Survey of Capabilities and Applications of Accurate Clocks: Directions for Planetary Science
- 256 Downloads
- 2 Citations
Abstract
For planetary science, accurate clocks are mainly used as part of an onboard radioscience transponder. In the case of two-way radio data, the dominating data type for planetary radioscience, an accurate spacecraft clock is not necessary since the measurements can be calibrated using high-precision clocks on Earth. In the case of one-way radio data, however, an accurate clock can make the precision of one-way radio data be comparable to the two-way data, and possibly better since only one leg of radio path would be affected by the media. This article addresses several ways to improve observations for planetary science, either by improving the onboard clock or by using further variants of the classical radioscience methods, e.g., Same Beam Interferometry (SBI). For a clock to be useful for planetary science, we conclude that it must have at least a short-time stability (\(<1{,}000~\mbox{s}\)) better than \(10^{-13}\) and its size be substantially miniaturized. A special case of using laser ranging to the Moon and the implication of having an accurate clock is shown as an example.
Keywords
Radioscience Atomic clock PositioningNotes
Acknowledgements
Part of the research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
References
- J.B. Abshire, X. Sun, G. Neumann, J. McGarry, T. Zagwodzki, P. Jester, H. Riris, M. Zuber, D.E. Smith, Laser pulses from Earth detected at Mars, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, Washington, 2006), paper CThT6 Google Scholar
- S.W. Asmar, J.W. Armstrong, L. Iess, P. Tortora, Spacecraft Doppler tracking: noise budget and achievable accuracy in precision radio science observations. Radio Sci. 40, RS2001 (2005). doi: 10.1029/2004RS003101 ADSCrossRefGoogle Scholar
- R.-M. Baland, G. Tobie, A. Lefevre, T. Van Hoolst, Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 29–41 (2014). doi: 10.1016/j.icarus.2014.04.007 ADSCrossRefGoogle Scholar
- S. Bauer, H. Hussmann, J. Oberst, D. Dirkx, D. Mao, G.A. Neumann, E. Mazarico, M.H. Torrence, J.F. McGarry, D.E. Smith, M.T. Zuber, Demonstration of orbit determination for the Lunar Reconnaissance Orbiter using one-way laser ranging data. Planet. Space Sci. 129, 32–46 (2016). doi: 10.1016/j.pss.2016.06.005 ADSCrossRefGoogle Scholar
- S. Bauer, H. Hussmann, J. Oberst, D. Dirkx, D. Mao, G.A. Neumann, E. Mazarico, M.H. Torrence, J.F. McGarry, D.E. Smith, M.T. Zuber, Analysis of one-way laser ranging data to LRO, time transfer and clock characterization. Icarus 283, 38–54 (2017). doi: 10.1016/j.icarus.2016.09.026 ADSCrossRefGoogle Scholar
- P. Bender, Proposed microwave transponders for early lunar robotic landers. Adv. Space Res. 14(6), 233–242 (1994). doi: 10.1016/0273-1177(94)90033-7 ADSCrossRefGoogle Scholar
- D.M. Boroson, B.S. Robinson, D.V. Murphy et al., Overview and results of the lunar laser communication demonstration. Proc. SPIE 8971, 1–11 (2014) Google Scholar
