Advertisement

Space Science Reviews

, Volume 211, Issue 1–4, pp 383–428 | Cite as

The Noise Model of the SEIS Seismometer of the InSight Mission to Mars

  • David MimounEmail author
  • Naomi Murdoch
  • Philippe Lognonné
  • Kenneth Hurst
  • William T. Pike
  • Jane Hurley
  • Tanguy Nébut
  • William B. Banerdt
  • SEIS Team
Article

Abstract

The SEIS (Seismic Experiment for Interior Structures) instrument on board the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. The InSight noise model is a key tool for the InSight mission and SEIS instrument requirement setup. It will also be used for future operation planning. This paper presents the analyses made to build a model of the Martian seismic noise as measured by the SEIS seismometer, around the seismic bandwidth of the instrument (from 0.01 Hz to 1 Hz). It includes the instrument self-noise, but also the environment parameters that impact the measurements. We present the general approach for the model determination, the environment assumptions, and we analyze the major and minor contributors to the noise model.

Keywords

InSight SEIS Noise model Seismometer Mars Environment 

Notes

Acknowledgements

This work has been supported by CNES and by ISAE, including funding for post-doctoral support provided to N. Murdoch. ATA engineering (USA) performed the tether thermoelastic studies, and Mecano ID did the SEIS thermoelastic studies. Thanks for Jane Hurley (Oxford U) for her contributions. Thanks to Nicolas Verdier (CNES) for his support on the performance tests, and Taichi Kawamura for the VBB magnetic sensitivity analyses. Thanks to the VBB project manager (S. de Raucourt) and VBB instrument team for providing the VBB noise model (T. Nebut, O. Robert), VBB Temperature performances (S. Tillier, P.A. Dandonneau), and validating these models (M. Parise, T. Gabsi, M. Drilleau). The author wishes to thank J. Gagnepain-Beyneix, which was involved from the beginning in the noise model.

