Space Science Reviews

, Volume 212, Issue 3–4, pp 1897–1944 | Cite as

The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter

  • N. Thomas
  • G. Cremonese
  • R. Ziethe
  • M. Gerber
  • M. Brändli
  • G. Bruno
  • M. Erismann
  • L. Gambicorti
  • T. Gerber
  • K. Ghose
  • M. Gruber
  • P. Gubler
  • H. Mischler
  • J. Jost
  • D. Piazza
  • A. Pommerol
  • M. Rieder
  • V. Roloff
  • A. Servonet
  • W. Trottmann
  • T. Uthaicharoenpong
  • C. Zimmermann
  • D. Vernani
  • M. Johnson
  • E. Pelò
  • T. Weigel
  • J. Viertl
  • N. De Roux
  • P. Lochmatter
  • G. Sutter
  • A. Casciello
  • T. Hausner
  • I. Ficai Veltroni
  • V. Da Deppo
  • P. Orleanski
  • W. Nowosielski
  • T. Zawistowski
  • S. Szalai
  • B. Sodor
  • S. Tulyakov
  • G. Troznai
  • M. Banaskiewicz
  • J. C. Bridges
  • S. Byrne
  • S. Debei
  • M. R. El-Maarry
  • E. Hauber
  • C. J. Hansen
  • A. Ivanov
  • L. Keszthelyi
  • R. Kirk
  • R. Kuzmin
  • N. Mangold
  • L. Marinangeli
  • W. J. Markiewicz
  • M. Massironi
  • A. S. McEwen
  • C. Okubo
  • L. L. Tornabene
  • P. Wajer
  • J. J. Wray
Article
Part of the following topical collections:
  1. ExoMars-16

Abstract

The Colour and Stereo Surface Imaging System (CaSSIS) is the main imaging system onboard the European Space Agency’s ExoMars Trace Gas Orbiter (TGO) which was launched on 14 March 2016. CaSSIS is intended to acquire moderately high resolution (4.6 m/pixel) targeted images of Mars at a rate of 10–20 images per day from a roughly circular orbit 400 km above the surface. Each image can be acquired in up to four colours and stereo capability is foreseen by the use of a novel rotation mechanism. A typical product from one image acquisition will be a \(9.5~\mbox{km} \times {\sim}45~\mbox{km}\) swath in full colour and stereo in one over-flight of the target thereby reducing atmospheric influences inherent in stereo and colour products from previous high resolution imagers. This paper describes the instrument including several novel technical solutions required to achieve the scientific requirements.

Keywords

Mars Surface Imaging Trace Gas Orbiter Colour Stereo 

References

  1. A. Abergel, J.L. Bertaux, G.A. Avanesov, V.I. Tarnopol’skii, B.S. Zhukov, Photometric characteristics of the Vega 1 and Vega 2 CCD cameras for the observation of Comet Halley. Appl. Opt. 26, 4457–4468 (1987) ADSCrossRefGoogle Scholar
  2. D. Baratoux, N. Mangold, P. Pinet, F. Costard, Thermal properties of lobate ejecta in syrtis major, Mars: implications for the mechanisms of formation. J. Geophys. Res. 110(E4), E04011 (2005) ADSCrossRefGoogle Scholar
  3. T. Bauer, H. Thome, T. Eisenhammer, Bandpass filter arrays patterned by photolithography for multispectral remote sensing, in Proc. SPIE 9241, Sensors, Systems, and Next-Generation Satellites XVIII, 92411K (2014). doi:10.1117/12.2069596 Google Scholar
