Advertisement

Space Science Reviews

, Volume 212, Issue 3–4, pp 1817–1869 | Cite as

Young and Intermediate-Age Distance Indicators

  • Smitha Subramanian
  • Massimo Marengo
  • Anupam Bhardwaj
  • Yang Huang
  • Laura Inno
  • Akiharu Nakagawa
  • Jesper Storm
Article
Part of the following topical collections:
  1. Astronomical Distance Determination in the Space Age

Abstract

Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic properties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.

Keywords

Stars: distances Stars: variables: Cepheids Stars: AGB and post-AGB Stars: horizontal branch stars Cosmology: distance scale 

Notes

Acknowledgements

SS acknowledges research funding support from Chinese Postdoctoral Science Foundation (grant number 2016M590013). YH thanks the support by the by the National Key Basic Research Program of China 2014CB845700, the National Natural Science Foundation of China 11473001 and the LAMOST FELLOWSHIP. LI acknowledge support from the Sonderforschungsbereich SFB 881 The Milky Way System (subproject A3) of the German Research Foundation (DFG).

References

  1. C. Alcock et al., The MACHO project: microlensing detection efficiency. Astrophys. J. Suppl. Ser. 136, 439 (2001) ADSCrossRefGoogle Scholar
  2. R.I. Anderson et al., On the effect of rotation on populations of classical Cepheids. I. Predictions at solar metallicity. Astron. Astrophys. 564, A100 (2014) CrossRefGoogle Scholar
  3. R.I. Anderson et al., Revealing \(\delta\) Cephei’s secret companion and intriguing past. Astrophys. J. 804, 144 (2015) ADSCrossRefGoogle Scholar
  4. S.M. Andrievsky, R.P. Martin, V.V. Kovtyukh, S.A. Korotin, J.R.D. Lépine, Oxygen, \(\alpha\)-element and iron abundance distributions in the inner part of the Galactic thin disc—II. Mon. Not. R. Astron. Soc. 461, 4256 (2016) ADSCrossRefGoogle Scholar
  5. B. Aringer, S. Höfner, G. Wiedemann, J. Hron, U.G. Jørgensen, H.U. Käufl, W. Windsteig, SiO rotation-vibration bands in cool giants II. The behaviour of SiO bands in AGB stars. Astron. Astrophys. 342, 799 (1999) ADSGoogle Scholar
  6. Y. Asaki, S. Deguchi, H. Imai et al., Distance and proper motion measurement of the Red Supergiant, S Persei, with VLBI H2O maser astrometry. Astrophys. J. 721, 267 (2010) ADSCrossRefGoogle Scholar
  7. P. Barmby et al., Galactic Cepheids with Spitzer. II. Search for extended infrared emission. Astron. J. 141, 42 (2011) ADSCrossRefGoogle Scholar
  8. T.G. Barnes, D.S. Evans, Stellar angular diameters and visual surface brightness—I. Late spectral types. Mon. Not. R. Astron. Soc. 174, 489 (1976) ADSCrossRefGoogle Scholar
  9. J.P. Beaulieu et al., EROS variable stars: fundamental-mode and first-overtone Cepheids in the bar of the Large Magellanic Cloud. Astron. Astrophys. 303, 137 (1995) ADSGoogle Scholar
  10. G.F. Benedict et al., Hubble Space Telescope fine guidance sensor parallaxes of Galactic Cepheid variable stars: period-luminosity relations. Astron. J. 133, 1810 (2007) ADSCrossRefGoogle Scholar
  11. A. Bhardwaj et al., On the variation of Fourier parameters for Galactic and LMC Cepheids at optical, near-infrared and mid-infrared wavelengths. Mon. Not. R. Astron. Soc. 447, 3342 (2015) ADSCrossRefGoogle Scholar
  12. A. Bhardwaj et al., Large Magellanic Cloud near-infrared synoptic survey—III. A statistical study of non-linearity in the Leavitt laws. Mon. Not. R. Astron. Soc. 457, 1644 (2016a) ADSCrossRefGoogle Scholar
  13. A. Bhardwaj et al., Period-luminosity relations derived from the OGLE-III first-overtone mode Cepheids in the Magellanic Clouds. Mon. Not. R. Astron. Soc. 458, 3705 (2016b) ADSCrossRefGoogle Scholar
  14. O. Bienaymé, B. Famaey, A. Siebert et al., Weighing the local dark matter with RAVE Red Clump stars. Astron. Astrophys. 571, 92 (2014) CrossRefGoogle Scholar
  15. S. Bilir, S. Karaali, S. Ak et al., Local stellar kinematics from RAVE data—III. Radial and vertical metallicity gradients based on Red Clump stars. Mon. Not. R. Astron. Soc. 421, 3362 (2012) ADSCrossRefGoogle Scholar
  16. G. Bono et al., Theoretical models for classical Cepheids. II. Period-luminosity, period-color, and period-luminosity-color relations. Astrophys. J. 512, 711 (1999a) ADSCrossRefGoogle Scholar
  17. G. Bono et al., Intermediate-mass star models with different helium and metal contents. Astrophys. J. 543, 955 (2000b) ADSCrossRefGoogle Scholar
  18. G. Bono et al., Insights into the Cepheid distance scale. Astrophys. J. 715, 277 (2010) ADSCrossRefGoogle Scholar
  19. G. Bono, M. Marconi, R.F. Stellingwerf, Classical Cepheid pulsation models. I. Physical structure. Astrophys. J. Suppl. Ser. 122, 167 (1999b) ADSCrossRefGoogle Scholar
  20. G. Bono, M. Marconi, R.F. Stellingwerf, Classical Cepheid pulsation models—VI. The Hertzsprung progression. Astron. Astrophys. 360, 245 (2000a) ADSGoogle Scholar
  21. J. Bovy, D.L. Nidever, H.-W. Rix et al., The APOGEE red-clump catalog: precise distances, velocities, and high-resolution elemental abundances over a large area of the Milky Way’s disk. Astrophys. J. 790, 127 (2014) ADSCrossRefGoogle Scholar