References

  1. D.L. Anderson, W. Miller, G. Latham, Y. Nakamura, M. Toksöz, A. Dainty, F. Duennebier, A.R. Lazarewicz, R. Kovach, T. Knight, Seismology on Mars. J. Geophys. Res. 82(28), 4524–4546 (1977) ADSCrossRefGoogle Scholar
  2. E. Arias, B. Beaudoin, R. Woodward, K. Anderson, A. Reusch, Relative noise level comparison of portable broadband seismometer installation techniques used by PASSCAL and flexible array, in AGU Fall Meeting Abstracts, vol. 1 (2014), p. 4474 Google Scholar
  3. M. Böse, J.F. Clinton, S. Ceylan, F. Euchner, M. van Driel, A. Khan, D. Giardini, P. Lognonné, W.B. Banerdt, A probabilistic framework for single-station location of seismicity on Earth and Mars. Phys. Earth Planet. Inter. 262, 48–65 (2017). doi: 10.1016/j.pepi.2016.11.003 ADSCrossRefGoogle Scholar
  4. S. De Raucourt, T. Gabsi, N. Tanguy, D. Mimoun, P. Lognonne, J. Gagnepain-Beyneix, W. Banerdt, S. Tillier, K. Hurst, The VBB SEIS experiment of InSight, in 39th COSPAR Scientific Assembly. COSPAR Meeting, vol. 39 (2012), p. 429 Google Scholar
  5. P. Delage, F. Karakostas, A. Dhemaied, M. Belmokhtar, P. Lognonné, M. Golombek, E. De Laure, K. Hurst, J.-C. Dupla, S. Keddar et al., An investigation of the mechanical properties of some martian regolith simulants with respect to the surface properties at the insight mission landing site. Space Sci. Rev., 1–23 (2017) Google Scholar
  6. G. Déprez, F. Montmessin, O. Witasse, L. Lapauw, F. Vivat, S. Abbaki, P. Granier, D. Moirin, R. Trautner, R. Hassen-Khodja et al., Micro-ares, an electric field sensor for ExoMars 2016, in European Planetary Science Congress 2015, vol. 10 (2015), EPSC2015-508 Google Scholar
  7. T. Forbinger, Recommendations for seismometer deployment and shielding. in New Manual of Seismological Observatory Practice, vol. 2 (2012), pp. 1–10 Google Scholar
  8. T. Forbriger, R. Widmer-Schnidrig, E. Wielandt, M. Hayman, N. Ackerley, Magnetic field background variations can limit the resolution of seismic broad-band sensors. Geophys. J. Int. 183(1), 303–312 (2010) ADSCrossRefGoogle Scholar
  9. N.R. Goins, A.R. Lazarewicz, Martian seismicity. Geophys. Res. Lett. 6, 368–370 (1979). doi: 10.1029/GL006i005p00368 ADSCrossRefGoogle Scholar
  10. M. Golombek, D. Kipp, N. Warner, I.J. Daubar, R. Fergason, R.L. Kirk, R. Beyer, A. Huertas, S. Piqueux, N.E. Putzig, B.A. Campbell, G.A. Morgan, C. Charalambous, W.T. Pike, K. Gwinner, F. Calef, D. Kass, M. Mischna, J. Ashley, C. Bloom, N. Wigton, T. Hare, C. Schwartz, H. Gengl, L. Redmond, M. Trautman, J. Sweeney, C. Grima, I.B. Smith, E. Sklyanskiy, M. Lisano, J. Benardini, S. Smrekar, P. Lognonné, W.B. Banerdt, Selection of the insight landing site. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0321-9 Google Scholar
  11. C. Hirt, S. Claessens, M. Kuhn, W. Featherstone, Kilometer-resolution gravity field of Mars: Mgm2011. Planet. Space Sci. 67(1), 147–154 (2012) ADSCrossRefGoogle Scholar
  12. B. Kenda, P. Lognonné, A. Spiga, T. Kawamura, S. Kedar, W. Banerdt, R. Lorenz, D. Banfield, M. Golombek, Modeling of ground deformation and shallow surface waves generated by martian dust devils and perspectives for near-surface structure inversion. Space Sci. Rev. (2016) Google Scholar
  13. A. Khan, M. van Driel, M. Böse, D. Giardini, S. Ceylan, J. Yan, J. Clinton, F. Euchner, P. Lognonné, N. Murdoch et al., Single-station and single-event marsquake location and inversion for structure using synthetic martian waveforms. Phys. Earth Planet. Inter. 258, 28–42 (2016) ADSCrossRefGoogle Scholar
  14. J.F. Kok, N.O. Renno, Electrostatics in wind-blown sand. Phys. Rev. Lett. 100(1), 014501 (2008). doi: 10.1103/PhysRevLett.100.014501 ADSCrossRefGoogle Scholar
  15. J.F. Kok, N.O. Renno, Electrification of wind-blown sand on Mars and its implications for atmospheric chemistry. Geophys. Res. Lett. 36, 05202 (2009). doi: 10.1029/2008GL036691 ADSCrossRefGoogle Scholar
  16. J.F. Kok, An improved parameterization of wind-blown sand flux on mars that includes the effect of hysteresis. Geophys. Res. Lett. 37(12) (2010) Google Scholar
  17. J.F. Kok, E.J. Parteli, T.I. Michaels, D.B. Karam, The physics of wind-blown sand and dust. Rep. Prog. Phys. 75(10), 106901 (2012) ADSCrossRefGoogle Scholar
  18. C. Kroner, BFO and Moxa: two observatories for seismological broadband observations, 2016. http://www.orfeus-eu.org/website_until_17aug2016/organization/Organization/Newsletter/vol2no3/jena.html
  19. B. Langlais, M. Purucker, M. Mandea, Crustal magnetic field of Mars. J. Geophys. Res., Planets 109(E2) (2004) Google Scholar
  20. V. Linkin, A.-M. Harri, A. Lipatov, K. Belostotskaja, B. Derbunovich, A. Ekonomov, L. Khloustova, R. Kremnev, V. Makarov, B. Martinov, D. Nenarokov, M. Prostov, A. Pustovalov, G. Shustko, I. Järvinen, H. Kivilinna, S. Korpela, K. Kumpulainen, A. Lehto, R. Pellinen, R. Pirjola, P. Riihelä, A. Salminen, W. Schmidt, T. Siili, J. Blamont, T. Carpentier, A. Debus, C.T. Hua, J.-F. Karczewski, H. Laplace, P. Levacher, P. Lognonné, C. Malique, M. Menvielle, G. Mouli, J.-P. Pommereau, K. Quotb, J. Runavot, D. Vienne, F. Grunthaner, F. Kuhnke, G. Musmann, R. Rieder, H. Wänke, T. Economou, M. Herring, A. Lane, C.P. McKay, A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station. Planet. Space Sci. 46, 717–737 (1998). doi: 10.1016/S0032-0633(98)00008-7 ADSCrossRefGoogle Scholar
  21. P. Lognonné, C. Johnson, Planetary seismology. Planets and Moons (2015). doi: 10.1016/B978-0-444-53802-4.00167-6 Google Scholar
  22. P. Lognonné, J.G. Beyneix, W.B. Banerdt, S. Cacho, J.F. Karczewski, M. Morand, Ultra broad band seismology on InterMarsNet. Plan. Space Sci. 44, 1237 (1996). doi: 10.1016/S0032-0633(96)00083-9 ADSCrossRefGoogle Scholar
  23. P. Lognonné, D. Giardini, B. Banerdt, J. Gagnepain-Beyneix, A. Mocquet, T. Spohn, J.F. Karczewski, P. Schibler, S. Cacho, W.T. Pike, C. Cavoit, A. Desautez, M. Favède, T. Gabsi, L. Simoulin, N. Striebig, M. Campillo, A. Deschamp, J. Hinderer, J.J. Lévéque, J.P. Montagner, L. Rivéra, W. Benz, D. Breuer, P. Defraigne, V. Dehant, A. Fujimura, H. Mizutani, J. Oberst, The NetLander very broad band seismometer. Plan. Space Sci. 48, 1289–1302 (2000). doi: 10.1016/S0032-0633(00)00110-0 ADSCrossRefGoogle Scholar
  24. P. Lognonné, B. Mosser, Planetary seismology. Surv. Geophys. 14(3), 239–302 (1993) ADSCrossRefGoogle Scholar
  25. R.D. Lorenz, S. Kedar, N. Murdoch, P. Lognonné, T. Kawamura, D. Mimoun, W.B. Banerdt, Seismometer detection of dust devil vortices by ground tilt. Bull. Seismol. Soc. Am. (2015). doi: 10.1785/0120150133 Google Scholar
  26. T.Z. Martin, Mass of dust in the martian atmosphere. J. Geophys. Res., Planets 100(E4), 7509–7512 (1995) ADSCrossRefGoogle Scholar
  27. O. Melnik, M. Parrot, Electrostatic discharge in martian dust storms. J. Geophys. Res. Space Phys. 103(A12), 29107–29117 (1998) ADSCrossRefGoogle Scholar
  28. D. Mimoun, J. Gagnepain-Beyneix, P. Lognonne, T. Nébut, D. Giardini, W.T. Pike, U. Christensen, A. van den Berg, P. Schibler, SEIS Team, The SEIS experiment: instrument signal to noise study, in Seventh International Conference on Mars. LPI Contributions, vol. 1353, 2007, p. 3279 Google Scholar
  29. D. Mimoun, P. Lognonné, W. Banerdt, K. Hurst, S. Deraucourt, J. Gagnepain-Beyneix, T. Pike, S. Calcutt, M. Bierwirth, R. Roll et al., The InSight SEIS experiment, in Lunar and Planetary Science Conference, vol. 43, 2012 Google Scholar
  30. N. Murdoch, B. Kenda, T. Kawamura, A. Spiga, P. Lognonné, D. Mimoun, W.B. Banerdt, Estimations of the seismic pressure noise on Mars determined from large eddy simulations and demonstration of pressure decorrelation techniques for the insight mission. Space Sci. Rev., 1–27 (2016a) Google Scholar
  31. N. Murdoch, D. Mimoun, R.F. Garcia, W. Rapin, T. Kawamura, P. Lognonné, D. Banfield, W.B. Banerdt, Evaluating the wind-induced mechanical noise on the insight seismometers. Space Sci. Rev., 1–27 (2016b). doi: 10.1007/s11214-016-0311-y
  32. Y. Nakamura, D.L. Anderson, Martian wind activity detected by a seismometer at viking lander 2 site. Geophys. Res. Lett. 6(6), 499–502 (1979) ADSCrossRefGoogle Scholar
  33. M.P. Panning, É. Beucler, M. Drilleau, A. Mocquet, P. Lognonné, W.B. Banerdt, Verifying single-station seismic approaches using Earth-based data: preparation for data return from the InSight mission to Mars. Icarus 248, 230–242 (2015). doi: 10.1016/j.icarus.2014.10.035 ADSCrossRefGoogle Scholar
  34. M.P. Panning, P. Lognonné, W.B. Banerdt, R. Garcia, M. Golombek, S. Kedar, B. Knapmeyer-Endrun, A. Mocquet, N.A. Teanby, J. Tromp et al., Planned products of the Mars structure service for the insight mission to Mars. Space Sci. Rev., 1–40 (2016) Google Scholar
  35. J. Peterson, Sts 2 manual. USGS Open file report n93-322 (1993a) Google Scholar
  36. J. Peterson, Trillium compact manual. USGS Open file report n93-322 (1993b) Google Scholar
  37. J. Peterson et al., Observations and modeling of seismic background noise (1993) Google Scholar
  38. L. Pou, D. Mimoun, R. Garcia, P. Lognonne, W.B. Banerdt, Ö. Karatekin, V. Dehant, P. Zhu, Mars deep internal structure determination using Phobos tide measurement strategy with the SEIS/InSight experiment, in EGU General Assembly Conference Abstracts, vol. 18, 2016, p. 8724 Google Scholar
  39. A.T. Ringler, R. Sleeman, C.R. Hutt, L.S. Gee, Seismometer self-noise and measuring methods, in Encyclopedia of Earthquake Engineering, ed. by M. Beer, I.A. Kougioumtzoglou, E. Patelli, I.S.-K. Au (Springer, Berlin, 2014), pp. 1–13. doi: 10.1007/978-3-642-36197-5_175-1 Google Scholar
  40. A. Ringler, C. Hutt, Self-noise models of seismic instruments. Seismol. Res. Lett. 81(6), 972–983 (2010) CrossRefGoogle Scholar
  41. G. Sorrells, J.A. McDonald, E.T. Herrin, Ground motions associated with acoustic waves. Nature 229(1), 14–16 (1971) ADSGoogle Scholar
  42. G.G. Sorrells, A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field. Geophys. J. Int. 26(1-4), 71–82 (1971) ADSCrossRefGoogle Scholar
  43. A. Spiga, F. Forget, A new model to simulate the martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., Planets 114(E2) (2009) Google Scholar
  44. J. Stout, T. Zobeck, Intermittent saltation. Sedimentology 44(5), 959–970 (1997) ADSCrossRefGoogle Scholar
  45. G.H. Sutton, G.V. Latham, Analysis of a feedback-controlled seismometer. J. Geophys. Res. 69(18), 3865–3882 (1964). doi: 10.1029/JZ069i018p03865 ADSCrossRefGoogle Scholar
  46. N.A. Teanby, J. Stevanović, J. Wookey, N. Murdoch, J. Hurley, R. Myhill, N.E. Bowles, S.B. Calcutt, W.T. Pike, Seismic coupling of short-period wind noise through Mars’ regolith for NASA’s InSight lander. Space Sci. Rev. (2016). doi: 10.1007/s11214-016-0310-z Google Scholar
  47. T. Van Hoolst, V. Dehant, F. Roosbeek, P. Lognonné, Tidally induced surface displacements, external potential variations, and gravity variations on Mars. Icarus 161(2), 281–296 (2003) ADSCrossRefGoogle Scholar
  48. R.J. Warburton, J.M. Goodkind, The influence of barometric-pressure variations on gravity. Geophys. J. Int. 48(3), 281–292 (1977). doi: 10.1111/j.1365-246X.1977.tb03672.x ADSCrossRefGoogle Scholar
  49. F. Widmer, On noise reduction in vertical seismic records below 2 MHz using local barometric pressure W. Zürn. Geophys. Res. Lett. 22(24), 3537–3540 (1995). doi: 10.1029/95GL03369 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • David Mimoun
    • 1
    Email author
  • Naomi Murdoch
    • 1
  • Philippe Lognonné
    • 2
  • Kenneth Hurst
    • 3
  • William T. Pike
    • 4
  • Jane Hurley
    • 5
  • Tanguy Nébut
    • 2
  • William B. Banerdt
    • 3
  • SEIS Team
    • 6
  1. 1.DEOS/SSPAInstitut Supérieur de l’Aéronautique et de l’Espace, Supaero, Université de ToulouseToulouse CedexFrance
  2. 2.Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniversité Paris DiderotParisFrance
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Department of Electrical and Electronic EngineeringImperial College LondonLondonUK
  5. 5.Rutherford Appleton LaboratoryScience and Technology Facilities CouncilDidcotUK
  6. 6.

Personalised recommendations