- D. Buccino, J.A. Seubert, S.W. Asmar, R.S. Park, Optical ranging measurement with a lunar orbiter: limitations and potential. J. Spacecr. Rockets 53(3), 457–463 (2016). doi: 10.2514/1.A33415 ADSCrossRefGoogle Scholar
- J.J. Degnan, Millimeter accuracy satellite laser ranging: a review, in Contributions of Space Geodesy to Geodynamics: Technology. Monograph Geodynamics Series (AGU, Washington, 1993), pp. 133–162 CrossRefGoogle Scholar
- J.M. Degnan, Asynchronous laser transponders for precise interplanetary ranging and time transfer. J. Geodyn. 34, 551–594 (2002) CrossRefGoogle Scholar
- V. Dehant, W. Folkner, E. Renotte, D. Orban, S. Asmar, G. Balmino, J.P. Barriot, J. Benoist, R. Biancale, J. Biele, F. Budnik, S. Burger, O. de Viron, B. Häusler, Ö. Karatekin, S. Le Maistre, P. Lognonné, M. Menvielle, M. Mitrovic, M. Pätzold, A. Rivoldini, P. Rosenblatt, G. Schubert, T. Spohn, P. Tortora, T. Van Hoolst, O. Witasse, M. Yseboodt, Lander radioscience for obtaining the rotation and orientation of Mars. Planet. Space Sci. 57, 1050–1067 (2009). doi: 10.1016/j.pss.2008.08.009 ADSCrossRefGoogle Scholar
- V. Dehant, S. Le Maistre, A. Rivoldini, M. Yseboodt, P. Rosenblatt, T. Van Hoolst, M. Mitrovic, Ö. Karatekin, J.C. Marty, A. Chicarro, Revealing Mars’ deep interior: future geodesy missions using radio links between landers, orbiters, and the Earth. Planet. Space Sci. 57, 1069–1081 (2010). doi: 10.1016/j.pss.2010.03.014 Google Scholar
- V. Dehant, B. Banerdt, P. Lognonné, M. Grott, S. Asmar, J. Biele, D. Breuer, F. Forget, R. Jaumann, C. Johnson, M. Knapmeyer, M. Lefeuvre, D. Mimoun, A. Mocquet, P. Read, A. Rivoldini, O. Romberg, G. Schubert, S. Smrekar, T. Spohn, P. Tortora, S. Ulamec, S. Vennerstrøm, Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution. Planet. Space Sci. 68(1), 123–145 (2012a). doi: 10.1016/j.pss.2011.10.016 ADSCrossRefGoogle Scholar
- V. Dehant, J. Oberst, R. Nadalini, U. Schreiber, N. Rambaux, Geodesy instrument package on the Moon for improving our knowledge of the Moon and the realization of reference frames. Planet. Space Sci. 68(1), 94–104 (2012b). doi: 10.1016/j.pss.2012.02.008 ADSCrossRefGoogle Scholar
- D. Dirkx, R. Noomen, P.N.A.M. Visser, S. Bauer, L.L.A. Vermeersen, Comparative analysis of one- and two-way planetary laser ranging concepts. Planet. Space Sci. 117, 159–176 (2015) ADSCrossRefGoogle Scholar
- D. Dirkx, Interplanetary laser ranging—analysis for implementation in planetary science mission. PhD thesis, Delft University of Technology (2015) Google Scholar
- D. Dirkx, R. Noomen, P.N.A.M. Visser, L.I. Gurvits, L.L.A. Vermeersen, Space-time dynamics estimation from space mission tracking data. Astron. Astrophys. 587, A156 (2016) ADSCrossRefGoogle Scholar
- M. Efroimsky, Bodily tides near spin-orbit resonances. Celest. Mech. Dyn. Astron. 112(3), 283–330 (2012). doi: 10.1007/s10569-011-9397-4 ADSMathSciNetCrossRefGoogle Scholar
- R.C. Elphic, C. Russell, The Lunar Atmosphere and Dust Environment Explorer Mission (LADEE) (Springer, Cham, 2015) CrossRefGoogle Scholar