  22. A. Bressan, P. Marigo et al., PARSEC: stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 427, 127 (2012) ADSCrossRefGoogle Scholar
  23. R.D. Cannon, Red giants in old open clusters. Mon. Not. R. Astron. Soc. 150, 111 (1970) ADSCrossRefGoogle Scholar
  24. F. Caputo et al., Pulsation and evolutionary masses of classical Cepheids. I. Milky Way variables. Astrophys. J. 629, 1021 (2005) ADSCrossRefGoogle Scholar
  25. J.A. Cardelli, G.C. Clayton, J.S. Mathis, The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245 (1989) ADSCrossRefGoogle Scholar
  26. N.L. Chapman et al., The mid-infrared extinction law in the Ophiuchus, Perseus, and Serpens molecular clouds. Astrophys. J. 690, 496–511 (2009) ADSCrossRefGoogle Scholar
  27. Y.K. Choi, T. Hirota, M. Honma et al., Astrometry of H2O masers in nearby star-forming regions with VERA. II. SVS13 in NGC1333. Publ. Astron. Soc. Jpn. 60, 1007 (2008) ADSCrossRefGoogle Scholar
  28. M.-R.L. Cioni et al., The VMC survey. I. Strategy and first data. Astron. Astrophys. 527, A116 (2011) CrossRefGoogle Scholar
  29. A.A. Cole, Age, Metallicity, and the distance to the Magellanic Clouds from Red Clump stars. Astrophys. J. 500, 137 (1998) ADSCrossRefGoogle Scholar
  30. O.L. Creevey, F. Thévenin, S. Basu et al., A large sample of calibration stars for Gaia: log g from Kepler and CoRoT fields. Mon. Not. R. Astron. Soc. 431, 2419 (2013) ADSCrossRefGoogle Scholar
  31. A.J. Cuesta et al., Calibrating the cosmic distance scale ladder: the role of the sound-horizon scale and the local expansion rate as distance anchors. Mon. Not. R. Astron. Soc. 448, 3463 (2015) ADSCrossRefGoogle Scholar
  32. R.M. Cutri, M.F. Skrutskie, S. van Dyk et al., VizieR Online Data Catalog 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) (2003), p. 2246 Google Scholar
  33. A.K. Dambis, L.N. Berdnikov, Y.N. Efremov, A.Y. Kniazev, A.S. Rastorguev, E.V. Glushkova, V.V. Kravtsov, D.G. Turner, D.J. Majaess, R. Sefako, Classical Cepheids and the spiral structure of the Milky Way. Astron. Lett. 41, 489 (2015) ADSCrossRefGoogle Scholar
  34. R. de Grijs, G. Bono, Clustering of local group distances: publication bias or correlated measurements? III. The Small Magellanic Cloud. Astron. J. 149, 179 (2015) ADSCrossRefGoogle Scholar
  35. R. de Grijs, J.E. Wicker, G. Bono, Clustering of local group distances: publication bias or correlated measurements? I. The Large Magellanic Cloud. Astron. J. 147, 122 (2014) ADSCrossRefGoogle Scholar
  36. G. De Marchi et al., Hubble tarantula treasury project—IV. The extinction law. Mon. Not. R. Astron. Soc. 455, 4373 (2016) ADSCrossRefGoogle Scholar
  37. W. Dehnen, J.J. Binney, Local stellar kinematics from HIPPARCOS data. Mon. Not. R. Astron. Soc. 298, 387 (1998) ADSCrossRefGoogle Scholar
  38. G.P. di Benedetto, Towards a fundamental calibration of stellar parameters of A, F, G, K dwarfs and giants. Astron. Astrophys. 339, 858 (1998) ADSGoogle Scholar
  39. J.R. Ducati, VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson’s 11-color system. VizieR Online Data Catalog (2002), p. 2237 Google Scholar
  40. C. Dvorkin et al., Neutrinos help reconcile Planck measurements with both the early and local universe. Phys. Rev. D 90, 083503 (2014) ADSCrossRefGoogle Scholar
  41. ESA, The HIPPARCOS and TYCHO Catalogues. Astrometric and Photometric Star Catalogues Derived from the ESA HIPPARCOS Space Astrometry Mission. ESA Special Publication, vol. 1200 (1997) Google Scholar
  42. N.R. Evans et al., Direct detection of the close companion of polaris with the Hubble Space Telescope. Astron. J. 136, 1137 (2008) ADSCrossRefGoogle Scholar
  43. N.E. Evans et al., Binary Cepheids: separations and mass ratios in 5 \(\mbox{M}_{\odot}\) binaries. Astron. J. 146, 93 (2013) ADSCrossRefGoogle Scholar
  44. G.G. Fazio et al., The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 10 (2004) ADSCrossRefGoogle Scholar
  45. M.W. Feast, R.M. Catchpole, The Cepheid period-luminosity zero-point from HIPPARCOS trigonometrical parallaxes. Mon. Not. R. Astron. Soc. 286, L1 (1997) ADSCrossRefGoogle Scholar
  46. M.W. Feast, I.S. Glass, P.A. Whitelock, R.M. Catchpole, A period-luminosity-colour relation for Mira variables. Mon. Not. R. Astron. Soc. 241, 375 (1989) ADSCrossRefGoogle Scholar
  47. M.W. Feast, P.A. Whitelock, Hipparcos parallaxes for Mira-like long-period variables. Mon. Not. R. Astron. Soc. 317, 460 (2000) ADSCrossRefGoogle Scholar
  48. G. Fiorentino et al., Classical Cepheid pulsation models. XI. Effects of convection and chemical composition on the period-luminosity and period-Wesenheit relations. Astron. Astrophys. 476, 863 (2007) ADSCrossRefGoogle Scholar
  49. G. Fiorentino, I. Musella, M. Marconi, Cepheid theoretical models and observations in HST/WFC3 filters: the effect on the Hubble constant \(\mathrm{H}_{0}\). Mon. Not. R. Astron. Soc. 434, 2866 (2013) ADSCrossRefGoogle Scholar
  50. K.M. Flaherty et al., Infrared extinction toward nearby star-forming regions. Astrophys. J. 663, 1069 (2007) ADSCrossRefGoogle Scholar
