Advertisement

Space Science Reviews

, 214:5 | Cite as

High Performance Clocks and Gravity Field Determination

  • J. Müller
  • D. Dirkx
  • S. M. Kopeikin
  • G. Lion
  • I. Panet
  • G. Petit
  • P. N. A. M. Visser
Article
Part of the following topical collections:
  1. High Performance Clocks with Special Emphasis on Geodesy and Geophysics and Applications to Other Bodies of the Solar System

Abstract

Time measured by an ideal clock crucially depends on the gravitational potential and velocity of the clock according to general relativity. Technological advances in manufacturing high-precision atomic clocks have rapidly improved their accuracy and stability over the last decade that approached the level of \(10^{-18}\). This notable achievement along with the direct sensitivity of clocks to the strength of the gravitational field make them practically important for various geodetic applications that are addressed in the present paper.

Based on a fully relativistic description of the background gravitational physics, we discuss the impact of those highly-precise clocks on the realization of reference frames and time scales used in geodesy. We discuss the current definitions of basic geodetic concepts and come to the conclusion that the advances in clocks and other metrological technologies will soon require the re-definition of time scales or, at least, clarification to ensure their continuity and consistent use in practice.

The relative frequency shift between two clocks is directly related to the difference in the values of the gravity potential at the points of clock’s localization. According to general relativity the relative accuracy of clocks in \(10^{-18}\) is equivalent to measuring the gravitational red shift effect between two clocks with the height difference amounting to 1 cm. This makes the clocks an indispensable tool in high-precision geodesy in addition to laser ranging and space geodetic techniques.

We show how clock measurements can provide geopotential numbers for the realization of gravity-field-related height systems and can resolve discrepancies in classically-determined height systems as well as between national height systems. Another application of clocks is the direct use of observed potential differences for the improved recovery of regional gravity field solutions. Finally, clock measurements for space-borne gravimetry are analyzed along with closely-related deficiencies of this method like an extra-ordinary knowledge of the spacecraft velocity, etc. For all these applications besides the near-future prospects, we also discuss the challenges that are related to using those novel clock data in geodesy.

Keywords

General relativity Relativistic geodesy Reference frames Time scales High-precision time measurements Height systems Gravity field recovery 

Notes

Acknowledgements

The International Space Science Institute (ISSI), is acknowledged for having provided the opportunity of presenting the work described in this paper at the Workshop on High Performance Clocks, 30 November - 4 December 2015 in Bern, Switzerland. Jürgen Müller gratefully acknowledges support by the DFG Sonderforschungsbereich (SFB 1128: geo-Q) Relativistic Geodesy and Gravimetry with Quantum Sensors. We are also thankful to two anonymous referees whose peer review and critical comments helped us to significantly improve the presentation of the manuscript.

