys. Res., Planets 113, E00B07 (2008). doi: 10.1029/2008JE003074 ADSCrossRefGoogle Scholar
  134. E. Marcq, D. Belyaev, F. Montmessin, A. Fedorova, J.-L. Bertaux, A.C. Vandaele, E. Neefs, An investigation of the SO2 content of the venusian mesosphere using SPICAV-UV in nadir mode. Icarus 211, 58–69 (2011). doi: 10.1016/j.icarus.2010.08.021 ADSCrossRefGoogle Scholar
  135. E. Marcq, J.-L. Bertaux, F. Montmessin, D. Belyaev, Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nat. Geosci. 6(1), 25–28 (2013) ADSCrossRefGoogle Scholar
  136. E. Marcq, E. Lellouch, T. Encrenaz, T. Widemann, M. Birlan, J.-L. Bertaux, Search for horizontal and vertical variations of CO in the day and night side lower mesosphere of Venus from CSHELL/IRTF \(4.53~\upmu\mbox{m}\) observations. Planet. Space Sci. 113, 256–263 (2015). doi: 10.1016/j.pss.2014.12.013 ADSCrossRefGoogle Scholar
  137. H. Matsui, N. Iwagami, M. Hosouchi, S. Ohtsuki, G.L. Hashimoto, Latitudinal distribution of HDO abundance above Venus’ clouds by ground-based \(2.3~\upmu\mbox{m}\) spectroscopy. Icarus 217, 610–614 (2012). doi: 10.1016/j.icarus.2011.07.026 ADSCrossRefGoogle Scholar
  138. M.B. McElroy, N. Dak Sze, Y.L. Yung, Photochemistry of the Venus atmosphere. J. Atmos. Sci. 30, 1437–1447 (1973). doi: 10.1175/1520-0469(1973)030<1437:POTVA>2.0.CO;2 ADSCrossRefGoogle Scholar
  139. F.P. Mills, A spectroscopic search for molecular oxygen in the Venus middle atmosphere. J. Geophys. Res. 104, 30757–30764 (1999). doi: 10.1029/1999JE001085 ADSCrossRefGoogle Scholar
  140. F.P. Mills, I. Observations and Photochemical Modeling of the Venus Middle Atmosphere. II. Thermal Infrared Spectroscopy of Europa and Callisto, PhD thesis, California Institute of Technology, 1998 Google Scholar
  141. F.P. Mills, M. Allen, A review of selected issues concerning the chemistry in Venus’ middle atmosphere. Planet. Space Sci. 55, 1729–1740 (2007). doi: 10.1016/j.pss.2007.01.012 ADSCrossRefGoogle Scholar
  142. F.P. Mills, M. Shunmuga Sundaram, T.G. Slanger, M. Allen, Y.L. Yung, Oxygen chemistry in the Venus middle atmosphere, in Advances in Geosciences, Volume 3: Planetary Science (PS) (World Scientific, Singapore, 2006), p. 109 CrossRefGoogle Scholar
  143. F.P. Mills, L.W. Esposito, Y.L. Yung, Atmospheric Composition, Chemistry, and Clouds. Geophysical Monograph Series, vol. 176 (American Geophysical Union, Washington DC, 2007), pp. 73–100. doi: 10.1029/176GM06 Google Scholar
  144. F. Montmessin, J.-L. Bertaux, F. Lefèvre, E. Marcq, D. Belyaev, J.-C. Gérard, O. Korablev, A. Fedorova, V. Sarago, A.C. Vandaele, A layer of ozone detected in the nightside upper atmosphere of Venus. Icarus 216, 82–85 (2011). doi: 10.1016/j.icarus.2011.08.010 ADSCrossRefGoogle Scholar
  145. C.G. Morgan, M. Allen, M.C. Liang, R.L. Shia, G.A. Blake, Y.L. Yung, Isotopic fractionation of nitrous oxide in the stratosphere: comparison between model and observations. J. Geophys. Res., Atmos. 109, 4305 (2004). doi: 10.1029/2003JD003402 ADSCrossRefGoogle Scholar
  146. V.I. Moroz, L.V. Zasova, VIRA-2: a review of inputs for updating the Venus International Reference Atmosphere. Adv. Space Res. 19, 1191–1201 (1997). doi: 10.1016/S0273-1177(97)00270-6 ADSCrossRefGoogle Scholar