  51. P. Fouqué et al., A new calibration of Galactic Cepheid period-luminosity relations from B to K bands, and a comparison to LMC relations. Astron. Astrophys. 476, 73 (2007) ADSCrossRefGoogle Scholar
  52. P. Fouque, W.P. Gieren, An improved calibration of Cepheid visual and infrared surface brightness relations from accurate angular diameter measurements of cool giants and supergiants. Astron. Astrophys. 320, 799 (1997) ADSGoogle Scholar
  53. W.L. Freedman et al., The Carnegie Hubble program. Astron. J. 142, 192 (2011) ADSCrossRefGoogle Scholar
  54. W.L. Freedman et al., Carnegie Hubble program: a mid-infrared calibration of the Hubble Constant. Astrophys. J. 758, 24 (2012) ADSCrossRefGoogle Scholar
  55. W.L. Freedman, G.R. Grieve, B.F. Madore, BVRI photometry of extragalactic Cepheids and new insights for the distance scale. Astrophys. J. Suppl. Ser. 59, 311 (1985) ADSCrossRefGoogle Scholar
  56. W.L. Freedman, B.F. Madore, The Hubble Constant. Annu. Rev. Astron. Astrophys. 48, 673 (2010a) ADSCrossRefGoogle Scholar
  57. W.L. Freedman, B.F. Madore, B.K. Gibson, L. Ferrarese, D.D. Kelson, S. Sakai, J.R. Mould, R.C. Kennicutt Jr., H.C. Ford, J.A. Graham, J.P. Huchra, S.M.G. Hughes, G.D. Illingworth, L.M. Macri, P.B. Stetson, Final results from the Hubble Space Telescope key project to measure the Hubble Constant. Astrophys. J. 553, 47 (2001) ADSCrossRefGoogle Scholar
  58. K. Fricke, R.S. Stobie, P.A. Strittmatter, The masses of Cepheid variables. Astrophys. J. 171, 593 (1972) ADSCrossRefGoogle Scholar
  59. S.D. Friedman et al., Pairwise correlations of eight strong DIBs and N(H), N(H2), and E(B-V). Bull. Am. Astron. Soc. 43, 129.10 (2011) Google Scholar
  60. A. Gallenne et al., Spatially extended emission around the Cepheid RS Puppis in near-infrared hydrogen lines. Adaptive optics imaging with VLT/NACO. Astron. Astrophys. 527, A51 (2011) CrossRefGoogle Scholar
  61. A. García-Varela, B.E. Sabogal, M.C. Ramírez-Tannus, A study on the universality and linearity of the Leavitt law in the LMC and SMC galaxies. Mon. Not. R. Astron. Soc. 431, 2278 (2013) ADSCrossRefGoogle Scholar
  62. J.P. Gardner, The James Webb Space Telescope: extending the science. SPIE 8442, 844228 (2012) ADSGoogle Scholar
  63. L. Girardi, Red Clump Stars. Annu. Rev. Astron. Astrophys. 54, 95 (2016) ADSCrossRefGoogle Scholar
  64. L. Girardi, M.A.T. Groenewegen, E. Hatziminaoglou, L. da Costa, Star counts in the Galaxy. Simulating from very deep to very shallow photometric surveys with the TRILEGAL code. Mon. Not. R. Astron. Soc. 436, 895 (2005) ADSGoogle Scholar
  65. L. Girardi, M.A.T. Groenewegen, A. Weiss, M. Salaris, Fine structure of the red giant clump from HIPPARCOS data, and distance determinations based on its mean magnitude. Mon. Not. R. Astron. Soc. 301, 149 (1998) ADSCrossRefGoogle Scholar
  66. L. Girardi, M. Salaris, Population effects on the red giant clump absolute magnitude and distance determinations to nearby galaxies. Mon. Not. R. Astron. Soc. 323, 109 (2001) ADSCrossRefGoogle Scholar
  67. D. Graczyk, G. Pietrzyński, I.B. Thompson et al., The Araucaria Project. The distance to the Small Magellanic Cloud from late-type eclipsing binaries. Astrophys. J. 780, 59 (2014) ADSCrossRefGoogle Scholar
  68. G.M. Green et al., A three-dimensional map of Milky Way dust. Astrophys. J. 810, 25 (2015) ADSCrossRefGoogle Scholar
  69. C.A. Haniff, M. Scholz, P.G. Tuthill, New diameter measurements of 10 Mira variables—implications for effective temperatures atmospheric structure and pulsation modes. Mon. Not. R. Astron. Soc. 276, 640 (1995) ADSCrossRefGoogle Scholar
  70. R. Haschke, E.K. Grebel, S. Duffau, New optical reddening maps of the Large and Small Magellanic Clouds. Astron. J. 141, 158 (2011) ADSCrossRefGoogle Scholar
  71. R. Haschke, E.K. Grebel, S. Duffau, Three-dimensional maps of the Magellanic Clouds using RR Lyrae stars and Cepheids. I. The Large Magellanic Cloud. Astron. J. 144, 106 (2012) ADSCrossRefGoogle Scholar
  72. Y. Huang, X.-W. Liu, H.-B. Yuan et al., The Milky Way’s rotation curve out to 100 kpc and its constraint on the Galactic mass distribution. Mon. Not. R. Astron. Soc. 463, 2623 (2016) ADSCrossRefGoogle Scholar
  73. Y. Huang, X.-W. Liu, H.-W. Zhang et al., On the metallicity gradients of the Galactic disk as revealed by LSS-GAC Red Clump stars. Res. Astron. Astrophys. 15, 1240 (2015) ADSCrossRefGoogle Scholar
  74. E.P. Hubble, A spiral nebula as a stellar system, Messier 31. Astrophys. J. 69, 103 (1929a) ADSCrossRefGoogle Scholar
  75. E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. 15, 168 (1929b) ADSzbMATHCrossRefGoogle Scholar
  76. D. Huber, V. Silva Aguirre, J.M. Matthews et al., Revised stellar properties of Kepler targets for the quarter 1–16 transit detection run. Astrophys. J. Suppl. Ser. 211, 2 (2014) ADSCrossRefGoogle Scholar
  77. R. Indebetouw et al., The wavelength dependence of interstellar extinction from 1.25 to 8.0 μm using GLIMPSE data. Astrophys. J. 619, 931 (2005) ADSCrossRefGoogle Scholar
  78. L. Inno et al., On the distance of the Magellanic Clouds using Cepheid NIR and optical-NIR period-Wesenheit relations. Astrophys. J. 764, 84 (2013) ADSCrossRefGoogle Scholar