  4. A. Brack, P. Clancy, B. Fitton, B. Hofmann, G. Horneck, G. Kurat, J. Maxwell, G. Ori, C. Pillinger, F. Raulin, N. Thomas, F. Westall, An integrated exobiology package for the search for life on Mars. Adv. Space Res. 23, 301–308 (1999) ADSCrossRefGoogle Scholar
  5. N.T. Bridges, M.C. Bourke, P.E. Geissler, M.E. Banks, C. Colon, S. Diniega, M.P. Golombek, C.J. Hansen, S. Mattson, A.S. McEwen, M.T. Mellon, N. Stantzos, B.J. Thomson, Planet-wide sand motion on Mars. Geology 40, 31–34 (2012) ADSCrossRefGoogle Scholar
  6. E.S. Brusnikin, M.A. Kreslavsky, A.E. Zubarev, V.D. Patratiy, S.S. Krasilnikov, J.W. Head, I.P. Karachevtseva, Topographic measurements of slope streaks on Mars. Icarus 278, 52–61 (2016) ADSCrossRefGoogle Scholar
  7. S. Byrne, C.M. Dundas, M.R. Kennedy, M.T. Mellon, A.S. McEwen, S.C. Cull, I.J. Daubar, D.E. Shean, K.D. Seelos, S.L. Murchie, B.A. Cantor, R.E. Arvidson, K.S. Edgett, A. Reufer, N. Thomas, T.N. Harrison, L.V. Posiolova, F.P. Seelos, Distribution of mid-latitude ground ice on Mars from new impact craters. Science 325, 1674 (2009) ADSCrossRefGoogle Scholar
  8. M. Cardinale, S. Silvestro, D.A. Vaz, T. Michaels, M.C. Bourke, G. Komatsu, L. Marinangeli, Present-day aeolian activity in Herschel crater, Mars. Icarus 265, 139–148 (2016) ADSCrossRefGoogle Scholar
  9. D.S. Choi, C.M. Dundas, Measurements of Martian dust devil winds with HiRISE. Geophys. Res. Lett. 38, L24206 (2011) ADSCrossRefGoogle Scholar
  10. M. Chojnacki, J.R. Johnson, J.E. Moersch, L.K. Fenton, T.I. Michaels, J.F. Bell III., Persistent aeolian activity at Endeavour crater, Meridiani Planum, Mars; new observations from orbit and the surface. Icarus 251, 275–290 (2015) ADSCrossRefGoogle Scholar
  11. F.C. Chuang, R.A. Beyer, N.T. Bridges, Modification of Martian slope streaks by eolian processes. Icarus 205, 154–164 (2010) ADSCrossRefGoogle Scholar
  12. I.J. Daubar, A.S. McEwen, S. Byrne, M.R. Kennedy, B. Ivanov, The current Martian cratering rate. Icarus 225, 506–516 (2013) ADSCrossRefGoogle Scholar
  13. I.J. Daubar, C.M. Dundas, S. Byrne, P. Geissler, G.D. Bart, A.S. McEwen, P.S. Russell, M. Chojnacki, M.P. Golombek, Changes in blast zone albedo patterns around new Martian impact craters. Icarus 267, 86–105 (2016) ADSCrossRefGoogle Scholar
  14. W.A. Delamere et al., Colour imaging of Mars by the High Resolution Imaging Science Experiment (HiRISE). Icarus 205, 38–52 (2010). doi:10.1016/j.icarus.2009.03.012 ADSCrossRefGoogle Scholar
  15. C.M. Dundas, S. Diniega, C.J. Hansen, S. Byrne, A.S. McEwen, Seasonal activity and morphological changes in Martian gullies. Icarus 220, 124–143 (2012) ADSCrossRefGoogle Scholar
  16. C.M. Dundas, S. Byrne, A.S. McEwen, M.T. Mellon, M.R. Kennedy, I.J. Daubar et al., HiRISE observations of new impact craters exposing Martian ground ice. J. Geophys. Res. 119, 109–127 (2014) CrossRefGoogle Scholar
  17. C.M. Dundas, S. Diniega, A.S. McEwen, Long-term monitoring of Martian gully formation and evolution with MRO/HiRISE. Icarus 251, 244–263 (2015) ADSCrossRefGoogle Scholar