  147. V.I. Moroz, V.M. Linkin, I.A. Matsygorin, D. Spaenkuch, W. Doehler, Venus spacecraft infrared radiance spectra and some aspects of their interpretation. Appl. Opt. 25, 1710–1719 (1986). doi: 10.1364/AO.25.001710 ADSCrossRefGoogle Scholar
  148. V.I. Moroz, D. Spankuch, D.V. Titov, K. Schafer, A.V. Dyachkov, W. Dohler, L.V. Zasova, D. Oertel, V.M. Linkin, J. Nopirakowski, Water vapor and sulfur dioxide abundances at the Venus cloud tops from the Venera-15 infrared spectrometry data. Adv. Space Res. 10, 77–81 (1990). doi: 10.1016/0273-1177(90)90168-Y ADSCrossRefGoogle Scholar
  149. J.I. Moses, M.Y. Zolotov, B. Fegley, Alkali and chlorine photochemistry in a volcanically driven atmosphere on Io. Icarus 156, 107–135 (2002). doi: 10.1006/icar.2001.6759 ADSCrossRefGoogle Scholar
  150. C.Y. Na, L.W. Esposito, UV observation of Venus with HST, in AAS/Division for Planetary Sciences Meeting Abstracts #27. Bulletin of the American Astronomical Society, vol. 27, 1995, p. 1071 Google Scholar
  151. C.Y. Na, L.W. Esposito, T.E. Skinner, International Ultraviolet Explorer observations of Venus SO2 and SO. J. Geophys. Res. 95, 7485–7491 (1990). doi: 10.1029/JD095iD06p07485 ADSCrossRefGoogle Scholar
  152. H. Nair, M. Allen, A.D. Anbar, Y.L. Yung, R.T. Clancy, A photochemical model of the martian atmosphere. Icarus 111, 124–150 (1994). doi: 10.1006/icar.1994.1137 ADSCrossRefGoogle Scholar
  153. D. Nevejans, E. Neefs, E. van Ransbeeck, S. Berkenbosch, R. Clairquin, L. de Vos, W. Moelans, S. Glorieux, A. Baeke, O. Korablev, I. Vinogradov, Y. Kalinnikov, B. Bach, J.-P. Dubois, E. Villard, Compact high-resolution spaceborne echelle grating spectrometer with acousto-optical tunable filter based order sorting for the infrared domain from \(2.2 \mbox{ to } 4.3~\upmu\mbox{m}\). Appl. Opt. 45, 5191–5206 (2006). doi: 10.1364/AO.45.005191 ADSCrossRefGoogle Scholar
  154. J.M. Nicovich, K.D. Kreutter, P.H. Wine, Kinetics and thermochemistry of ClCO formation from the Cl + CO association reaction. J. Chem. Phys. 92, 3539–3544 (1990). doi: 10.1063/1.457862 ADSCrossRefGoogle Scholar
  155. D. Oertel, D. Spankuch, H. Jahn, H. Becker-Ross, W. Stadthaus, J. Nopirakowski, W. Dohler, K. Schafer, J. Guldner, R. Dubois, V.I. Moroz, V.M. Linkin, V.V. Kerzhanovich, I.A. Matsgorin, A.N. Lipatov, A.A. Shurupov, L.V. Zasova, E.A. Ustinov, Infrared spectrometry of Venus from ‘Venera-15’ and ‘Venera-16’. Adv. Space Res. 5, 25–36 (1985). doi: 10.1016/0273-1177(85)90267-4 ADSCrossRefGoogle Scholar
  156. J. Oschlisniok, B. Häusler, M. Pätzold, G.L. Tyler, M.K. Bird, S. Tellmann, S. Remus, T. Andert, Microwave absorptivity by sulfuric acid in the Venus atmosphere: first results from the Venus Express Radio Science experiment VeRa. Icarus 221, 940–948 (2012). doi: 10.1016/j.icarus.2012.09.029 ADSCrossRefGoogle Scholar
  157. C.D. Parkinson, F. Mills, A. Brecht, S.W. Bougher, Y.L. Yung, Photochemical distribution of Venusian sulfur and halogen species, in AAS/Division for Planetary Sciences Meeting Abstracts #42. Bulletin of the American Astronomical Society, vol. 42, 2010, p. 994 Google Scholar