  79. L. Inno et al., New NIR light-curve templates for classical Cepheids. Astron. Astrophys. 576, A30 (2015) CrossRefGoogle Scholar
  80. L. Inno et al., The panchromatic view of the Magellanic Clouds from classical Cepheids. I. Distance, reddening and geometry of the Large Magellanic Cloud disk. Astrophys. J. 832, 1761 (2016) CrossRefGoogle Scholar
  81. Y. Ita, T. Tanabé, N. Matsunaga et al., Variable stars in the Magellanic Clouds: results from OGLE and SIRIUS. Mon. Not. R. Astron. Soc. 347, 720 (2004) ADSCrossRefGoogle Scholar
  82. A.M. Jacyszyn-Dobrzeniecka et al., OGLE-ing the Magellanic System: three-dimensional structure of the clouds and the bridge using classical Cepheids. Acta Astron. 66, 149 (2016) ADSGoogle Scholar
  83. R.V. Jones, B.W. Carney, J.P. Fulbright, Template K light curves for RR Lyrae Stars. Publ. Astron. Soc. Pac. 108, 877 (1996) ADSCrossRefGoogle Scholar
  84. T. Kamezaki, T. Kurayama, A. Nakagawa et al., Annual parallax measurements of a semi-regular variable star, RW Leporis. Publ. Astron. Soc. Jpn. 66, 107 (2014) ADSCrossRefGoogle Scholar
  85. T. Kamezaki, A. Nakagawa, T. Omodaka et al., VLBI astrometry of the semiregular variable RX Bootis. Publ. Astron. Soc. Jpn. 64, 7 (2012) ADSCrossRefGoogle Scholar
  86. T. Kamezaki, A. Nakagawa, T. Omodaka et al., Annual parallax measurements of a Mira variable star, U Lyncis. Publ. Astron. Soc. Jpn. 68, 71 (2016a) ADSCrossRefGoogle Scholar
  87. T. Kamezaki, A. Nakagawa, T. Omodaka et al., Annual parallax and a dimming event of a Mira variable star, FV Bootis. Publ. Astron. Soc. Jpn. 68, 75 (2016b) ADSCrossRefGoogle Scholar
  88. R. Kamohara, V. Bujarrabal, M. Honma et al., VERA observations of SiO maser emission from R Aquarii. Astron. Astrophys. 510, A69 (2010) CrossRefGoogle Scholar
  89. S. Kanbur, C. Ngeow, The physics behind the non-linearity of the Cepheid period-luminosity relation, in The Three-Dimensional Universe with Gaia, ed. by C. Turon, K.S. O’Flaherty, M.A.C. Perryman. ESA Special Publication, vol. 576 (2005), p. 691 Google Scholar
  90. E. Kapakos, D. Hatzidimitriou, RR Lyrae variables in the Small Magellanic Cloud—II. The extended area: chemical and structural analysis. Mon. Not. R. Astron. Soc. 426, 2063 (2012) ADSCrossRefGoogle Scholar
  91. N. Kawaguchi, T. Sasao, S. Manabe, Dual-beam VLBI techniques for precision astrometry of the VERA project. Proc. SPIE 4015, 544 (2000) ADSCrossRefGoogle Scholar
  92. S.C. Keller, P.R. Wood, Bump Cepheids in the Magellanic Clouds: metallicities, the distances to the LMC and SMC, and the pulsation–evolution mass discrepancy. Astrophys. J. 642, 834 (2006) ADSCrossRefGoogle Scholar
  93. R.C. Kennicutt Jr. et al., The Hubble Space Telescope key project on the extragalactic distance scale. XIII. The metallicity dependence of the Cepheid distance scale. Astrophys. J. 498, 181 (1998) ADSCrossRefGoogle Scholar
  94. P. Kervella et al., Cepheid distances from infrared long-baseline interferometry. III. Calibration of the surface brightness-color relations. Astron. Astrophys. 428, 587 (2004) ADSCrossRefGoogle Scholar
  95. P. Kervella, A. Mérand, A. Gallenne, The circumstellar envelopes of the Cepheids \(\ell\) Carinae and RS Puppis. Comparative study in the infrared with Spitzer, VLT/VISIR, and VLTI/MIDI. Astron. Astrophys. 498, 425 (2009) ADSCrossRefGoogle Scholar
  96. D.E. Knuth, Seminumerical Algorithms, the Art of Computer Programming, 2nd edn., vol. 2 (Addison-Wesley, Reading, 1981) zbMATHGoogle Scholar
  97. H. Kobayashi et al., VERA project, in ASP Conference Series, vol. 306 (2003), 48P Google Scholar
  98. J.F. Koerwer, Large Magellanic Cloud distance and structure from near-infrared red clump observations. Astron. J. 138, 1 (2009) ADSCrossRefGoogle Scholar
  99. T. Kurayama, T. Sasao, H. Kobayashi, Parallax measurements of the Mira-Type Star UX Cygni with phase-referencing VLBI. Astrophys. J. Lett. 627, L49 (2005) ADSCrossRefGoogle Scholar
  100. K. Kusuno, Y. Asaki, H. Imai, T. Oyama, Distance and proper motion measurement of the red supergiant, PZ Cas, in very long baseline interferometry H2O maser astrometry. Astrophys. J. 774, 107 (2013) ADSCrossRefGoogle Scholar
  101. C.D. Laney, M.D. Joner, G. Pietrzyński, A new Large Magellanic Cloud K-band distance from precision measurements of nearby Red Clump stars. Mon. Not. R. Astron. Soc. 419, 1637 (2012) ADSCrossRefGoogle Scholar
  102. C.D. Laney, R.S. Stobie, JHKL observations of galactic Cepheids. Astron. Astrophys. Suppl. Ser. 93, 93 (1992) ADSGoogle Scholar
  103. H.S. Leavitt, E.C. Pickering, Periods of 25 Variable Stars in the Small Magellanic Cloud. Circ. - Harv. Coll. Obs. 173, 1 (1912) ADSGoogle Scholar
  104. X.-W. Liu, H.-B. Yuan, Z.-Y. Huo et al., LSS-GAC—a LAMOST Spectroscopic Survey of the Galactic Anti-center, in Proc. IAU Symp. 298, Setting the Scene for Gaia and LAMOST, ed. by S. Feltzing, G. Zhao, N. Walton, P. Whitelock (Cambridge University Press, Cambridge, 2014), pp. 310–321 Google Scholar
  105. R.E. Luck et al., Magellanic Cloud Cepheids—Abundances. Astron. J. 115, 605 (1998) ADSCrossRefGoogle Scholar