  18. B.L. Ehlmann, J.F. Mustard, S.L. Murchie, Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, L06201 (2010) ADSCrossRefGoogle Scholar
  19. S. Erard, W. Calvin, New composite spectra of Mars, 0.4–5.7 μm. Icarus 130, 449–460 (1997) ADSCrossRefGoogle Scholar
  20. ESA, Exobiology in the Solar System and the Search For Life on Mars report from the ESA Exobiology Team Study 1997–1998, ESA SP-1231, October 1999 Google Scholar
  21. L.K. Fenton, Dune migration and slip face advancement in the RabeCrater dune field, Mars. Geophys. Res. Lett. 33, L20201 (2006). doi:10.1029/2006GL027133 ADSCrossRefGoogle Scholar
  22. R.D. Fiete, D.P. Bradley, Modeling the optical transfer function in the imaging chain. Opt. Eng. 53(8), 083103 (2014) CrossRefGoogle Scholar
  23. E. Flamini, F. Capaccioni, L. Colangeli, G. Cremonese, A. Doressoundiram, J.L. Josset, Y. Langevin, S. Debei, M.T. Capria, M.C. DeSanctis, L. Marinangeli, M. Massironi, E. Mazzotta Epifani, G. Naletto, P. Palumbo, P. Eng, J.F. Roig, A. Caporali, V. DaDeppo, S. Erard, C. Federico, O. Forni, M. Sgavetti, G. Filacchione, L. Giacomini, G. Marra, E. Martellato, M. Zusi, M. Cosi, C. Bettanini, L. Calamai, M. Zaccariotto, L. Tommasi, M. Dami, I. Ficai Veltroni, F. Poulet, Y. Hello (The SIMBIO-SYS Team), SIMBIO-SYS: the Spectrometers and Imagers Integrated Observatory SYStem for BepiColombo Orbiter. Planet. Space Sci. 58, 125 (2010) ADSCrossRefGoogle Scholar
  24. S. Fonti, G.A. Marzo, Mapping the methane on Mars. Astron. Astrophys. 512, A51 (2010) ADSCrossRefGoogle Scholar
  25. V. Formisano, S. Atreya, T. Encrenaz, N. Ignatiev, M. Giuranna, Detection of methane in the atmosphere of Mars. Science 306, 1758–1761 (2004) ADSCrossRefGoogle Scholar
  26. A. Geminale, V. Formisano, M. Giuranna, Methane in Martian atmosphere: average spatial, diurnal, and seasonal behavior. Planet. Space Sci. 56, 1194–1203 (2008). doi:10.1016/j.pss.2008.03.004 ADSCrossRefGoogle Scholar
  27. R.V. Gough, V.F. Chevrier, M.A. Tolbert, Formation of liquid water at low temperatures via the deliquescence of calcium chloride: implications for Antarctica and Mars. Planet. Space Sci. 131, 79–87 (2016) ADSCrossRefGoogle Scholar
  28. C.J. Hansen, S. Diniega, N. Bridges, S. Byrne, C. Dundas, A. McEwen, G. Portyankina, Agents of change on Mars’ northern dunes: CO2 ice and wind. Icarus 251, 264–274 (2015) ADSCrossRefGoogle Scholar
  29. C.J. Hansen, N. Thomas, G. Portyankina, A. McEwen, T. Becker, S. Byrne, K. Herkenhoff, H. Kieffer, M. Mellon, HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: I. Erosion of the surface. Icarus 205, 283–295 (2010) ADSCrossRefGoogle Scholar
  30. R. Jaumann, G. Neukum, T. Behnke, T.C. Duxbury, K. Eichentopf, J. Flohrer, S.V. Gasselt, B. Giese, K. Gwinner, E. Hauber, H. Hoffmann, A. Hoffmeister, U. Köhler, K.-D. Matz, T.B. McCord, V. Mertens, J. Oberst, R. Pischel, D. Reiss, E. Ress, T. Roatsch, P. Saiger, F. Scholten, G. Schwarz, K. Stephan, M. Wählisch (The HRSC Co-Investigator Team), The high-resolution stereo camera (HRSC) experiment on Mars Express: instrument aspects and experiment conduct from interplanetary cruise through the nominal mission. Planet. Space Sci. 55, 928–952 (2007) ADSCrossRefGoogle Scholar