  158. C.D. Parkinson, P. Gao, R. Schulte, S.W. Bougher, Y.L. Yung, C.G. Bardeen, V. Wilquet, A.C. Vandaele, A. Mahieux, S. Tellmann, M. Pätzold, Distribution of sulphuric acid aerosols in the clouds and upper haze of Venus using Venus Express VAST and VeRa temperature profiles. Planet. Space Sci. (2015a) Google Scholar
  159. C.D. Parkinson, P. Gao, L.W. Esposito, Y.L. Yung, S.W. Bougher, M. Hirtzig, Photochemical control of the distribution of Venusian water. Planet. Space Sci. (2015b). doi: 10.1016/j.pss.2015.02.015 Google Scholar
  160. R.O. Pepin, D. Porcelli, Origin of noble gases in the terrestrial planets. Rev. Mineral. Geochem. 47(1), 191–246 (2002) CrossRefGoogle Scholar
  161. H. Pernice, P. Garcia, H. Willner, J.S. Francisco, F.P. Mills, M. Allen, Y.L. Yung, Laboratory evidence for a key intermediate in the Venus atmosphere: peroxychloroformyl radical. Proc. Natl. Acad. Sci. 101, 14007–14010 (2004). doi: 10.1073/pnas.0405501101 ADSCrossRefGoogle Scholar
  162. J.B. Pollack, J.B. Dalton, D. Grinspoon, R.B. Wattson, R. Freedman, D. Crisp, D.A. Allen, B. Bézard, C. De Bergh, L.P. Giver, Q. Ma, R. Tipping, Near-infrared light from Venus’ nightside—a spectroscopic analysis. Icarus 103, 1–42 (1993). doi: 10.1006/icar.1993.1055 ADSCrossRefGoogle Scholar
  163. R.G. Prinn, Photochemistry of HCl and other minor constituents in the atmosphere of Venus. J. Atmos. Sci. 28, 1058–1068 (1971). doi: 10.1175/1520-0469(1971)028<1058:POHAOM>2.0.CO;2 ADSCrossRefGoogle Scholar
  164. R.G. Prinn, Venus—chemical and dynamical processes in the stratosphere and mesosphere. J. Atmos. Sci. 32, 1237–1247 (1975). doi: 10.1175/1520-0469(1975)032<1237:VCADPI>2.0.CO;2 ADSCrossRefGoogle Scholar
  165. R.G. Prinn, Venus—chemistry of the lower atmosphere prior to the Pioneer Venus mission. Geophys. Res. Lett. 5, 973–976 (1978). doi: 10.1029/GL005i011p00973 ADSCrossRefGoogle Scholar
  166. R.G. Prinn, On the possible roles of gaseous sulfur and sulfanes in the atmosphere of Venus. Geophys. Res. Lett. 6, 807–810 (1979). doi: 10.1029/GL006i010p00807 ADSCrossRefGoogle Scholar
  167. R.G. Prinn, The photochemistry of the atmosphere of Venus, ed. by J.S. Levine 1985, pp. 281–336 Google Scholar
  168. M. Roos, P. Drossart, T. Encrenaz, E. Lellouch, B. Bézard, R.W. Carlson, K.H. Baines, L.W. Kamp, F.W. Taylor, A.D. Collard, The upper clouds of Venus: determination of the scale height from NIMS-Galileo infrared data. Planet. Space Sci. 41, 505–514 (1993). doi: 10.1016/0032-0633(93)90033-X ADSGoogle Scholar
  169. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013). doi: 10.1016/j.jqsrt.2013.07.002 ADSCrossRefGoogle Scholar
  170. C.T. Russell, T.L. Zhang, H.Y. Wei, Whistler mode waves from lightning on Venus: magnetic control of ionospheric access. J. Geophys. Res. Space Phys. 113, E00B05 (2008). doi: 10.1029/2008JE003137 ADSCrossRefGoogle Scholar
  171. A. Sánchez-Lavega, S. Lebonnois, T. Imamura, P. Read, D. Luz, Space Sci. Rev. 212, 1541–1616 (2017) ADSCrossRefGoogle Scholar
  172. S.P. Sander, D.M. Golden, M.J. Kurylo, R.E. Huie, V.L. Orkin, G.K. Moortgat, A.R. Ravishankara, C.E. Kolb, M.J. Molina, B.J. Finlayson-Pitts, Chemical kinetics and photochemical data for use in atmospheric studies—evaluation number 14. JPL Publication 02-25 (2003) Google Scholar