  106. L.M. Macri et al., Large Magellanic Cloud near-infrared synoptic survey. I. Cepheid Variables and the Calibration of the Leavitt Law. Astron. J. 149, 117 (2015) ADSCrossRefGoogle Scholar
  107. B.F. Madore, The period-luminosity relation. IV—Intrinsic relations and reddenings for the Large Magellanic Cloud Cepheids. Astrophys. J. 253, 575 (1982) ADSCrossRefGoogle Scholar
  108. M. Marconi et al., On a new theoretical framework for RR Lyrae stars. I. The metallicity dependence. Astrophys. J. 808, 50 (2015) ADSCrossRefGoogle Scholar
  109. M. Marconi, I. Musella, G. Fiorentino, Cepheid pulsation models at varying metallicity and \(\Delta \)y\(/{\Delta}\)z. Astrophys. J. 632, 590 (2005) ADSCrossRefGoogle Scholar
  110. M. Marengo et al., Theoretical limb darkening for pulsating Cepheids. Astrophys. J. 567, 1131 (2002) ADSCrossRefGoogle Scholar
  111. M. Marengo et al., Theoretical limb darkening for classical Cepheids. II. Corrections for the geometric Baade–Wesselink method. Astrophys. J. 589, 968 (2003) ADSCrossRefGoogle Scholar
  112. M. Marengo et al., Galactic Cepheids with Spitzer. I. Leavitt law and colors. Astrophys. J. 709, 120 (2010) ADSCrossRefGoogle Scholar
  113. M. Marengo et al., An infrared nebula associated with \(\delta\) Cephei: evidence of mass loss? Astrophys. J. 725, 2392 (2010) ADSCrossRefGoogle Scholar
  114. D.J. Marshall et al., Modelling the Galactic interstellar extinction distribution in three dimensions. Astron. Astrophys. 453, 635 (2006) ADSCrossRefGoogle Scholar
  115. R.P. Martin et al., Oxygen, \(\alpha\)-element and iron abundance distributions in the inner part of the Galactic thin disc. Mon. Not. R. Astron. Soc. 449, 4071 (2015) ADSCrossRefGoogle Scholar
  116. N. Matsunaga et al., Three classical Cepheid variable stars in the nuclear bulge of the Milky Way. Nature 477, 188 (2011) ADSCrossRefGoogle Scholar
  117. N. Matsunaga et al., Cepheids and other short-period variables near the Galactic centre. Mon. Not. R. Astron. Soc. 429, 385 (2013) ADSCrossRefGoogle Scholar
  118. N. Matsunaga et al., A lack of classical Cepheids in the inner part of the Galactic disc. Mon. Not. R. Astron. Soc. 462, 414 (2016) ADSCrossRefGoogle Scholar
  119. L.D. Matthews et al., New evidence for mass loss from \(\delta\) Cephei from H I 21 cm line observations. Astrophys. J. 744, 53 (2012) ADSCrossRefGoogle Scholar
  120. L.D. Matthews, M. Marengo, N.R. Evans, A Search for Mass Loss on the Cepheid Instability Strip using HI 21-cm Line Observations. Astrophys. J. 152, 200 (2016). arXiv:1609.06611 ADSGoogle Scholar
  121. C.W. McAlary, D.L. Welch, Detection of Cepheid variables by the Infrared Astronomical Satellite. Astron. J. 91, 1209 (1986) ADSCrossRefGoogle Scholar
  122. M.L. McCall, On determining extinction from reddening. Astron. J. 128, 2144 (2004) ADSCrossRefGoogle Scholar
  123. C. Min, N. Matsumoto, M.K. Kim et al., Accurate parallax measurement toward the symbiotic star R Aquarii. Publ. Astron. Soc. Jpn. 66, 38 (2014) ADSCrossRefGoogle Scholar
  124. D. Minniti et al., VISTA variables in the Via Lactea (VVV): the public ESO near-IR variability survey of the Milky Way. New Astron. 15, 433 (2010) ADSCrossRefGoogle Scholar
  125. A.J. Monson et al., The Carnegie Hubble Program: the Leavitt law at 3.6 and 4.5 μm in the Milky Way. Astrophys. J. 759, 146 (2012) ADSCrossRefGoogle Scholar
  126. A.J. Monson, M.J. Pierce, Near-infrared (JHK) photometry of 131 Northern Galactic classical Cepheids. Astrophys. J. Suppl. Ser. 193, 12 (2011) ADSCrossRefGoogle Scholar
  127. V.M.R. Muggeo, Estimating regression models with unknown break-points. Stat. Med. 22, 3055 (2003) CrossRefGoogle Scholar
  128. V.R.M. Muggeo, An R package to fit regression models with broken-line relationships. R News 8(1), 20 (2008) Google Scholar
  129. A. Nakagawa, T. Kurayama, M. Matsui et al., Parallax of a Mira variable R Ursae Majoris studied with astrometric VLBI. Publ. Astron. Soc. Jpn. 68, 78 (2016) ADSCrossRefGoogle Scholar
  130. A. Nakagawa, T. Omodaka, T. Handa et al., VLBI astrometry of AGB variables with VERA: a Mira-type variable T Lepus. Publ. Astron. Soc. Jpn. 66, 101 (2014) ADSCrossRefGoogle Scholar
  131. A. Nakagawa, M. Tsushima, K. Ando et al., VLBI astrometry of AGB variables with VERA – A semiregular variable S Crateris –. Publ. Astron. Soc. Jpn. 60, 1013 (2008) ADSCrossRefGoogle Scholar
  132. H. Nakanishi, Y. Sofue, Three-dimensional distribution of the ISM in the Milky Way Galaxy: II. The molecular gas disk. Publ. Astron. Soc. Jpn. 58, 847 (2006) ADSCrossRefGoogle Scholar
  133. H.R. Neilson et al., Classical Cepheids require enhanced mass loss. Astrophys. J. 760, L18 (2012) ADSCrossRefGoogle Scholar
  134. C.-C. Ngeow et al., Further empirical evidence for the non-linearity of the period-luminosity relations as seen in the Large Magellanic Cloud Cepheids. Mon. Not. R. Astron. Soc. 363, 831 (2005) ADSCrossRefGoogle Scholar
  135. C.-C. Ngeow et al., Calibrating the projection factor for Galactic Cepheids. Astron. Astrophys. 543, A55 (2012) CrossRefGoogle Scholar
