Advertisement

Space Science Reviews

, Volume 212, Issue 3–4, pp 1433–1451 | Cite as

Survey of Capabilities and Applications of Accurate Clocks: Directions for Planetary Science

  • Véronique DehantEmail author
  • Ryan Park
  • Dominic Dirkx
  • Luciano Iess
  • Gregory Neumann
  • Slava Turyshev
  • Tim Van Hoolst
Article
Part of the following topical collections:
  1. High Performance Clocks with Special Emphasis on Geodesy and Geophysics and Applications to Other Bodies of the Solar System

Abstract

For planetary science, accurate clocks are mainly used as part of an onboard radioscience transponder. In the case of two-way radio data, the dominating data type for planetary radioscience, an accurate spacecraft clock is not necessary since the measurements can be calibrated using high-precision clocks on Earth. In the case of one-way radio data, however, an accurate clock can make the precision of one-way radio data be comparable to the two-way data, and possibly better since only one leg of radio path would be affected by the media. This article addresses several ways to improve observations for planetary science, either by improving the onboard clock or by using further variants of the classical radioscience methods, e.g., Same Beam Interferometry (SBI). For a clock to be useful for planetary science, we conclude that it must have at least a short-time stability (\(<1{,}000~\mbox{s}\)) better than \(10^{-13}\) and its size be substantially miniaturized. A special case of using laser ranging to the Moon and the implication of having an accurate clock is shown as an example.