References

  1. D.C. Agnew, Earth tides, in Treatise on Geophysics, ed. by G. Schubert (Elsevier, Amsterdam, 2007), pp. 163–195. doi: 10.1016/B978-044452748-6.00056-0 CrossRefGoogle Scholar
  2. L. Blanchet, C. Salomon, P. Teyssandier, P. Wolf, Relativistic theory for time and frequency transfer to order \(\mathrm{c}^{-3}\). Astron. Astrophys. 370, 320–329 (2001) ADSCrossRefGoogle Scholar
  3. V.A. Brumberg, S.M. Kopejkin, Relativistic Theory of Celestial Reference Frames (Springer, Netherlands, Dordrecht, 1989a), pp. 115–141. doi: 10.1007/978-94-009-0933-5_6 CrossRefGoogle Scholar
  4. V.A. Brumberg, S.M. Kopejkin, Relativistic reference systems and motion of test bodies in the vicinity of the earth. Il Nuovo Cimento B 103(1), 63–98 (1989b). doi: 10.1007/BF02888894 ADSCrossRefGoogle Scholar
  5. M. Burša, S. Kenyon, J. Kouba, Z. Šìma, V. Vatrt, V. Vìtek, M. Vojtìšková, The geopotential value \(W_{0}\) for specifying the relativistic atomic time scale and a global vertical reference system. J. Geod. 81(2), 103–110 (2007) ADSCrossRefGoogle Scholar
  6. D. Calonico, A. Cina, F. Levi, I.H. Bendea, L. Lorini, A. Godone, Gravitational redshift at INRIM. Metrologia 44(5), 44–48 (2007) CrossRefGoogle Scholar
  7. O. Carraz, C. Siemes, L. Massotti, R. Haagmans, P. Silvestrin, A spaceborne gradiometer concept based on cold atom interferometers for measuring earth’s gravity field. Microgravity Sci. Technol. 26, 139–145 (2015). doi: 10.1007/s12217-014-9385-x ADSCrossRefGoogle Scholar
  8. N. Chiodo, K. Djerroud, O. Acef, A. Clairon, P. Wolf, Lasers for coherent optical satellite links with large dynamics. Appl. Opt. 52, 7342–7351 (2013) ADSCrossRefGoogle Scholar
  9. S.J. Claessens, C. Hirt, Ellipsoidal topographic potential: new solutions for spectral forward gravity modeling of topography with respect to a reference ellipsoid. J. Geophys. Res., Solid Earth 118(11), 5991–6002 (2013). doi: 10.1002/2013JB010457 ADSCrossRefGoogle Scholar
  10. O.L. Colombo, The Global Mapping of Gravity with Two Satellites (1984) Google Scholar
  11. C. Dahle, F. Flechtner, C. Gruber, D. König, R. König, G. Michalak, K.-H. Neumayer, GFZ GRACE level-2 processing standards document for level-2 product release 0005. Scientific technical report STR12/02—data, revised edn., Helmholtz-Zentrum Potsdam, Deutsches Geoforschungszentrum, 2013 Google Scholar
  12. T. Damour, M. Soffel, C.-M. Xu, General-relativistic celestial mechanics. i. method and definition of reference systems. Phys. Rev. D 43, 3273–3307 (1991). doi: 10.1103/PhysRevD.43.3273 ADSMathSciNetCrossRefGoogle Scholar
  13. T. Damour, M. Soffel, C.-M. Xu, General-relativistic celestial mechanics, II: translational equations of motion. Phys. Rev. D 45, 1017–1044 (1992). doi: 10.1103/PhysRevD.45.1017 ADSMathSciNetCrossRefGoogle Scholar
  14. T. Damour, M. Soffel, C.-M. Xu, General-relativistic celestial mechanics, III: rotational equations of motion. Phys. Rev. D 47, 3124–3135 (1993). doi: 10.1103/PhysRevD.47.3124 ADSMathSciNetCrossRefGoogle Scholar
  15. N. Dayoub, S.J. Edwards, P. Moore, The Gauss-Listing geopotential value \(W_{0}\) and its rate from altimetric mean sea level and GRACE. J. Geod. 86(9), 681–694 (2012) ADSCrossRefGoogle Scholar
  16. H. Denker, Regional gravity field modeling: theory and practical results, in Sciences of Geodesy-II, ed. by G. Xu (2013), pp. 185–291. doi: 10.1007/978-3-642-28000-9_5 CrossRefGoogle Scholar
  17. H. Denker, Height differences observed by different geodetic methods. Private communication, 2016 Google Scholar
  18. H. Denker, L. Timmen, C. Voigt, Gravity field modelling for optical clock comparisons, 2015 Google Scholar
  19. D. Dirkx, R. Noomen, P.N.A.M. Visser, L. Gurvits, L.L.A. Vermeersen, Space-time dynamics estimation from space mission tracking data. Astron. Astrophys. 587 (A156), 1–10 (2016). doi: 10.1051/0004-6361/201527524 Google Scholar