  173. B.J. Sandor, R.T. Clancy, Water vapor variations in the Venus mesosphere from microwave spectra. Icarus 177, 129–143 (2005). doi: 10.1016/j.icarus.2005.03.020 ADSCrossRefGoogle Scholar
  174. B.J. Sandor, R.T. Clancy, Observations of HCl altitude dependence and temporal variation in the 70–100 km mesosphere of Venus. Icarus 220, 618–626 (2012). doi: 10.1016/j.icarus.2012.05.016 ADSCrossRefGoogle Scholar
  175. B.J. Sandor, R. Todd Clancy, G. Moriarty-Schieven, F.P. Mills, Sulfur chemistry in the Venus mesosphere from SO2 and SO microwave spectra. Icarus 208, 49–60 (2010). doi: 10.1016/j.icarus.2010.02.013 ADSCrossRefGoogle Scholar
  176. B.J. Sandor, R.T. Clancy, G. Moriarty-Schieven, Upper limits for H2SO4 in the mesosphere of Venus. Icarus 217, 839–844 (2012). doi: 10.1016/j.icarus.2011.03.032 ADSCrossRefGoogle Scholar
  177. A. Seiff, Thermal structure of the atmosphere of Venus, in Venus, ed. by S.W. Bougher, D.M. Hunten, R.S. Phillips (University of Arizona Press, Tucson, 1983), pp. 215–279 Google Scholar
  178. A. Seiff, J.T. Schofield, A.J. Kliore, F.W. Taylor, S.S. Limaye, Models of the structure of the atmosphere of Venus from the surface to 100 kilometers altitude. Adv. Space Res. 5, 3–58 (1985). doi: 10.1016/0273-1177(85)90197-8 ADSCrossRefGoogle Scholar
  179. H. Shiina, M. Oya, K. Yamashita, A. Miyoshi, H. Matsui, Kinetic studies on the pyrolysis H2S. J. Phys. Chem. 100, 2136–2140 (1996) CrossRefGoogle Scholar
  180. M. Shunmuga Sundaram, F.P. Mills, M. Allen, Y.L. Yung, An initial model assessment of NOx photochemistry on Venus with heterogenous oxidation of CO, in Proceedings of the 10th Australian Space Science Conference, 2011, pp. 119–132 Google Scholar
  181. M. Snels, S. Stefani, D. Grassi, G. Piccioni, A. Adriani, Carbon dioxide opacity of the Venus’ atmosphere. Planet. Space Sci. 103, 347–354 (2014). doi: 10.1016/j.pss.2014.08.002 ADSCrossRefGoogle Scholar
  182. A.I. Stewart, D.E. Anderson, L.W. Esposito, C.A. Barth, Ultraviolet spectroscopy of Venus—initial results from the Pioneer Venus orbiter. Science 203, 777–779 (1979). doi: 10.1126/science.203.4382.777 ADSCrossRefGoogle Scholar
  183. F.W. Taylor, Carbon monoxide in the deep atmospheres of Venus. Adv. Space Res. 16, 81 (1995). doi: 10.1016/0273-1177(95)00253-B ADSCrossRefGoogle Scholar
  184. F.W. Taylor, D. Crisp, B. Bézard, Near-infrared sounding of the lower atmosphere of Venus, in Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment, ed. by S.W. Bougher, D.M. Hunten, R.J. Phillips, 1997, p. 325 Google Scholar
  185. D.V. Titov et al., Space Sci. Rev. (2017 submitted for publication) Google Scholar
  186. M.V. Tonkov, N.N. Filippov, V.V. Bertsev, J.P. Bouanich, N. van-Thanh, C. Brodbeck, J.M. Hartmann, C. Boulet, F. Thibault, R. Le Doucen, Measurements and empirical modeling of pure CO2 absorption in the \(2.3\mbox{-}\upmu\mbox{m}\) region at room temperature: far wings, allowed and collision-induced bands. Appl. Opt. 35, 4863–4870 (1996). doi: 10.1364/AO.35.004863 ADSCrossRefGoogle Scholar