  136. C.-C. Ngeow et al., Period-luminosity relations derived from the OGLE-III fundamental mode Cepheids. II. The Small Magellanic Cloud Cepheids. Astrophys. J. 808, 67 (2015a) ADSCrossRefGoogle Scholar
  137. C.-C. Ngeow et al., Updated 24 μm period-luminosity relation derived from Galactic Cepheids. Astrophys. J. 813, 57 (2015b) ADSCrossRefGoogle Scholar
  138. C. Ngeow, S.M. Kanbur, The period-luminosity relation for the Large Magellanic Cloud Cepheids derived from Spitzer archival data. Astrophys. J. 679, 76–85 (2008) ADSCrossRefGoogle Scholar
  139. C. Ngeow, S.M. Kanbur, A. Nanthakumar, Testing the nonlinearity of the BVIcJHKs period-luminosity relations for the Large Magellanic Cloud Cepheids. Astron. Astrophys. 477, 621 (2008) ADSCrossRefGoogle Scholar
  140. D.L. Nidever, A. Monachesi, E.F. Bell et al., A tidally stripped stellar component of the Magellanic Bridge. Astrophys. J. 779, 145 (2013) ADSCrossRefGoogle Scholar
  141. S. Nishiyama et al., Interstellar extinction law toward the Galactic Center III: J, H, KS bands in the 2MASS and the MKO systems, and 3.6, 4.5, 5.8, 8.0 μm in the Spitzer/IRAC system. Astrophys. J. 696, 1407 (2009) ADSCrossRefGoogle Scholar
  142. D. Nyu, A. Nakagawa, M. Matsui et al., Astrometry of AGB variables with VERA: annual parallax and the orbit of SY Sculptoris in the galaxy. Publ. Astron. Soc. Jpn. 63, 63 (2011) ADSCrossRefGoogle Scholar
  143. K.A.G. Olsen, C. Salyk, A warp in the Large Magellanic Cloud disk? Astron. J. 124, 2045 (2002) ADSCrossRefGoogle Scholar
  144. W.V. Oz, M. Yannakakis (eds.), All ACM Conferences (Academic Press, Boston, 1983) Google Scholar
  145. B. Paczyński, K.Z. Stanek, Galactocentric distance with the optical gravitational lensing experiment and HIPPARCOS Red Clump stars. Astrophys. J. 494L, 219 (1998) ADSCrossRefGoogle Scholar
  146. O. Pejcha, C.S. Kochanek, A global physical model for Cepheids. Astrophys. J. 748, 107 (2012) ADSCrossRefGoogle Scholar
  147. M.A.C. Perryman et al., The HIPPARCOS catalogue. Astron. Astrophys. 323, L49 (1997) ADSGoogle Scholar
  148. S.E. Persson et al., New Cepheid period-luminosity relations for the Large Magellanic Cloud: 92 near-infrared light curves. Astron. J. 128, 2239 (2004) ADSCrossRefGoogle Scholar
  149. M.M. Phillips, The absolute magnitudes of Type IA supernovae. Astrophys. J. 413L, 105 (1993) ADSCrossRefGoogle Scholar
  150. G. Pietrzyński et al., The dynamical mass of a classical Cepheid variable star in an eclipsing binary system. Nature 468, 542 (2010) ADSCrossRefGoogle Scholar
  151. G. Pietrzyński et al., An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent. Nature 495, 76 (2013) ADSCrossRefGoogle Scholar
  152. G. Pietrzyński, W. Gieren, A. Udalski, The Araucaria project: dependence of mean K, J, and I absolute magnitudes of Red Clump stars on metallicity and age. Astron. J. 125, 2494 (2003) ADSCrossRefGoogle Scholar
  153. M.H. Pinsonneault, Y. Elsworth, C. Epstein et al., The APOKASC catalog: an asteroseismic and spectroscopic joint survey of targets in the Kepler fields. Astrophys. J. Suppl. Ser. 215, 19 (2014) ADSCrossRefGoogle Scholar
  154. Planck Collaboration et al., Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016) CrossRefGoogle Scholar
  155. E. Puzeras, G. Tautvaišienė, J.G. Cohen et al., High-resolution spectroscopic study of Red Clump stars in the Galaxy: iron-group elements. Mon. Not. R. Astron. Soc. 408, 1225 (2010) ADSCrossRefGoogle Scholar
  156. H. Rauer et al., The PLATO 2.0 mission. Exp. Astron. 38, 249 (2014) ADSCrossRefGoogle Scholar
  157. J.-J. Ren, X.-W. Liu, M.-S. Xiang et al., On the LSP3 estimates of surface gravity for LAMOST-Kepler stars with asteroseismic measurements. Res. Astron. Astrophys. 16, 45 (2016) ADSCrossRefGoogle Scholar
  158. Kh.S. Rezaei et al., Inferring the three-dimensional distribution of dust in the Galaxy with a non-parametric method: Preparing for Gaia. Astron. Astrophys. 598, A125 (2017). doi: 10.1051/0004-6361/201628885 CrossRefGoogle Scholar
  159. J.A. Rich et al., A new Cepheid distance measurement and method for NGC 6822. Astrophys. J. 794, 107 (2014) ADSCrossRefGoogle Scholar
  160. G.R. Ricker et al., Transiting Exoplanet Survey Satellite (TESS). SPIE 9143, 20 (2014) Google Scholar
  161. G.H. Rieke et al., The Multiband Imaging Photometer for Spitzer (MIPS). Astrophys. J. Suppl. Ser. 154, 25 (2004) ADSCrossRefGoogle Scholar
  162. G.H. Rieke, M.J. Lebofsky, The interstellar extinction law from 1 to 13 microns. Astrophys. J. 288, 618 (1985) ADSCrossRefGoogle Scholar
  163. A.G. Riess et al., A 3% solution: determination of the Hubble constant with the Hubble Space Telescope and Wide Field Camera 3. Astrophys. J. 730, 119 (2011) ADSCrossRefGoogle Scholar
  164. A.G. Riess et al., A 2.4% determination of the local value of the Hubble constant. Astrophys. J. 826, 56 (2016) ADSCrossRefGoogle Scholar
  165. V. Ripepi et al., The VMC survey. XIX. Classical Cepheids in the Small Magellanic Cloud. Astrophys. J. Suppl. Ser. 224, 21 (2016) ADSCrossRefGoogle Scholar