  20. K. Djerroud, O. Acef, A. Clairon, P. Lemonde, C.N. Man, E. Samain, P. Wolf, Coherent optical link through the turbulent atmosphere. Opt. Lett. 35, 1479–1481 (2010) ADSCrossRefGoogle Scholar
  21. M. Drinkwater, R. Haagmans, D. Muzzi, A. Popescu, R. Floberghagen, M. Kern, M. Fehringer, The GOCE gravity mission: ESA’s first core explorer, in 3rd GOCE User Workshop, Frascati, Italy, 6–8 November 2006 (2007), pp. 1–7 Google Scholar
  22. C. Dunn, W. Bertiger, Y. Bar-Sever, S. Desai, B. Haines, D. Kuang, G. Franklin, I. Harris, G. Kruizinga, T. Meehan, S. Nandi, D. Nguyen, T. Rogstad, J.B. Thomas, J. Tien, L. Romans, M. Watkins, S.-C. Wu, S. Bettadpur, J. Kim, Instrument of Grace: GPS augments gravity measurements, in GPS World (2003), pp. 16–28 Google Scholar
  23. ESA, Earth observation science strategy for ESA—a new era for scientific advances and societal benefits. ESA SP-1329/1&2, 2015 Google Scholar
  24. V.F. Fateev, S.M. Kopeikin, S.L. Pasynok, Effect of irregularities in the earth’s rotation on relativistic shifts in frequency and time of earthbound atomic clocks. Meas. Tech. 58(6), 647–654 (2015). doi: 10.1007/s11018-015-0769-0 CrossRefGoogle Scholar
  25. V.A. Fock, The Theory of Space, Time and Gravitation, 2nd revised edn. (Macmillan, New York, 1964), translated from the Russian by N. Kemmer. 1st edn.: Pergamon, New York, 1959 zbMATHGoogle Scholar
  26. R. Forsberg, A new covariance model for inertial gravimetry and gradiometry. J. Geophys. Res. 92, 1305–1310 (1987). doi: 10.1029/JB092iB02p01305 ADSCrossRefGoogle Scholar
  27. R. Forsberg, C.C. Tscherning, An Overview Manual for the GRAVSOFT (Univ. of Copenhagen Press, Copenhagen, 2008) Google Scholar
  28. C. Förste, S. Bruinsma, O. Abrikosov, F. Flechtner, J.-C. Marty, J.-M. Lemoine, C. Dahle, H. Neumayer, F. Barthelmes, R. König, R. Biancale, EIGEN-6C4—the latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse, in EGU General Assembly Conference Abstracts, vol. 16 (2014), p. 3707 Google Scholar
  29. L.-L. Fu, Determining ocean circulation and sea level from satellite altimetry: progress and challenges, in Oceans from Space, ed. by V. Barale, J.F.R. Gower, L. Alberotanza (Springer, New York, 2010), pp. 147–163. doi: 10.1007/978-90-481-8681-5_9 CrossRefGoogle Scholar
  30. J. Gersl, P. Delva, P. Wolf, Relativistic corrections for time and frequency transfer in optical fibres. Metrologia 52, 552–564 (2015). doi: 10.1088/0026-1394/52/4/552 ADSCrossRefGoogle Scholar
  31. F.R. Giorgetta, W.C. Swann, L.C. Sinclair, E. Baumann, I. Coddington, N.R. Newbury, Optical two-way time and frequency transfer over free space. Nat. Photonics 7, 434–438 (2013) ADSCrossRefGoogle Scholar
  32. H. Goldstein, C. Poole, J. Safko, Classical Mechanics (Addison-Wesley, San Francisco, 2002) zbMATHGoogle Scholar
  33. Th. Gruber, J. Bamber, M.F.P. Bierkens, H. Dobslaw, M. Murböck, M. Thomas, L.P.H. van Beek, T. van Dam, L.L.A. Vermeersen, P.N.A.M. Visser, Simulation of the time-variable gravity field by means of coupled geophysical models. Earth Syst. Sci. Data 3, 19–35 (2011). doi: 10.5194/essd-3-19-2011 ADSCrossRefGoogle Scholar
  34. W.A. Heiskanen, H. Moritz, Physical Geodesy (Freeman, San Francisco, 1967) Google Scholar
  35. J. Ihde, R. Barzaghi, U. Marti, L. Sánchez, M. Sideris, H. Drewes, C. Foerste, T. Gruber, G. Liebsch, R. Pail, Report of the ad hoc group on an international height reference system (IHRS). IAG Reports 2011–2015, Travaux de l’AIG, vol. 39, 2015. http://iag.dgfi.tum.de/index.php?id=329
  36. Jet Propulsion Laboratory, GRACE follow-on. http://gracefo.jpl.nasa.gov/mission/mission3, 2017
  37. S.M. Kopejkin, Celestial coordinate reference systems in curved space-time. Celest. Mech. 44, 87–115 (1988). doi: 10.1007/BF01230709 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. S.M. Kopejkin, Relativistic manifestations of gravitational fields in gravimetry and geodesy. Manuscr. Geod. 16(5), 301–312 (1991) ADSGoogle Scholar