  187. W.A. Traub, N.P. Carleton, Observations of O2, H2O and HD in planetary atmospheres, in Exploration of the Planetary System, ed. by A. Woszczyk, C. Iwaniszewska IAU Symposium, vol. 65, 1974, pp. 223–228 CrossRefGoogle Scholar
  188. J.T. Trauger, J.I. Lunine, Spectroscopy of molecular oxygen in the atmospheres of Venus and Mars. Icarus 55, 272–281 (1983). doi: 10.1016/0019-1035(83)90082-9 ADSCrossRefGoogle Scholar
  189. A.H. Treiman, M.A. Bullock, Mineral reaction buffering of Venus’ atmosphere: a thermochemical constraint and implications for Venus-like planets. Icarus 217, 534–541 (2012). doi: 10.1016/j.icarus.2011.08.019 ADSCrossRefGoogle Scholar
  190. C.C.C. Tsang, P.G.J. Irwin, C.F. Wilson, F.W. Taylor, C. Lee, R. de Kok, P. Drossart, G. Piccioni, B. Bézard, S. Calcutt, Tropospheric carbon monoxide concentrations and variability on Venus from Venus Express/VIRTIS-M observations. J. Geophys. Res., Planets 113, E00B08 (2008). doi: 10.1029/2008JE003089 CrossRefGoogle Scholar
  191. C.C.C. Tsang, F.W. Taylor, C.F. Wilson, S.J. Liddell, P.G.J. Irwin, G. Piccioni, P. Drossart, S.B. Calcutt, Variability of CO concentrations in the Venus troposphere from Venus Express/VIRTIS using a Band Ratio Technique. Icarus 201, 432–443 (2009). doi: 10.1016/j.icarus.2009.01.001 ADSCrossRefGoogle Scholar
  192. C.C.C. Tsang, C.F. Wilson, J.K. Barstow, P.G.J. Irwin, F.W. Taylor, K. McGouldrick, G. Piccioni, P. Drossart, H. Svedhem, Correlations between cloud thickness and sub-cloud water abundance on Venus. Geophys. Res. Lett. 37, 2202 (2010). doi: 10.1029/2009GL041770 ADSCrossRefGoogle Scholar
  193. A.C. Vandaele, C. Hermans, S. Fally, Fourier transform measurements of SO2 absorption cross sections: II. Temperature dependence in the \(29000\mbox{--}44000~\mbox{cm}^{-1}\) (227–345 nm) region. J. Quant. Spectrosc. Radiat. Transf. 110, 2115–2126 (2009). doi: 10.1016/j.jqsrt.2009.05.006 ADSCrossRefGoogle Scholar
  194. A.C. Vandaele, A. Mahieux, D. Belyaev, J.-L. Bertaux, A. Fedorova, A. Piccialli, R. Drummond, S. Robert, F. Montmessin, O. Korablev, V. Wilquet, I. Thomas, Composition of the Venus mesosphere: a synthesis of SOIR/VEX observations, in 40th COSPAR Scientific Assembly. COSPAR Meeting, vol. 40, 2014, p. 3469 Google Scholar
  195. A.C. Vandaele, A. Mahieux, S. Chamberlain, S. Robert, I. Thomas, L. Trompet, V. Wilquet, J.-L. Bertaux, Carbon monoxide observed on Venus with SOIR/VEx. Planet. Space Sci. (2015a) Google Scholar
  196. A.C. Vandaele, A. Mahieux, S. Robert, R. Drummond, V. Wilquet, J.L. Bertaux, Carbon monoxide short term variability observed on Venus with SOIR/VEX. Planet. Space Sci. 113, 237–255 (2015b). doi: 10.1016/j.pss.2014.12.012 ADSCrossRefGoogle Scholar
  197. A.C. Vandaele, O. Korablev, D. Belyaev, S. Chamberlain, T. Encrenaz, L.W. Esposito, K.L. Jessup, F. Lefèvre, S. Limaye, A. Mahieux, E. Marcq, F. Mills, C.D. Parkinson, S. Robert, B. Sandor, A. Stolzenbach, C.F. Wilson, V. Wilquet, Sulphur dioxide variability in the Venus atmosphere. Planet. Space Sci. (2017) Google Scholar
  198. U. von Zahn, V.I. Moroz, Composition of the Venus atmosphere below 100 km altitude. Adv. Space Res. 5, 173–195 (1985). doi: 10.1016/0273-1177(85)90201-7 ADSCrossRefGoogle Scholar