  31. A.S. Khayat, G.L. Villanueva, M.J. Mumma, A.T. Tokunaga, A search for SO2, H2S and SO above Tharsis and Syrtis volcanic districts on Mars using ground-based high-resolution submillimeter spectroscopy. Icarus 253, 130–141 (2015) ADSCrossRefGoogle Scholar
  32. O.I. Korablev, F. Montmessin, A.A. Fedorova, N.I. Ignatiev, A.V. Shakun, A.V. Trokhimovskiy, A.V. Grigoriev, K.A. Anufreichik, T.O. Kozlova, ACS experiment for atmospheric studies on “ExoMars-2016” Orbiter. Sol. Syst. Res. 49, 529–537 (2015) ADSCrossRefGoogle Scholar
  33. O.I. Korablev et al. Space Sci. Rev. (2017, this issue) Google Scholar
  34. A. Lefort, P.S. Russell, N. Thomas, A.S. McEwen, C.M. Dundas, R.L. Kirk, Observations of periglacial landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res. 114, E04005 (2009). doi:10.1029/2008JE003264 ADSCrossRefGoogle Scholar
  35. M.C. Malin, G.E. Danielson, A.P. Ingersoll, H. Masursky, J. Veverka, M.A. Ravine, T.A. Soulanille, Mars observer camera. J. Geophys. Res. 97(E5), 7699–7718 (1992) ADSCrossRefGoogle Scholar
  36. M.C. Malin, J.F. Bell, B.A. Cantor, M.A. Caplinger, W.M. Calvin, R.T. Clancy, K.S. Edgett, L. Edwards, R.M. Haberle, P.B. James, S.W. Lee, M.A. Ravine, P.C. Thomas, M.J. Wolff, Context camera investigation on board the Mars reconnaissance orbiter. J. Geophys. Res., Planets 112, E05S04 (2007) ADSCrossRefGoogle Scholar
  37. N. Mangold, S. Maurice, W. Feldman, F. Costard, F. Forget, Spatial relationships between patterned ground and ground ice detected by the neutron spectrometer on Mars. J. Geophys. Res., Planets 109(E8), E0800110.1029/2004JE002235 (2004) CrossRefGoogle Scholar
  38. M. Massironi, R. Pozzobon, A. Lucchetti, E. Simioni, C. Re, T. Mudrič, M. Pajola, G. Cremonese, A. Pommerol, N. Thomas, A three dimensional geological reconstruction of Noctis Labyrinthus slope tectonics from CaSSIS data. EPSC abstract (2017) Google Scholar
  39. T. McConnochie et al., Calibration and in-flight performance of the Mars Odyssey Thermal Emission Imaging System Visible Imaging Subsystem (THEMIS VIS). J. Geophys. Res. 111, E06018 (2006) ADSCrossRefGoogle Scholar
  40. T.B. McCord, J.B. Adams, G. Bellucci, J.-P. Combe, A.R. Gillespie, G. Hansen, H. Hoffmann, R. Jaumann, G. Neukum, P. Pinet, F. Poulet, K. Stephan, Mars express high resolution stereo camera spectrophotometric data: characteristics and science analysis. J. Geophys. Res., Planets 112, E06004 (2007) ADSCrossRefGoogle Scholar
  41. A.S. McEwen, E.M. Eliason, J.W. Bergstrom, N.T. Bridges, C.J. Hansen, W.A. Delamere, J.A. Grant, V.C. Gulick, K.E. Herkenhoff, L. Keszthelyi, R.L. Kirk, M.T. Mellon, S.W. Squyres, N. Thomas, C.M. Weitz, Mars reconnaissance orbiter’s High Resolution Imaging Science Experiment (HiRISE). J. Geophys. Res., Planets 112, E05S02 (2007) ADSCrossRefGoogle Scholar