  39. S. Kopeikin, M. Efroimsky, G. Kaplan, Relativistic Celestial Mechanics of the Solar System (Wiley, Berlin, 2011) CrossRefzbMATHGoogle Scholar
  40. S. Kopeikin, W. Han, E. Mazurova, Post-Newtonian reference ellipsoid for relativistic geodesy. Phys. Rev. D 93(4), 044069 (2016). doi: 10.1103/PhysRevD.93.044069 ADSMathSciNetCrossRefGoogle Scholar
  41. S.P. Kuzin, S.K. Tatevian, S.G. Valeev, V.A. Fashutdinova, Studies of the geocenter motion using 16-years DORIS data. Adv. Space Res. 46, 1292–1298 (2010). doi: 10.1016/j.asr.2010.06.038 ADSCrossRefGoogle Scholar
  42. G. Lion, I. Panet, P. Wolf, C. Guerlin, S. Bize, P. Delva, Determination of a high spatial resolution geopotential model using atomic clock comparisons. J. Geod. (2017). doi: 10.1007/s00190-016-0986-6 Google Scholar
  43. E. Mai, J. Müller, General remarks on the potential use of atomic clocks in relativistic geodesy. Z. Geoinformation Landmanagement 4, 257–266 (2013) Google Scholar
  44. R. Mayrhofer, R. Pail, Future satellite gravity field missions: feasibility study of post-Newtonian method, in Geodesy for Planet Earth, ed. by S. Kenyon et al. International Association of Geodesy Symposia, vol. 136 (Springer, Switzerland, 2012), pp. 231–238. doi: 10.1007/978-3-642-20338-1_28 CrossRefGoogle Scholar
  45. H. Moritz, Advanced Physical Geodesy (Herbert Wichmann Verlag, Karlsrue, 1980) Google Scholar
  46. J. Müller, Erdmessung mit Quanten und Relativität, in BWG Jahrbuch (2016). arXiv:1608.08407 Google Scholar
  47. R. Pail, H. Goiginger, W.-D. Schuh et al., Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett. 37(20), L20314 (2010). doi: 10.1029/2010GL044906 ADSCrossRefGoogle Scholar
  48. N.K. Pavlis, M.A. Weiss, The relativistic redshift with \(3 \times 10^{-17}\) uncertainty at NIST, Boulder, Colorado, USA. Metrologia 40(2), 66–73 (2003) ADSCrossRefGoogle Scholar
  49. G. Petit, B. Luzum, IERS conventions (2010). IERS technical note 36, 2010 Google Scholar
  50. G. Petit, P. Wolf, Computation of the relativistic rate shift of a frequency standard. IEEE Trans. Instrum. Meas. 46(2), 201–204 (1997) CrossRefGoogle Scholar
  51. G. Petit, P. Wolf, P. Delva, Atomic time, clocks and clock comparisons in relativistic space-time: a review, in Frontiers in Relativistic Celestial Mechanics, vol. 2: Applications and Experiments (de Gruyter, Berlin, 2014), pp. 249–283 Google Scholar
  52. P. Rebischung, Z. Altamimi, T. Springer, Insensitivity of GNSS to geocenter motion through the network shift approach (invited), in AGU Fall Meeting Abstracts (2013) Google Scholar
  53. A.S. Richey, B.F. Thomas, M.-H. Lo, J.T. Reager, J.S. Famiglietti, K. Voss, S. Swenson, M. Rodell, Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51(7), 5217–5238 (2015). doi: 10.1002/2015WR017349 ADSCrossRefGoogle Scholar
  54. L. Sánchez, Towards a vertical datum standardisation under the umbrella of global geodetic observing system. J. Geod. Sci. 2, 325–342 (2012). doi: 10.2478/v10156-012-0002-x Google Scholar
  55. L. Sánchez, Ein einheitliches vertikales Referenzsystem für Südamerika im Rahmen eines globalen Höhensystems. PhD thesis, Technische Universität Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-162350
  56. E.J.O. Schrama, Gravity field error analysis: applications of gps receivers and gradiometers on low orbiting platforms. J. Geophys. Res. 96(B12), 20,041–20,051 (1991) ADSCrossRefGoogle Scholar
  57. B. Sheard, G. Heinzel, K. Danzmann, D. Shaddock, W. Klipstein, W. Folkner, Intersatellite laser ranging instrument for the GRACE follow-on mission. J. Geod. 86(12), 1083–1095 (2012) ADSCrossRefGoogle Scholar
  58. B. Simon, A. Lemaitre, J. Souchay, Oceanic tides, in Tides in Astronomy and Astrophysics, ed. by J. Souchay, S. Mathis, T. Tokieda (Springer, Berlin, 2013), pp. 83–114. doi: 10.1007/978-3-642-32961-6_3 CrossRefGoogle Scholar