- M. Fermi, P. Bender, B. Bertotti, M. Chersich, M. Gregnanin, L. Iess, L. Simone, Investigation of the lunar interior with a microwave interferometer. 37th COSPAR Scientific Assembly, paper P162-TueWed B01-0062-08 (2008) Google Scholar
- W.M. Folkner, C.F. Yoder, D.N. Yuan, E.M. Standish, R.A. Preston, Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. Science 278(5344), 1749 (1997) ADSCrossRefGoogle Scholar
- M. Gregnanin, B. Bertotti, M. Chersich, M. Fermi, L. Iess, L. Simone, P. Tortora, J.G. Williams, Same beam interferometry as a tool for the investigation of the lunar interior. Planet. Space Sci. 74, 194–201 (2012). doi: 10.1016/j.pss.2012.08.027 ADSCrossRefGoogle Scholar
- M. Gregnanin, M. Yseboodt, V. Dehant, L. Iess, T. Van Hoolst, Estimation of Mars geophysical information through Same Beam Interferometry, in Proc. European Planetary Science Congress EPSC 2014, Centro de Congressos do Estoril, Cascais, Portugal Austria, 7–12 September, 2014, vol. 9 (2014), EPSC2014-EPSC395 Google Scholar
- H. Hemmati, K.M. Birnbaum, W.H. Farr, S. Turyshev, A. Biswas, Combined laser communications and laser ranging transponder for Moon and Mars, in Free-Space Laser Communication Technologies XXI. SPIE Conference Series, vol. 7199 (2009), No. 71990N Google Scholar
- L. Iess, M. Fermi, P. Bender, B. Bertotti, M. Gregnanin, L. Simon, A microwave interferometer for the investigation of the lunar interior. NASA NOI N9-ILN09-0016 for the International Lunar Network (2008) Google Scholar
- L. Iess, M.D. Benedetto, N. James, M. Mercolino, L. Simone, P. Tortora, Astra: interdisciplinary study on enhancement of the end-to-end accuracy for spacecraft tracking techniques. Acta Astronaut. 94(2), 699–707 (2014) ADSCrossRefGoogle Scholar
- A.S. Konopliv, C.F. Yoder, Venusian \(k_{2}\) tidal Love number from Magellan and PVO tracking data. Geophys. Res. Lett. 23(14), 1857–1860 (1996). doi: 10.1029/96GL01589 ADSCrossRefGoogle Scholar
- A.S. Konopliv, S.W. Asmar, W.M. Folkner, Ö. Karatekin, D.C. Nunes, S.E. Smrekar, C.F. Yoder, M.T. Zuber, Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters. Icarus 211, 401–428 (2011). doi: 10.1016/j.icarus.2010.10.004 ADSCrossRefGoogle Scholar
- P. Kuchynka, W.M. Folkner, A.S. Konopliv, R.S. Park, S. Le Maistre, V. Dehant, New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 222(1), 243–253 (2013). doi: 10.1016/j.icarus.2012.11.003 ADSCrossRefGoogle Scholar
- P. Kuchynka, W.M. Folkner, A.S. Konopliv, R.S. Park, S. Le Maistre, V. Dehant, New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover. Icarus 229, 340–347 (2014). doi: 10.1016/j.icarus.2013.11.015 ADSCrossRefGoogle Scholar
- S. Le Maistre, P. Rosenblatt, A. Rivoldini, V. Dehant, J.C. Marty, Ö. Karatekin, Lander Radio science experiment with a direct link between Mars and the Earth. Planet. Space Sci. 68(1), 105–122 (2012). doi: 10.1016/j.pss.2011.12.020 ADSCrossRefGoogle Scholar
- D. Mao, J. McGarry, M. Torrence, G. Neumann, E. Mazarico, M. Barker, X. Sun, D. Rowlands, J. Golder, T. Zagwodzki, J. Cavanaugh, M. Zuber, D. Smith, Laser ranging experiment on Lunar Reconnaissance Orbiter: timing determination and orbit constraints, in Proceedings of ILRS Workshop, Bad Kotzing, Germany, May 2012 (2012). http://cddis.gsfc.nasa.gov/lw17/docs/papers/session13/02-Mao_LRO-LR_Kotzting2011_paper_final.pdf Google Scholar