  166. S. Roeser, M. Demleitner, E. Schilbach, The PPMXL catalog of positions and proper motions on the ICRS. Combining USNO-B1.0 and the Two Micron All Sky Survey (2MASS). Astron. J. 139, 2440 (2010) ADSCrossRefGoogle Scholar
  167. C.G. Román-Zúñiga et al., The infrared extinction law at extreme depth in a dark cloud core. Astrophys. J. 664, 357 (2007) ADSCrossRefGoogle Scholar
  168. M. Romaniello et al., The influence of chemical composition on the properties of Cepheid stars. II. The iron content. Astron. Astrophys. 488, 731 (2008) ADSCrossRefGoogle Scholar
  169. S. Rubele, L. Girardi, L. Kerber et al., The VMC survey—XIV. First results on the look-back time star formation rate tomography of the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 449, 639 (2015) ADSCrossRefGoogle Scholar
  170. M. Salaris, L. Girardi, Population effects on the red giant clump absolute magnitude: the K band. Mon. Not. R. Astron. Soc. 337, 332 (2002) ADSCrossRefGoogle Scholar
  171. E.F. Schlafly et al., The optical-infrared extinction curve and its variation in the Milky Way. Astrophys. J. 821, 78 (2016) ADSCrossRefGoogle Scholar
  172. B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299 (1998) CrossRefGoogle Scholar
  173. V. Scowcroft et al., The Carnegie Hubble program: the Leavitt law at 3.6 μm and 4.5 μm in the Large Magellanic Cloud. Astrophys. J. 743, 76 (2011) ADSCrossRefGoogle Scholar
  174. V. Scowcroft et al., The Carnegie Chicago Hubble program: the mid-infrared colours of Cepheids and the effect of metallicity on the CO band-head at 4.6 μm. Mon. Not. R. Astron. Soc. 459, 1170 (2016a) ADSCrossRefGoogle Scholar
  175. V. Scowcroft et al., The Carnegie Hubble program: the distance and structure of the SMC as revealed by mid-infrared observations of Cepheids. Astrophys. J. 816, 49 (2016b) ADSCrossRefGoogle Scholar
  176. B. Sesar et al., Light curve templates and galactic distribution of RR Lyrae stars from Sloan Digital Sky Survey Stripe 82. Astrophys. J. 708, 717 (2010) ADSCrossRefGoogle Scholar
  177. M. Shintani, H. Imai, K. Ando et al., Statistical properties of stellar H2O masers—results of three-year single-dish observations with the VERA Iriki telescope. Publ. Astron. Soc. Jpn. 60, 1077 (2008) ADSCrossRefGoogle Scholar
  178. A. Siebert, B. Famaey, I. Minchev et al., Detection of a radial velocity gradient in the extended local disc with RAVE. Mon. Not. R. Astron. Soc. 412, 2026 (2012) ADSCrossRefGoogle Scholar
  179. N.R. Simon, A.S. Lee, The structural properties of Cepheid light curves. Astrophys. J. 248, 291 (1981) ADSCrossRefGoogle Scholar
  180. I. Soszyński et al., The optical gravitational lensing experiment. The OGLE-III catalog of variable stars. I. Classical Cepheids in the Large Magellanic Cloud. Acta Astron. 58, 163 (2008) ADSGoogle Scholar
  181. I. Soszyński et al., The optical gravitational lensing experiment. The OGLE-III catalog of variable stars. VII. Classical Cepheids in the Small Magellanic Cloud. Acta Astron. 60, 17 (2010) ADSGoogle Scholar
  182. I. Soszyński, W. Gieren, G. Pietrzyński, Mean JHK magnitudes of fundamental-mode Cepheids from single-epoch observations. Publ. Astron. Soc. Pac. 117, 823 (2005) ADSCrossRefGoogle Scholar
  183. K.Z. Stanek, P.M. Garnavich, Distance to M31 with the Hubble Space Telescope and HIPPARCOS Red Clump stars. Astrophys. J. 503, 131 (1998) ADSCrossRefGoogle Scholar
  184. K.Z. Stanek, D. Zaritsky, J. Harris, A “short” distance to the Large Magellanic Cloud with the Hipparcos calibrated Red Clump stars. Astrophys. J. 500, 141 (1998) ADSCrossRefGoogle Scholar
  185. D. Stello et al., Oscillating red giants observed during Campaign 1 of the Kepler K2 mission: new prospects for Galactic archaeology. Astrophys. J. 809, 3 (2015) ADSCrossRefGoogle Scholar
  186. D. Stello, D. Huber, T.R. Bedding et al., Asteroseismic classification of stellar populations among 13,000 red giants observed by Kepler. Astrophys. J. 765, 41 (2013) ADSCrossRefGoogle Scholar
  187. J. Storm et al., The effect of metallicity on the Cepheid period-luminosity relation from a Baade–Wesselink analysis of Cepheids in the Galaxy and in the Small Magellanic Cloud. Astron. Astrophys. 415, 531 (2004) ADSCrossRefGoogle Scholar
  188. J. Storm et al., Calibrating the Cepheid period-luminosity relation from the infrared surface brightness technique. I. The p-factor, the Milky Way relations, and a universal K-band relation. Astron. Astrophys. 534, A94 (2011a) CrossRefGoogle Scholar
  189. J. Storm et al., Calibrating the Cepheid period-luminosity relation from the infrared surface brightness technique. II. The effect of metallicity and the distance to the LMC. Astron. Astrophys. 534, A95 (2011b) CrossRefGoogle Scholar
  190. S. Subramanian, S. Rubele, N.-C. Sun et al., The VMC survey—XXIV. Signatures of tidally stripped stellar populations from the inner Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 467, 2980 (2017) ADSGoogle Scholar
  191. S. Subramanian, A. Subramaniam, Depth estimation of the Large and Small Magellanic Clouds. Astron. Astrophys. 496, 399 (2009) ADSCrossRefGoogle Scholar