  42. A. McEwen, N. Thomas, J. Bridges, S. Byrne, G. Cremonese, W. Delamere, C. Hansen, E. Hauber, A. Ivanov, L. Kestay, R. Kirk, N. Mangold, W.J. Markiewicz, M. Massironi, S. Mattson, C. Okubo, J. Wray, HiSCI experiment on ExoMars trace gas orbiter, in Lunar and Planetary Science Conference, vol. 42 (2011a), p. 2270 Google Scholar
  43. A. McEwen, N. Thomas, W.J. Markiewicz, J. Bridges, S. Byrne, G. Cremonese, W. Delamere, C. Hansen, E. Hauber, A. Ivanov, L. Kestay, R. Kirk, N. Mangold, M. Massironi, S. Mattson, C. Okubo, J. Wray, HiSCI experiment on exomars trace gas orbiter, in The Fourth International Workshop on the Mars Atmosphere: Modelling and Observation, held 8–11 February, 2011 in Paris (2011b), pp. 496–497 Google Scholar
  44. A.S. McEwen, L. Ojha, C.M. Dundas, S.S. Mattson, S. Byrne, J.J. Wray, S.C. Cull, S.L. Murchie, N. Thomas, V.C. Gulick, Seasonal flows on warm Martian slopes. Science 333, 740–743 (2011c) ADSCrossRefGoogle Scholar
  45. M.T. Mellon, M.C. Malin, R.E. Arvidson, M.L. Searls, H.G. Sizemore, T.L. Heet, M.T. Lemmon, H.U. Keller, J. Marshall, The periglacial landscape at the Phoenix landing site. J. Geophys. Res., Planets 114, E00E06 (2009a) ADSGoogle Scholar
  46. M.T. Mellon, R.E. Arvidson, H.G. Sizemore, M.L. Searls, D.L. Blaney, S. Cull, M.H. Hecht, T.L. Heet, H.U. Keller, M.T. Lemmon, W.J. Markiewicz, D.W. Ming, R.V. Morris, W.T. Pike, A.P. Zent, Ground ice at the Phoenix landing site: stability state and origin. J. Geophys. Res., Planets 114, E00E07 (2009b) ADSGoogle Scholar
  47. I. Mitrofanov et al. Space Sci. Rev. (2017, this issue) Google Scholar
  48. M.J. Mumma, G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. Disanti, A.M. Mandell, M.D. Smith, Strong release of methane on Mars in northern summer 2003. Science 323, 1041–1045 (2009) ADSCrossRefGoogle Scholar
  49. S. Murchie, R. Arvidson, P. Bedini, K. Beisser, J.-P. Bibring, J. Bishop, J. Boldt, P. Cavender, T. Choo, R.T. Clancy, E.H. Darlington, D. Des Marais, R. Espiritu, D. Fort, R. Green, E. Guinness, J. Hayes, C. Hash, K. Heffernan, J. Hemmler, G. Heyler, D. Humm, J. Hutcheson, N. Izenberg, R. Lee, J. Lees, D. Lohr, E. Malaret, T. Martin, J.A. McGovern, P. McGuire, R. Morris, J. Mustard, S. Pelkey, E. Rhodes, M. Robinson, T. Roush, E. Schaefer, G. Seagrave, F. Seelos, P. Silverglate, S. Slavney, M. Smith, W.-J. Shyong, K. Strohbehn, H. Taylor, P. Thompson, B. Tossman, M. Wirzburger, M. Wolff, Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). J. Geophys. Res., Planets 112, E05S03 (2007) CrossRefGoogle Scholar
  50. J. Oberst, G. Schwarz, T. Behnke, H. Hoffmann, K.-D. Matz, J. Flohrer, H. Hirsch, T. Roatsch, F. Scholten, E. Hauber, B. Brinkmann, R. Jaumann, D. Williams, R. Kirk, T. Duxbury, C. Leu, G. Neukum, The imaging performance of the SRC on Mars Express. Planet. Space Sci. 56, 473–491 (2008) ADSCrossRefGoogle Scholar