- D. Mao, J.F. McGarry, E. Mazarico, G.A. Neumann, X. Sun, M.H. Torrence, T.W. Zagwodzki, D.D. Rowlands, E.D. Hoffman, J.E. Horvath, J.E. Golder, M.K. Barker, D.E. Smith, M.T. Zuber, The laser ranging experiment of the Lunar Reconnaissance Orbiter: five years of operations and data analysis. Icarus 283, 55–69 (2017). doi: 10.1016/j.icarus.2016.07.003 ADSCrossRefGoogle Scholar
- E. Mazarico, F.G. Lemoine, S. Goossens, T.J. Sabaka, J.B. Nicholas, D.D. Rowlands, G.A. Neumann, M.H. Torrence, D.E. Smith, M.T. Zuber, Improved precision orbit determination of lunar orbiters from the GRAIL-derived lunar gravity models. Adv. Astronaut. Sci. 148, 1125–1141 (2013) Google Scholar
- G. Mitri, R. Meriggiola, A. Hayes, A. Lefevre, G. Tobie, A. Genova, J.I. Lunine, H. Zebkerg, Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236, 169–177 (2014). doi: 10.1016/j.icarus.2014.03.018 ADSCrossRefGoogle Scholar
- W.B. Moore, G. Schubert, The tidal response of Ganymede and Callisto with and without liquid water oceans. Icarus 166, 223–226 (2003). doi: 10.1016/j.icarus.2003.07.001 ADSCrossRefGoogle Scholar
- T.D. Moyer, Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation. Monograph 2 Deep Space Communications and Navigation Series (2000). 549 pp. Google Scholar
- T.W. Murphy, E.G. Adelberger, J.B.R. Battat, L.N. Carey, C.D. Hoyle, P. Leblanc, E.L. Michelsen, K. Nordtvedt, A.E. Orin, J.D. Strasburg, C.W. Stubbs, H.E. Swanson, E. Williams, The Apache Point Observatory lunar laser-ranging operation: instrument description and first detections. Publ. Astron. Soc. Pac. 120, 20 (2008). doi: 10.1086/526428 ADSCrossRefGoogle Scholar
- F. Nimmo, U.H. Faul, E.J. Garnero, Dissipation at tidal and seismic frequencies in a melt-free Moon. J. Geophys. Res. 117(E9), E09005 (2012). doi: 10.1029/2012JE004160 ADSCrossRefGoogle Scholar
- J. Oberst, V. Lainey, C. Le Poncin-Latte, V. Dehant, P. Rosenblatt, S. Ulamec, J. Biele, J. Spurmann, R. Kahle, V. Klein, U. Schreiber, A. Schlicht, N. Rambaux, P. Laurent, B. Noyelles, B. Foulon, A. Zakharov, L. Gurvits, D. Uchaev, S. Murchie, C. Reed, S.G. Turyshev, J. Gil, M. Graziano, K. Willner, K. Wickhusen, A. Pasewaldt, M. Wahlisch, H. Hussmann, GETEMME—a mission to explore the Martian satellites and the fundamentals of solar system physics. Exp. Astron. 34, 243–271 (2012) ADSCrossRefGoogle Scholar
- R.S. Park, A.S. Konopliv, S.W. Asmar, B.G. Bills, R.W. Gaskell, C.A. Raymond, D.E. Smith, M.T. Zuber, Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus 240, 118–132 (2013) ADSCrossRefGoogle Scholar
- R.S. Park, A.S. Konopliv, B.G. Bills, N. Rambaux, J.C. Castillo-Rogez, C.A. Raymond, A.T. Vaughan, A.I. Ermakov, M.T. Zuber, R.R. Fu, M.J. Toplis, C.T. Russell, A. Nathues, F. Preusker, A partially differentiated interior for Ceres deduced from its gravity field and shape. Nature 537, 515–517 (2016) ADSCrossRefGoogle Scholar