  192. S. Subramanian, A. Subramaniam, An estimate of the structural parameters of the Large Magellanic Cloud using Red Clump stars. Astron. Astrophys. 520, 135 (2010) CrossRefGoogle Scholar
  193. S. Subramanian, A. Subramaniam, The three-dimensional structure of the Small Magellanic Cloud. Astrophys. J. 744, 128 (2012) ADSCrossRefGoogle Scholar
  194. S. Subramanian, A. Subramaniam, Structure of the Large Magellanic Cloud from near infrared magnitudes of Red Clump stars. Astron. Astrophys. 552, A144 (2013) ADSCrossRefGoogle Scholar
  195. G.A. Tammann, A. Sandage, B. Reindl, New period-luminosity and period-color relations of classical Cepheids: I. Cepheids in the Galaxy. Astron. Astrophys. 404, 423 (2003) ADSCrossRefGoogle Scholar
  196. B.L. Tatton, J.Th. van Loon, M.-R. Cioni et al., The VMC survey. VII. Reddening map of the 30 Doradus field and the structure of the cold interstellar medium. Astron. Astrophys. 554, 33 (2013) CrossRefGoogle Scholar
  197. A. Udalski, Variable stars toward the Magellanic Clouds and the galactic bulge, in ASP Conference Series, vol. 491 (2015), p. 278 Google Scholar
  198. A. Udalski, M. Szymanski, M. Kubiak, G. Pietrzynski, P. Wozniak, K. Zebrun, Optical gravitational lensing experiment. Distance to the Magellanic Clouds with the Red Clump stars: are the Magellanic Clouds 15% closer than generally accepted? Acta Astron. 48, 1 (1998) ADSGoogle Scholar
  199. S. van den Bergh, The Extragalactic Distance Scale, vol. 509 (1975). gaun.book Google Scholar
  200. F. van Leeuwen, Hipparcos the New Reduction of the Raw Data Astrophys. Space Sci. Library (Cambridge University Press, Cambridge, 2007b) CrossRefGoogle Scholar
  201. F. van Leeuwen et al., Cepheid parallaxes and the Hubble constant. Mon. Not. R. Astron. Soc. 379, 723 (2007a) ADSCrossRefGoogle Scholar
  202. F. van Leeuwen, M.W. Feast, P.A. Whitelock, B. Yudin, First results from HIPPARCOS trigonometrical parallaxes of Mira-type variables. Mon. Not. R. Astron. Soc. 287, 955 (1997) ADSCrossRefGoogle Scholar
  203. W.H.T. Vlemmings, H.J. van Langevelde, Improved VLBI astrometry of OH maser stars. Astron. Astrophys. 472, 547 (2007) ADSCrossRefGoogle Scholar
  204. W.H.T. Vlemmings, H.J. van Langevelde, P.J. Diamond, H.J. Habing, R.T. Schilizzi, VLBI astrometry of circumstellar OH masers: proper motions and parallaxes of four AGB stars. Astron. Astrophys. 407, 213 (2003) ADSCrossRefGoogle Scholar
  205. C. Wegg, O. Gerhard, Mapping the three-dimensional density of the galactic bulge with VVV Red Clump stars. Mon. Not. R. Astron. Soc. 435, 1874 (2013) ADSCrossRefGoogle Scholar
  206. M.W. Werner et al., The Spitzer Space Telescope mission. Astrophys. J. Suppl. Ser. 154, 1 (2004) ADSCrossRefGoogle Scholar
  207. B. Westerlund, The nebulosity around RS Puppis. Publ. Astron. Soc. Pac. 73, 72 (1961) ADSCrossRefGoogle Scholar
  208. P. Whitelock, M. Feast, Hipparcos parallaxes for Mira-like long-period variables. Mon. Not. R. Astron. Soc. 319, 759 (2000) ADSCrossRefGoogle Scholar
  209. M.E.K. Williams, M. Steinmetz, J. Binney et al., The wobbly Galaxy: kinematics north and south with RAVE red-clump giants. Mon. Not. R. Astron. Soc. 436, 101 (2013) ADSCrossRefGoogle Scholar
  210. P.R. Wood, C. Alcock, R.A. Allsman et al., MACHO observations of LMC red giants: Mira and semi-regular pulsators, and contact and semi-detached binaries. Symp. - Int. Astron. Union 191, 151 (1999) CrossRefGoogle Scholar
  211. M. Wyman et al., Neutrinos help reconcile Planck measurements with the local universe. Phys. Rev. Lett. 112, 051302 (2014) ADSCrossRefGoogle Scholar
  212. M.S. Xiang, X.W. Liu, H.B. Yuan et al., The LAMOST stellar parameter pipeline at Peking University—LSP3. Mon. Not. R. Astron. Soc. 448, 822 (2015) ADSCrossRefGoogle Scholar
  213. H.-B. Yuan, X.-W. Liu, Z.-Y. Huo et al., LAMOST Spectroscopic Survey of the Galactic Anticentre (LSS-GAC): target selection and the first release of value-added catalogues. Mon. Not. R. Astron. Soc. 448, 855 (2015) ADSCrossRefGoogle Scholar
  214. N. Zacharias, C.T. Finch, T.M. Girard et al., The fourth US Naval Observatory CCD Astrograph Catalog (UCAC4). Astron. J. 145, 44 (2013) ADSCrossRefGoogle Scholar
  215. B. Zhang, M.J. Reid, K.M. Menten, X.W. Zheng, A. Brunthaler, The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry. Astron. Astrophys. 544, AA42 (2012) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Smitha Subramanian
    • 1
  • Massimo Marengo
    • 2
  • Anupam Bhardwaj
    • 3
  • Yang Huang
    • 4
  • Laura Inno
    • 5
  • Akiharu Nakagawa
    • 6
  • Jesper Storm
    • 7
  1. 1.Kavli Institute for Astronomy and AstrophysicsPeking UniversityBeijingChina
  2. 2.Department of Physics and AstronomyIowa State UniversityAmesUSA
  3. 3.European Southern ObservatoryGarchingGermany
  4. 4.Department of Astronomy, Kavli Institute for Astronomy and AstrophysicsPeking UniversityBeijingChina
  5. 5.Max-Planck-Institut für AstronomyHeidelbergGermany
  6. 6.Faculty of ScienceKagoshima UniversityKagoshimaJapan
  7. 7.Leibniz-Institut für Astrophysik Potsdam (AIP)PotsdamGermany

Personalised recommendations