  51. L. Ojha, M.B. Wilhelm, L.M. Scott, A.S. McEwen, J.J. Wray, J. Hanley, M. Massé, M. Chojnacki, Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015). doi:10.1038/ngeo2546 ADSCrossRefGoogle Scholar
  52. M. Pajola, E. Simioni, A. Lucchetti, C. Re, G. Cremonese, N. Thomas, A. Pommerol, L. Tornabene (The CaSSIS Team), Refining the boundary between the Phobos Blue/Red spectral units with the ExoMars-CaSSIS imagery, EPSC abstract (2017) Google Scholar
  53. J. Parnell, A.J. Boyce, N.J.F. Blamey, Follow the methane: the search for a deep biosphere, and the case for sampling serpentinites, on Mars. Int. J. Astrobiol. 9, 193–200 (2010) CrossRefGoogle Scholar
  54. K. Pasquon, J. Gargani, M. Massé, S.J. Conway, Present-day formation and seasonal evolution of linear dune gullies on Mars. Icarus 274, 195–210 (2016) ADSCrossRefGoogle Scholar
  55. J. Raack, D. Reiss, T. Appèré, M. Vincendon, O. Ruesch, H. Hiesinger, Present-day seasonal gully activity in a south polar pit (Sisyphi Cavi) on Mars. Icarus 251, 226–243 (2015) ADSCrossRefGoogle Scholar
  56. A. Reufer, N. Thomas, W. Benz, S. Byrne, V. Bray, C. Dundas, M. Searls, Models of high-velocity impacts into dust-covered ice: application to Martian northern lowlands. Planet. Space Sci. 58, 1160–1168 (2010) ADSCrossRefGoogle Scholar
  57. V. Roloff et al., On-ground performance and calibration of the ExoMars trace gas orbiter CaSSIS imager. Space Sci. Rev. (2017, this issue). doi:10.1007/s11214-017-0404-2 Google Scholar
  58. N. Schorghofer, C.M. King, Sporadic formation of slope streaks on Mars. Icarus 216, 159–168 (2011) ADSCrossRefGoogle Scholar
  59. S. Silvestro, D.A. Vaz, L.K. Fenton, P.E. Geissler, Active aeolian processes on Mars: a regional study in Arabia and Meridiani Terrae. Geophys. Res. Lett. 38, L20201 (2011) ADSCrossRefGoogle Scholar
  60. D.E. Stillman, T.I. Michaels, R.E. Grimm, J. Hanley, Observations and modeling of northern mid-latitude recurring slope lineae (RSL) suggest recharge by a present-day Martian briny aquifer. Icarus 265, 125–138 (2016) ADSCrossRefGoogle Scholar
  61. R. Sullivan, P. Thomas, J. Veverka, M. Malin, K. Edgett, Mass movement slope streaks imaged by the Mars Orbiter Camera. J. Geophys. Res. 106(E10), 23607–23633 (2001) ADSCrossRefGoogle Scholar
  62. P. Thollot, N. Mangold, V. Ansan, S. Le Mouélic, R.E. Milliken, J.L. Bishop, C.M. Weitz, L.H. Roach, J.F. Mustard, S.L. Murchie, Most Mars minerals in a nutshell: various alteration phases formed in a single environment in Noctis Labyrinthus. J. Geophys. Res., Planets 117, E00J06 (2012) ADSCrossRefGoogle Scholar
  63. N. Thomas, C.J. Hansen, G. Portyankina, P.S. Russell, HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: II. Surficial deposits and their origins. Icarus 205, 296–310 (2010) ADSCrossRefGoogle Scholar
  64. N. Thomas, G. Portyankina, C.J. Hansen, A. Pommerol, HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: IV. Fluid dynamics models of CO2 jets. Icarus 212, 66–85 (2011) ADSCrossRefGoogle Scholar