  59. D.A. Smith, There is no such thing as “the” egm96 geoid: subtle points on the use of a global geopotential model. I.Ge.S. Bull. 8, 17–28 (1998) Google Scholar
  60. W.H.F. Smith, D.T. Sandwell, Global sea floor topography from satellite altimetry and ship depth soundings. Science 277(5334), 1956–1962 (1997). doi: 10.1126/science.277.5334.1956 CrossRefGoogle Scholar
  61. M. Soffel, S.A. Klioner, G. Petit, P. Wolf, S.M. Kopeikin, P. Bretagnon, V.A. Brumberg, N. Capitaine, T. Damour, T. Fukushima, B. Guinot, T.-Y. Huang, L. Lindegren, C. Ma, K. Nordtvedt, J.C. Ries, P.K. Seidelmann, D. Vokrouhlicky, C.M. Will, C. Xu, The IAU 2000 resolutions for astrometry, celestial mechanics, and metrology in the relativistic framework: explanatory supplement. Astron. J. 126, 2687–2706 (2003) ADSCrossRefGoogle Scholar
  62. B.D. Tapley, S. Bettadpur, J.C. Ries, P.F. Thompson, M.M. Watkins, GRACE measurements of mass variability in the earth system. Science 305, 1503–1505 (2004) CrossRefGoogle Scholar
  63. Thales Alenia Spazio, DEOS, IAPG, GIS, ULUX, DEIMOS, and ONERA, Assessment of a next generation mission for monitoring the variations of earth’s gravity. SD-RP-AI-0688, final report, ESTEC contract No. 22643/09/NL/AF, European Space Agency, December 2010 Google Scholar
  64. W. Torge, J. Müller, Geodesy, 4th edn. (De Gruyter, Berlin/Boston, 2012) CrossRefzbMATHGoogle Scholar
  65. I. Velicogna, J. Wahr, Acceleration of Greenland ice mass loss in spring 2004. Nature 443, 329–331 (2006a). doi: 10.1038/nature05168 ADSCrossRefGoogle Scholar
  66. I. Velicogna, J. Wahr, Measurements of time-variable gravity show mass loss in Antarctica. Science 311, 754–1756 (2006b). doi: 10.1126/science.112378 CrossRefGoogle Scholar
  67. P.N.A.M. Visser, J. van den IJssel, R. Koop, R. Klees, Exploring gravity field determination from orbit perturbations of the European gravity mission GOCE. J. Geod. 75(2/3), 89–98 (2001) ADSCrossRefGoogle Scholar
  68. P.N.A.M. Visser, N. Sneeuw, C. Gerlach, Energy integral method for gravity field determination from satellite orbit coordinates. J. Geod. 77(3/4), 207–216 (2003) ADSCrossRefzbMATHGoogle Scholar
  69. C. Voigt, H. Denker, L. Timmen, Investigation of time-variable components of the gravity potential for optical clock comparisons, in 26th General Assembly of International Union of Geodesy and Geophysics (IUGG), Prague, Czech Republic (2015) Google Scholar
  70. C. Voigt, H. Denker, L. Timmen, Time-variable gravity potential components for optical clock comparisons and the definition of international time scales. Metrologia 53(6), 1365–1383 (2016) ADSCrossRefGoogle Scholar
  71. P. Wolf, G. Petit, Relativistic theory for clock syntonization and the realization of geocentric coordinate times. Astron. Astrophys. 304, 654–661 (1995) ADSGoogle Scholar
  72. X. Wu, J. Ray, T. van Dam, Geocenter motion and its geodetic and geophysical implications. J. Geodyn. 58, 44–61 (2012). doi: 10.1016/j.jog.2012.01.007 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • J. Müller
    • 1
  • D. Dirkx
    • 2
    • 3
  • S. M. Kopeikin
    • 4
    • 5
  • G. Lion
    • 6
  • I. Panet
    • 7
  • G. Petit
    • 8
  • P. N. A. M. Visser
    • 2
  1. 1.Institut für ErdmessungLeibniz Universität HannoverHannoverGermany
  2. 2.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands
  3. 3.Joint Institude for VLBI ERICDwingelooThe Netherlands
  4. 4.Department of Physics and AstronomyUniversity of MissouriColumbiaUSA
  5. 5.Siberian State University of Geosystems and TechnologiesNovosibirskRussia
  6. 6.LNE-SYRTE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06LNEParisFrance
  7. 7.LASTIG LAREG, IGN, ENSG, Univ. Paris DiderotSorbonne Paris CitéParisFrance
  8. 8.Bureau International des Poids et MesuresSèvres CedexFrance

Personalised recommendations