  199. U. von Zahn, S. Kumar, H. Niemann, R. Prinn, Composition of the Venus atmosphere, in Venus, ed. by D.M. Hunten, L. Colin, T.M. Donahue, V.I. Moroz (University of Arizona Press, Tucson, 1983), p. 299 Google Scholar
  200. B.A. Voronin, J. Tennyson, R.N. Tolchenov, A.A. Lugovskoy, S.N. Yurchenko, A high accuracy computed line list for the HDO molecule. Mon. Not. R. Astron. Soc. 402, 492–496 (2010). doi: 10.1111/j.1365-2966.2009.15904.x ADSCrossRefGoogle Scholar
  201. J.R. Winick, A.I.F. Stewart, Photochemistry of SO2 in Venus’ upper cloud layers. J. Geophys. Res. 85, 7849–7860 (1980). doi: 10.1029/JA085iA13p07849 ADSCrossRefGoogle Scholar
  202. L.D.G. Young, High resolution spectra of Venus—a review. Icarus 17, 632–658 (1972). doi: 10.1016/0019-1035(72)90029-2 ADSCrossRefGoogle Scholar
  203. Y.L. Yung, W.B. DeMore, Photochemistry of the stratosphere of Venus—implications for atmospheric evolution. Icarus 51, 199–247 (1982). doi: 10.1016/0019-1035(82)90080-X ADSCrossRefGoogle Scholar
  204. Y.L. Yung, W.B. Demore, Photochemistry of Planetary Atmospheres (Oxford University Press, New York, 1999) Google Scholar
  205. Y.L. Yung, M.C. Liang, X. Jiang, R.L. Shia, C. Lee, B. Bézard, E. Marcq, Evidence for carbonyl sulfide (OCS) conversion to CO in the lower atmosphere of Venus. J. Geophys. Res., Planets 114, E00B34 (2009). doi: 10.1029/2008JE003094 ADSCrossRefGoogle Scholar
  206. L.V. Zasova, The structure of the Venusian atmosphere at high latitudes. Adv. Space Res. 16, 89 (1995). doi: 10.1016/0273-1177(95)00254-C ADSCrossRefGoogle Scholar
  207. L.V. Zasova, V.I. Moroz, L.W. Esposito, C.Y. Na, SO2 in the middle atmosphere of Venus: IR measurements from Venera-15 and comparison to UV data. Icarus 105, 92–109 (1993). doi: 10.1006/icar.1993.1113 ADSCrossRefGoogle Scholar
  208. L.V. Zasova, V.I. Moroz, V.M. Linkin, Venera-15, 16 and VEGA mission results as sources for improvements of the Venus reference atmosphere. Adv. Space Res. 17, 171–180 (1996). doi: 10.1016/0273-1177(95)00747-3 ADSCrossRefGoogle Scholar
  209. L.V. Zasova, V.I. Moroz, V.M. Linkin, I.V. Khatuntsev, B.S. Maiorov, Structure of the Venusian atmosphere from surface up to 100 km. Cosm. Res. 44, 364–383 (2006). doi: 10.1134/S0010952506040095 ADSCrossRefGoogle Scholar
  210. X. Zhang, On the decadal variation of sulfur dioxide at the cloud top of Venus, in 40th COSPAR Scientific Assembly. COSPAR Meeting, vol. 40, 2014, p. 3800. Held 2–10 August 2014, in Moscow, Russia, Abstract B0.7-9-14 Google Scholar
  211. X. Zhang, M.-C. Liang, F. Montmessin, J.-L. Bertaux, C. Parkinson, Y.L. Yung, Photolysis of sulphuric acid as the source of sulphur oxides in the mesosphere of Venus. Nat. Geosci. 3, 834–837 (2010). doi: 10.1038/ngeo989 ADSCrossRefGoogle Scholar
  212. X. Zhang, M.C. Liang, F.P. Mills, D.A. Belyaev, Y.L. Yung, Sulfur chemistry in the middle atmosphere of Venus. Icarus 217, 714–739 (2012). doi: 10.1016/j.icarus.2011.06.016 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.LATMOS/Université de Versailles Saint-QuentinGuyancourtFrance
  2. 2.Australian National UniversityCanberraAustralia
  3. 3.University of MichiganAnn ArborUSA
  4. 4.Belgian Institute for Space AeronomyUccleBelgium

Personalised recommendations