  65. L.L. Tornabene et al., Simulation and assessment of the colour and spatial capabilities of the Colour and Stereo Surface Imaging System (CaSSIS) on the ExoMars Trace Gas Orbiter. Space Sci. Rev. (2017, this issue) Google Scholar
  66. A.C. Vandaele, E. Neefs, R. Drummond, I.R. Thomas, F. Daerden, J.-J. Lopez-Moreno, J. Rodriguez, M.R. Patel, G. Bellucci, M. Allen, F. Altieri, D. Bolsée, T. Clancy, S. Delanoye, C. Depiesse, E. Cloutis, A. Fedorova, V. Formisano, B. Funke, D. Fussen, A. Geminale, J.-C. Gèrard, M. Giuranna, N. Ignatiev, J. Kaminski, O. Karatekin, F. Lefèvre, M. Lopez-Puertas, M. Lopez-Valverde, A. Mahieux, J. McConnell, M. Mumma, L. Neary, E. Renotte, B. Ristic, S. Robert, M. Smith, S. Trokhimovsky, J. Vander Auwera, G. Villanueva, J. Whiteway, V. Wilquet, M. Wolff, Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet. Space Sci. 119, 233–249 (2015) ADSCrossRefGoogle Scholar
  67. A.-C. Vandaele et al. Space Sci. Rev. (2017, this issue) Google Scholar
  68. J. Vago, O. Witasse, H. Svedhem, P. Baglioni, A. Haldemann, G. Gianfiglio, T. Blancquaert, D. McCoy, R. de Groot, ESA ExoMars program: the next step in exploring Mars. Sol. Syst. Res. 49, 518–528 (2015) ADSCrossRefGoogle Scholar
  69. J. Vaucher, D. Baratoux, N. Mangold, P. Pinet, K. Kurita, M. Grégoire, The volcanic history of central Elysium Planitia: implications for Martian magmatism. Icarus 204(2), 418–442 (2009). doi:10.1016/j.icarus.2009.06.032 ADSCrossRefGoogle Scholar
  70. G.L. Villanueva, M.J. Mumma, R.E. Novak, Y.L. Radeva, H.U. Käufl, A. Smette, A. Tokunaga, A. Khayat, T. Encrenaz, P. Hartogh, A sensitive search for organics CH4, CH3OH, H2CO, C2H6, C2H2, C2H4, hydroperoxyl (HO2), nitrogen compounds (N2O, NH3, HCN) and chlorine species (HCl, CH3Cl) on Mars using ground-based high-resolution infrared spectroscopy. Icarus 223, 11–27 (2013) ADSCrossRefGoogle Scholar
  71. C.R. Webster, P.R. Mahaffy, S.K. Atreya, G.J. Flesch, M.A. Mischna, P-Y. Meslin, K.A. Farley, P.G. Conrad, L.E. Christensen, A.A. Pavlov, J. Martín-Torres, M-P. Zorzano, T.H. McConnochie, T. Owen, J.L. Eigenbrode, D.P. Glavin, A. Steele, C.A. Malespin, P.D. Archer Jr., B. Sutter, P. Coll, C. Freissinet, C.P. McKay, J.E. Moores, S.P. Schwenzer, J.C. Bridges, R. Navarro-Gonzale, R. Gellert, M.T. Lemmon (The MSL Science Team), Mars methane detection and variability at Gale crater. Science 347, 415–417 (2015) ADSCrossRefGoogle Scholar
  72. J.J. Wray, B.L. Ehlmann, Geology of possible Martian methane source regions. Planet. Space Sci. 59, 196–202 (2011) ADSCrossRefGoogle Scholar
  73. R.W. Zurek, A. Chicarro, M.A. Allen, J.-L. Bertaux, R.T. Clancy, F. Daerden, V. Formisano, J.B. Garvin, G. Neukum, M.D. Smith, Assessment of a 2016 mission concept: the search for trace gases in the atmosphere of Mars. Planet. Space Sci. 59, 284–291 (2011) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • N. Thomas
    • 1