Keywords

Radioscience Atomic clock Positioning 

Notes

Acknowledgements

Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

References

  1. J.B. Abshire, X. Sun, G. Neumann, J. McGarry, T. Zagwodzki, P. Jester, H. Riris, M. Zuber, D.E. Smith, Laser pulses from Earth detected at Mars, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, Washington, 2006), paper CThT6 Google Scholar
  2. S.W. Asmar, J.W. Armstrong, L. Iess, P. Tortora, Spacecraft Doppler tracking: noise budget and achievable accuracy in precision radio science observations. Radio Sci. 40, RS2001 (2005). doi: 10.1029/2004RS003101 ADSCrossRefGoogle Scholar
  3. R.-M. Baland, G. Tobie, A. Lefevre, T. Van Hoolst, Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 29–41 (2014). doi: 10.1016/j.icarus.2014.04.007 ADSCrossRefGoogle Scholar
  4. S. Bauer, H. Hussmann, J. Oberst, D. Dirkx, D. Mao, G.A. Neumann, E. Mazarico, M.H. Torrence, J.F. McGarry, D.E. Smith, M.T. Zuber, Demonstration of orbit determination for the Lunar Reconnaissance Orbiter using one-way laser ranging data. Planet. Space Sci. 129, 32–46 (2016). doi: 10.1016/j.pss.2016.06.005 ADSCrossRefGoogle Scholar
  5. S. Bauer, H. Hussmann, J. Oberst, D. Dirkx, D. Mao, G.A. Neumann, E. Mazarico, M.H. Torrence, J.F. McGarry, D.E. Smith, M.T. Zuber, Analysis of one-way laser ranging data to LRO, time transfer and clock characterization. Icarus 283, 38–54 (2017). doi: 10.1016/j.icarus.2016.09.026 ADSCrossRefGoogle Scholar
  6. P. Bender, Proposed microwave transponders for early lunar robotic landers. Adv. Space Res. 14(6), 233–242 (1994). doi: 10.1016/0273-1177(94)90033-7 ADSCrossRefGoogle Scholar
  7. D.M. Boroson, B.S. Robinson, D.V. Murphy et al., Overview and results of the lunar laser communication demonstration. Proc. SPIE 8971, 1–11 (2014) Google Scholar
  8. D. Buccino, J.A. Seubert, S.W. Asmar, R.S. Park, Optical ranging measurement with a lunar orbiter: limitations and potential. J. Spacecr. Rockets 53(3), 457–463 (2016). doi: 10.2514/1.A33415 ADSCrossRefGoogle Scholar
  9. J.J. Degnan, Millimeter accuracy satellite laser ranging: a review, in Contributions of Space Geodesy to Geodynamics: Technology. Monograph Geodynamics Series (AGU, Washington, 1993), pp. 133–162 CrossRefGoogle Scholar
  10. J.M. Degnan, Asynchronous laser transponders for precise interplanetary ranging and time transfer. J. Geodyn. 34, 551–594 (2002) CrossRefGoogle Scholar
  11. V. Dehant, W. Folkner, E. Renotte, D. Orban, S. Asmar, G. Balmino, J.P. Barriot, J. Benoist, R. Biancale, J. Biele, F. Budnik, S. Burger, O. de Viron, B. Häusler, Ö. Karatekin, S. Le Maistre, P. Lognonné, M. Menvielle, M. Mitrovic, M. Pätzold, A. Rivoldini, P. Rosenblatt, G. Schubert, T. Spohn, P. Tortora, T. Van Hoolst, O. Witasse, M. Yseboodt, Lander radioscience for obtaining the rotation and orientation of Mars. Planet. Space Sci. 57, 1050–1067 (2009). doi: 10.1016/j.pss.2008.08.009 ADSCrossRefGoogle Scholar
  12. V. Dehant, S. Le Maistre, A. Rivoldini, M. Yseboodt, P. Rosenblatt, T. Van Hoolst, M. Mitrovic, Ö. Karatekin, J.C. Marty, A. Chicarro, Revealing Mars’ deep interior: future geodesy missions using radio links between landers, orbiters, and the Earth. Planet. Space Sci. 57, 1069–1081 (2010). doi: 10.1016/j.pss.2010.03.014 Google Scholar
  13. V. Dehant, B. Banerdt, P. Lognonné, M. Grott, S. Asmar, J. Biele, D. Breuer, F. Forget, R. Jaumann, C. Johnson, M. Knapmeyer, M. Lefeuvre, D. Mimoun, A. Mocquet, P. Read, A. Rivoldini, O. Romberg, G. Schubert, S. Smrekar, T. Spohn, P. Tortora, S. Ulamec, S. Vennerstrøm, Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution. Planet. Space Sci. 68(1), 123–145 (2012a). doi: 10.1016/j.pss.2011.10.016 ADSCrossRefGoogle Scholar
  14. V. Dehant, J. Oberst, R. Nadalini, U. Schreiber, N. Rambaux, Geodesy instrument package on the Moon for improving our knowledge of the Moon and the realization of reference frames. Planet. Space Sci. 68(1), 94–104 (2012b). doi: 10.1016/j.pss.2012.02.008 ADSCrossRefGoogle Scholar
  15. D. Dirkx, R. Noomen, P.N.A.M. Visser, S. Bauer, L.L.A. Vermeersen, Comparative analysis of one- and two-way planetary laser ranging concepts. Planet. Space Sci. 117, 159–176 (2015) ADSCrossRefGoogle Scholar
  16. D. Dirkx, Interplanetary laser ranging—analysis for implementation in planetary science mission. PhD thesis, Delft University of Technology (2015) Google Scholar
  17. D. Dirkx, R. Noomen, P.N.A.M. Visser, L.I. Gurvits, L.L.A. Vermeersen, Space-time dynamics estimation from space mission tracking data. Astron. Astrophys. 587, A156 (2016) ADSCrossRefGoogle Scholar
  18. M. Efroimsky, Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron. 112(3), 283–330 (2012). doi: 10.1007/s10569-011-9397-4 ADSMathSciNetCrossRefGoogle Scholar
  19. R.C. Elphic, C. Russell, The Lunar Atmosphere and Dust Environment Explorer Mission (LADEE) (Springer, Cham, 2015) CrossRefGoogle Scholar
  20. M. Fermi, P. Bender, B. Bertotti, M. Chersich, M. Gregnanin, L. Iess, L. Simone, Investigation of the lunar interior with a microwave interferometer. 37th COSPAR Scientific Assembly, paper P162-TueWed B01-0062-08 (2008) Google Scholar
  21. W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R.A. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278(5344), 1749 (1997) ADSCrossRefGoogle Scholar
  22. M. Gregnanin, B. Bertotti, M. Chersich, M. Fermi, L. Iess, L. Simone, P. Tortora, J.G. Williams, Same beam interferometry as a tool for the investigation of the lunar interior. Planet. Space Sci. 74, 194–201 (2012). doi: 10.1016/j.pss.2012.08.027 ADSCrossRefGoogle Scholar
  23. M. Gregnanin, M. Yseboodt, V. Dehant, L. Iess, T. Van Hoolst, Estimation of Mars geophysical information through Same Beam Interferometry, in Proc. European Planetary Science Congress EPSC 2014, Centro de Congressos do Estoril, Cascais, Portugal Austria, 7–12 September, 2014, vol. 9 (2014), EPSC2014-EPSC395 Google Scholar
  24. H. Hemmati, K.M. Birnbaum, W.H. Farr, S. Turyshev, A. Biswas, Combined laser communications and laser ranging transponder for Moon and Mars, in Free-Space Laser Communication Technologies XXI. SPIE Conference Series, vol. 7199 (2009), No. 71990N Google Scholar
  25. L. Iess, M. Fermi, P. Bender, B. Bertotti, M. Gregnanin, L. Simon, A microwave interferometer for the investigation of the lunar interior. NASA NOI N9-ILN09-0016 for the International Lunar Network (2008) Google Scholar
  26. L. Iess, M.D. Benedetto, N. James, M. Mercolino, L. Simone, P. Tortora, Astra: interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking techniques. Acta Astronaut. 94(2), 699–707 (2014) ADSCrossRefGoogle Scholar
  27. A.S. Konopliv, C.F. Yoder, Venusian \(k_{2}\) tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett. 23(14), 1857–1860 (1996). doi: 10.1029/96GL01589 ADSCrossRefGoogle Scholar
  28. A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011). doi: 10.1016/j.icarus.2010.10.004 ADSCrossRefGoogle Scholar
  29. P. Kuchynka, W.M. Folkner, A.S. Konopliv, R.S. Park, S. Le Maistre, V. Dehant, New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 222(1), 243–253 (2013). doi: 10.1016/j.icarus.2012.11.003 ADSCrossRefGoogle Scholar
  30. P. Kuchynka, W.M. Folkner, A.S. Konopliv, R.S. Park, S. Le Maistre, V. Dehant, New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 229, 340–347 (2014). doi: 10.1016/j.icarus.2013.11.015 ADSCrossRefGoogle Scholar
  31. S. Le Maistre, P. Rosenblatt, A. Rivoldini, V. Dehant, J.C. Marty, Ö. Karatekin, Lander Radio science experiment with a direct link between Mars and the Earth. Planet. Space Sci. 68(1), 105–122 (2012). doi: 10.1016/j.pss.2011.12.020 ADSCrossRefGoogle Scholar
  32. D. Mao, J. McGarry, M. Torrence, G. Neumann, E. Mazarico, M. Barker, X. Sun, D. Rowlands, J. Golder, T. Zagwodzki, J. Cavanaugh, M. Zuber, D. Smith, Laser ranging experiment on Lunar Reconnaissance Orbiter: timing determination and orbit constraints, in Proceedings of ILRS Workshop, Bad Kotzing, Germany, May 2012 (2012). http://cddis.gsfc.nasa.gov/lw17/docs/papers/session13/02-Mao_LRO-LR_Kotzting2011_paper_final.pdf Google Scholar
  33. D. Mao, J.F. McGarry, E. Mazarico, G.A. Neumann, X. Sun, M.H. Torrence, T.W. Zagwodzki, D.D. Rowlands, E.D. Hoffman, J.E. Horvath, J.E. Golder, M.K. Barker, D.E. Smith, M.T. Zuber, The laser ranging experiment of the Lunar Reconnaissance Orbiter: five years of operations and data analysis. Icarus 283, 55–69 (2017). doi: 10.1016/j.icarus.2016.07.003 ADSCrossRefGoogle Scholar
  34. E. Mazarico, F.G. Lemoine, S. Goossens, T.J. Sabaka, J.B. Nicholas, D.D. Rowlands, G.A. Neumann, M.H. Torrence, D.E. Smith, M.T. Zuber, Improved precision orbit determination of lunar orbiters from the GRAIL-derived lunar gravity models. Adv. Astronaut. Sci. 148, 1125–1141 (2013) Google Scholar
  35. G. Mitri, R. Meriggiola, A. Hayes, A. Lefevre, G. Tobie, A. Genova, J.I. Lunine, H. Zebkerg, Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236, 169–177 (2014). doi: 10.1016/j.icarus.2014.03.018 ADSCrossRefGoogle Scholar
  36. W.B. Moore, G. Schubert, The tidal response of Ganymede and Callisto with and without liquid water oceans. Icarus 166, 223–226 (2003). doi: 10.1016/j.icarus.2003.07.001 ADSCrossRefGoogle Scholar
  37. T.D. Moyer, Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. Monograph 2 Deep Space Communications and Navigation Series (2000). 549 pp. Google Scholar
  38. T.W. Murphy, E.G. Adelberger, J.B.R. Battat, L.N. Carey, C.D. Hoyle, P. Leblanc, E.L. Michelsen, K. Nordtvedt, A.E. Orin, J.D. Strasburg, C.W. Stubbs, H.E. Swanson, E. Williams, The Apache Point Observatory lunar laser-ranging operation: instrument description and first detections. Publ. Astron. Soc. Pac. 120, 20 (2008). doi: 10.1086/526428 ADSCrossRefGoogle Scholar
  39. F. Nimmo, U.H. Faul, E.J. Garnero, Dissipation at tidal and seismic frequencies in a melt-free Moon. J. Geophys. Res. 117(E9), E09005 (2012). doi: 10.1029/2012JE004160 ADSCrossRefGoogle Scholar
  40. J. Oberst, V. Lainey, C. Le Poncin-Latte, V. Dehant, P. Rosenblatt, S. Ulamec, J. Biele, J. Spurmann, R. Kahle, V. Klein, U. Schreiber, A. Schlicht, N. Rambaux, P. Laurent, B. Noyelles, B. Foulon, A. Zakharov, L. Gurvits, D. Uchaev, S. Murchie, C. Reed, S.G. Turyshev, J. Gil, M. Graziano, K. Willner, K. Wickhusen, A. Pasewaldt, M. Wahlisch, H. Hussmann, GETEMME—a mission to explore the Martian satellites and the fundamentals of solar system physics. Exp. Astron. 34, 243–271 (2012) ADSCrossRefGoogle Scholar
  41. R.S. Park, A.S. Konopliv, S.W. Asmar, B.G. Bills, R.W. Gaskell, C.A. Raymond, D.E. Smith, M.T. Zuber, Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus 240, 118–132 (2013) ADSCrossRefGoogle Scholar
  42. R.S. Park, A.S. Konopliv, B.G. Bills, N. Rambaux, J.C. Castillo-Rogez, C.A. Raymond, A.T. Vaughan, A.I. Ermakov, M.T. Zuber, R.R. Fu, M.J. Toplis, C.T. Russell, A. Nathues, F. Preusker, A partially differentiated interior for Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016) ADSCrossRefGoogle Scholar
  43. N. Rambaux, J.G. Williams, The Moon’s physical librations and determination of their free modes. Celest. Mech. Dyn. Astron. 109(1), 85–100 (2011). doi: 10.1007/s10569-010-9314-2 ADSCrossRefzbMATHGoogle Scholar
  44. D.E. Smith, M.T. Zuber, X. Sun, G.A. Neumann, J.F. McGarry, T.W. Zagwodzki, Two-way laser link over interplanetary distance. Science 311, 53 (2006) ADSCrossRefGoogle Scholar
  45. S.G. Turyshev, W. Farr, W.M. Folkner, A.R. Girerd, H. Hemmati, T.W. Murphy, J.G. Williams, J.J. Degnan, Advancing tests of relativistic gravity via laser ranging to Phobos. Exp. Astron. 28(2), 209–249 (2010) ADSCrossRefGoogle Scholar
  46. S.G. Turyshev, J.G. Williams, W.M. Folkner, G.M. Gutt, R.T. Baran, R.C. Hein, R.P. Somawardhana, J.A. Lipa, S. Wang, Corner-cube retro-reflector instrument for advanced lunar laser ranging. Exp. Astron. 36(1–2), 105–135 (2013). doi: 10.1007/s10686-012-9324-z ADSCrossRefGoogle Scholar
  47. J.M. Wahr, M.T. Zuber, D.E. Smith, J.I. Lunine, Tides on Europa, and the thickness of Europa’s icy shell. J. Geophys. Res. 111(E12), E12005 (2006). doi: 10.1029/2006JE002729 ADSCrossRefGoogle Scholar
  48. J.G. Williams, X.X. Newhall, J.O. Dickey, Relativity parameters determined from lunar laser ranging. Phys. Rev. D 53, 6730–6739 (1996) ADSCrossRefGoogle Scholar
  49. J.G. Williams, S.G. Turyshev, T.W. Murphy, Improving LLR tests of gravitational theory. Int. J. Mod. Phys. D 13(3), 567–582 (2004). doi: 10.1142/S0218271804004682 ADSCrossRefzbMATHGoogle Scholar
  50. J.G. Williams, S.G. Turyshev, D.H. Boggs, Lunar laser ranging tests of the equivalence principle with the Earth and Moon. Int. J. Mod. Phys. D 18(07), 1129–1175 (2009). doi: 10.1142/S021827180901500X ADSCrossRefzbMATHGoogle Scholar
  51. J.G. Williams, A.S. Konopliv, D.H. Boggs, R.S. Park, D.-N. Yuan, F.G. Lemoine, S. Goossens, E. Mazarico, F. Nimmo, R.C. Weber, S.W. Asmar, H.J. Melosh, G.A. Neumann, R.J. Phillips, D.E. Smith, S.C. Solomon, M.M. Watkins, M.A. Wieczorek, J.C. Andrews-Hanna, J.W. Head, W.S. Kiefer, I. Matsuyama, P.J. McGovern, G.J. Taylor, M.T. Zuber, Lunar interior properties from the GRAIL mission. J. Geophys. Res. 119(7), 1546–1578 (2014). doi: 10.1002/2013JE004559 CrossRefGoogle Scholar
  52. J.G. Williams, D.H. Boggs, Tides on the Moon: theory and determination of dissipation. J. Geophys. Res. 120(4), 689–724 (2015). doi: 10.1002/2014JE004755 CrossRefGoogle Scholar
  53. X. Wu, Y.E. Bar-Sever, W.M. Folkner, J.G. Williams, J.F. Zumberge, Probing Europa’s hidden ocean from tidal effects on orbital dynamics. Geophys. Res. Lett. 28(11), 2245–2248 (2001). doi: 10.1029/2000GL012814 ADSCrossRefGoogle Scholar
  54. S. Zhong, C. Qin, A. Geruo, J.M. Wahr, Can tidal tomography be used to unravel the long-wavelength structure of the lunar interior? Geophys. Res. Lett. 39(15), L15201 (2012). doi: 10.1029/2012GL052362 ADSCrossRefGoogle Scholar
  55. M.T. Zuber, D.E. Smith, R.S. Zellar, G.A. Neumann, X. Sun, R.B. Katz, I. Kleyner, A. Matuszeski, J.F. McGarry, M.N. Ott, L.A. Ramos-Izquierdo, D.D. Rowlands, M.H. Torrence, T.W. Zagwodzki, The lunar reconnaissance orbiter laser ranging investigation. Space Sci. Rev. 150(1–4), 63–80 (2010) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Véronique Dehant
    • 1
    Email author
  • Ryan Park
    • 2
  • Dominic Dirkx
    • 3
  • Luciano Iess
    • 4
  • Gregory Neumann
    • 5
  • Slava Turyshev
    • 2
  • Tim Van Hoolst
    • 1
  1. 1.Royal Observatory of BelgiumUccleBelgium
  2. 2.Jet Propulsion Laboratory/California Institute of TechnologyPasadenaUSA
  3. 3.Delft University of TechnologyDelftThe Netherlands
  4. 4.University of RomeRomeItaly
  5. 5.NASA Goddard Space Flight CenterGreenbeltUSA

Personalised recommendations