- N. Rambaux, J.G. Williams, The Moon’s physical librations and determination of their free modes. Celest. Mech. Dyn. Astron. 109(1), 85–100 (2011). doi: 10.1007/s10569-010-9314-2 ADSCrossRefzbMATHGoogle Scholar
- D.E. Smith, M.T. Zuber, X. Sun, G.A. Neumann, J.F. McGarry, T.W. Zagwodzki, Two-way laser link over interplanetary distance. Science 311, 53 (2006) ADSCrossRefGoogle Scholar
- S.G. Turyshev, W. Farr, W.M. Folkner, A.R. Girerd, H. Hemmati, T.W. Murphy, J.G. Williams, J.J. Degnan, Advancing tests of relativistic gravity via laser ranging to Phobos. Exp. Astron. 28(2), 209–249 (2010) ADSCrossRefGoogle Scholar
- S.G. Turyshev, J.G. Williams, W.M. Folkner, G.M. Gutt, R.T. Baran, R.C. Hein, R.P. Somawardhana, J.A. Lipa, S. Wang, Corner-cube retro-reflector instrument for advanced lunar laser ranging. Exp. Astron. 36(1–2), 105–135 (2013). doi: 10.1007/s10686-012-9324-z ADSCrossRefGoogle Scholar
- J.M. Wahr, M.T. Zuber, D.E. Smith, J.I. Lunine, Tides on Europa, and the thickness of Europa’s icy shell. J. Geophys. Res. 111(E12), E12005 (2006). doi: 10.1029/2006JE002729 ADSCrossRefGoogle Scholar
- J.G. Williams, X.X. Newhall, J.O. Dickey, Relativity parameters determined from lunar laser ranging. Phys. Rev. D 53, 6730–6739 (1996) ADSCrossRefGoogle Scholar
- J.G. Williams, S.G. Turyshev, T.W. Murphy, Improving LLR tests of gravitational theory. Int. J. Mod. Phys. D 13(3), 567–582 (2004). doi: 10.1142/S0218271804004682 ADSCrossRefzbMATHGoogle Scholar
- J.G. Williams, S.G. Turyshev, D.H. Boggs, Lunar laser ranging tests of the equivalence principle with the Earth and Moon. Int. J. Mod. Phys. D 18(07), 1129–1175 (2009). doi: 10.1142/S021827180901500X ADSCrossRefzbMATHGoogle Scholar
- J.G. Williams, A.S. Konopliv, D.H. Boggs, R.S. Park, D.-N. Yuan, F.G. Lemoine, S. Goossens, E. Mazarico, F. Nimmo, R.C. Weber, S.W. Asmar, H.J. Melosh, G.A. Neumann, R.J. Phillips, D.E. Smith, S.C. Solomon, M.M. Watkins, M.A. Wieczorek, J.C. Andrews-Hanna, J.W. Head, W.S. Kiefer, I. Matsuyama, P.J. McGovern, G.J. Taylor, M.T. Zuber, Lunar interior properties from the GRAIL mission. J. Geophys. Res. 119(7), 1546–1578 (2014). doi: 10.1002/2013JE004559 CrossRefGoogle Scholar
- J.G. Williams, D.H. Boggs, Tides on the Moon: theory and determination of dissipation. J. Geophys. Res. 120(4), 689–724 (2015). doi: 10.1002/2014JE004755 CrossRefGoogle Scholar
- X. Wu, Y.E. Bar-Sever, W.M. Folkner, J.G. Williams, J.F. Zumberge, Probing Europa’s hidden ocean from tidal effects on orbital dynamics. Geophys. Res. Lett. 28(11), 2245–2248 (2001). doi: 10.1029/2000GL012814 ADSCrossRefGoogle Scholar
- S. Zhong, C. Qin, A. Geruo, J.M. Wahr, Can tidal tomography be used to unravel the long-wavelength structure of the lunar interior? Geophys. Res. Lett. 39(15), L15201 (2012). doi: 10.1029/2012GL052362 ADSCrossRefGoogle Scholar
- M.T. Zuber, D.E. Smith, R.S. Zellar, G.A. Neumann, X. Sun, R.B. Katz, I. Kleyner, A. Matuszeski, J.F. McGarry, M.N. Ott, L.A. Ramos-Izquierdo, D.D. Rowlands, M.H. Torrence, T.W. Zagwodzki, The lunar reconnaissance orbiter laser ranging investigation. Space Sci. Rev. 150(1–4), 63–80 (2010) ADSCrossRefGoogle Scholar