  • G. Cremonese
    • 2
  • R. Ziethe
    • 1
  • M. Gerber
    • 1
  • M. Brändli
    • 1
  • G. Bruno
    • 1
  • M. Erismann
    • 1
  • L. Gambicorti
    • 1
    • 3
  • T. Gerber
    • 4
  • K. Ghose
    • 1
    • 3
  • M. Gruber
    • 1
  • P. Gubler
    • 1
  • H. Mischler
    • 1
  • J. Jost
    • 1
  • D. Piazza
    • 1
  • A. Pommerol
    • 1
  • M. Rieder
    • 1
  • V. Roloff
    • 1
  • A. Servonet
    • 1
  • W. Trottmann
    • 1
  • T. Uthaicharoenpong
    • 1
  • C. Zimmermann
    • 1
  • D. Vernani
    • 5
  • M. Johnson
    • 5
  • E. Pelò
    • 5
  • T. Weigel
    • 5
  • J. Viertl
    • 5
  • N. De Roux
    • 5
  • P. Lochmatter
    • 5
  • G. Sutter
    • 5
  • A. Casciello
    • 5
  • T. Hausner
    • 5
  • I. Ficai Veltroni
    • 6
  • V. Da Deppo
    • 7
  • P. Orleanski
    • 8
  • W. Nowosielski
    • 8
  • T. Zawistowski
    • 8
  • S. Szalai
    • 9
  • B. Sodor
    • 9
  • S. Tulyakov
    • 10
  • G. Troznai
    • 9
  • M. Banaskiewicz
    • 8
  • J. C. Bridges
    • 11
  • S. Byrne
    • 12
  • S. Debei
    • 13
  • M. R. El-Maarry
    • 1
    • 14
  • E. Hauber
    • 15
  • C. J. Hansen
    • 16
  • A. Ivanov
    • 10
  • L. Keszthelyi
    • 17
  • R. Kirk
    • 17
  • R. Kuzmin
    • 18
  • N. Mangold
    • 19
  • L. Marinangeli
    • 20
  • W. J. Markiewicz
    • 21
  • M. Massironi
    • 22
  • A. S. McEwen
    • 12
  • C. Okubo
    • 17
  • L. L. Tornabene
    • 23
  • P. Wajer
    • 8
  • J. J. Wray
    • 24
  1. 1.Physikalisches InstitutUniversity of BernBernSwitzerland
  2. 2.INAF-Osservatorio Astronomicodi PadovaPadovaItaly
  3. 3.European Space Research and Technology Centre (ESTEC)NoordwijkThe Netherlands
  4. 4.Wavelab GmbHLaettiSwitzerland
  5. 5.RUAG SpaceZurichSwitzerland
  6. 6.Selex ESCampi Bisenzio (FI)Italy
  7. 7.CNR-IFN UOS Padova LUXORPadovaItaly
  8. 8.PAS Space Research CenterWarsawPoland
  9. 9.SGF Technology Associates Co. Ltd.BudapestHungary
  10. 10.Space Research Centre, Dept. of Physics and AstronomyUniversity of LeicesterLeicesterUK
  11. 11.Lunar and Planetary LaboratoryUniversity of ArizonaTucsonUSA
  12. 12.CISASUniversity of PadovaPadovaItaly
  13. 13.DLRInstitute of Planetary ResearchBerlin-AdlershofGermany
  14. 14.Laboratory for Space PhysicsBoulderUSA
  15. 15.Planetary Science InstituteTucsonUSA
  16. 16.eSpaceÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  17. 17.Astrogeology Science CenterUSGSFlagstaffUSA
  18. 18.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussia
  19. 19.LPGN/CNRSUniversité NantesNantesFrance
  20. 20.DiSPuTerUniversita’ d’AnnunzioChietiItaly
  21. 21.Max-Planck-Institut für SonnensystemforschungGöttingenGermany
  22. 22.Dipartimento di GeoscienzeUniversità di PadovaPadovaItaly
  23. 23.Centre for Planetary Science and Exploration/Department of Earth SciencesUniversity of Western OntarioLondonCanada
  24. 24.School of Earth and Atmospheric SciencesGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations